剪力墙结构—基础—地基共同作用分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层和超高层建筑抵抗水平方向作用是结构设计的主要任务,选用具有良好抗侧刚度的结构型式是结构设计的关键性问题。而钢筋混凝土剪力墙结构是利用建筑物现浇混凝土墙体作为建筑的承重体系,同时因其抗侧刚度大,整体性好,具有良好抵抗水平作用能力,故在高层和超高层建筑中得到广泛应用。
     常规的结构设计方法出于简化分析,隔离了上部结构和基础之间的相互作用,导致上部结构设计的不安全和基础设计上的不经济。因为上部结构、基础和地基是一个彼此协调、共同工作的整体,每一部分的工作性状,都是三者共同作用的结果,应用共同作用的理论进行高层建筑设计,才能比较真实地反映结构的实际工作状态,也才可能是最为安全、经济、合理的。因此,考虑上下部结构共同作用的计算方法越来越受到工程界的重视。但共同作用分析作为一种结构设计方法,其理论研究与工程实践尚处于发展和完善阶段,仍有大量基础性工作有待继续探讨。
     本文系统的阐述了上部结构-基础-地基共同作用的基本方法基础,同时主要完成以下工作内容:
     (1)利用剪力墙常规设计方法—连续连杆法的基本理论,推导双肢墙和多肢墙在水平荷载作用下上下部结构共同作用的基本方程。
     (2)用本文提出的共同作用计算方法,分析水平荷载作用下上部结构内力及水平位移,并与常规设计方法进行比较。
     (3)用本文提出的共同作用计算方法,分析水平荷载作用下当上部结构刚度改变时,上部结构、基础和地基的内力及变形特性。
     (4)用本文提出的共同作用计算方法,分析水平荷载作用下当基础刚度改变时,上部结构、基础和地基的内力及变形特性。
     (5)用本文提出的共同作用计算方法,分析水平荷载作用下当地基刚度改变时,上部结构、基础和地基的受力及变形特性。
     (6)对以上所有分析对象和结果进行讨论,并归纳总结影响共同作用的因素和规律,同时考查文中提出方法的合理性和优越性,讨论其对工程实践的应用性和指导性用途。
The main task of structural design is for high-rise and ultrahigh-rise buildings to resist the horizontal effect. Its key problem is to select structure design of good lateral stiffness. The concrete shear wall structure uses cast-in-site concrete building walls as buildings’load-bearing system. It’s widely used in high-rise and ultrahigh-rise buildings because of its strong lateral stiffness, good entirety and resistance of the horizontal effect.
     Conventional structure design method out of simplifying the analysis isolates the interaction between upside structure and foundation, resulting in unsafety of upside structure design and uneconomicalness of the foundation design. Because the superstructure, ground base and foundation are a co-ordination with each other, working together as a whole; the work effect of each part is the result of combined action, the theory of interaction should be adopted to design high-rise buildings. Only in this way can the actual structure working state be truly reflected and only then can it be the safest, most economical and reasonable. Therefore, considering the calculation method of interaction between the upper and lower structures attracts more and more attention of the Engineering. However, analysis of interaction is used as a structural design method. Its theoretical research and engineering practice is still in the stage of development and perfection. There is still a lot of basic work to be continued.
     This paper systematically elaborates on the interaction between the superstructure, ground base and foundation and mainly finished the following work:
     (1) Using conventional shear wall design method—the basic theory of coupling beams, it derived the basic calculation equations of interaction between the upper and lower structures of double shear wall and multi-shear wall under horizontal load.
     (2) Based on the calculation equations of interaction proposed in this paper, it analyzed the internal forces and horizontal displacement of the upper structure under horizontal load and compared it with conventional design method.
     (3) Based on the calculation equations of interaction proposed in this paper, it analyzed, when the level of stiffness of the superstructure changes, the internal forces and deformation characteristics of the superstructure, ground base and foundation under horizontal load.
     (4) Based on the calculation equations of interaction proposed in this paper, it analyzed, when the level of stiffness of the ground base changes, the internal forces and deformation characteristics of the superstructure, ground base and foundation under horizontal load.
     (5) Based on the calculation equations of interaction proposed in this paper, it analyzed, when the level of stiffness of foundation changes, the stress and deformation characteristics of the superstructure, ground base and foundation under horizontal load.
     (6) All of the above analytic targets and results were discussed and the factors and law that affect the interaction were summarized too. The paper also examined the rationality and superiority of the proposed method and discussed its application and guidance in engineering practice.
引文
[1]包世华,方鄂华.高层建筑结构设计[M].北京:清华大学出版社, 1985.
    [2] Meyerhof, G. G. Some recent foundation research and its application to design. Structure engineering, 1953, 3(1): 151-167.
    [3] Chamecki, S. Structural rigidity in calculating settlements. Journal of soil mechanic and foundation, ASCE, 1956, 82(SMl): 1-9.
    [4] Grosshof, H. Influence of flexural rigidity of superstructure on the distribution of contact pressure and bending moments of an elastic combined footing. In: Proceeding 4th ICESMFE, London, 1957, 1: 300-306.
    [5] Sommer, H. A method of calculation of settlements,contacts and bending moments in a foundation including the flexural rigidity of the superstructure. In Proceeding 6th ICSMFE, Montreal, 1965, 2: 197-201.
    [6] Zeinkeiwicz, C, Cheung, Y. K. Plates and tanks on elastic foundation anapplication of element method. Journal of solids and structure, 1965, 10(1): 451-461.
    [7] Przemienieck, J. S. Theory of matrix structure analysis. New York: Wiley Press, 1968.
    [8] Lee, I. K. and Harrison, H. B. A theoretical study of the interaction of structure and foundations. J. Struct. Div. Proc. ASCE, 1970, 96(ST2), 177—197.
    [9] Haddadin, M. J. Mats and combined footings analysis by the finite element methods. Proc. ACI, 1971, 68(12): 945-949.
    [10] Christian, J. T. Soil structure—interaction for tall buildings. Planning and design of tall buildings, Lehigh U, 1972: 177-197.
    [11] Hain, S. J. and Lee, I. K. Rational analysis of raft foundation, J. Geoteeh. Engg. Div. ASCE, 1974, 100(GT7): 843-860.
    [12] Larnach, W. J. and Wood, L. A. The effectsof soil structrue interaction on settlements, Int. Symp. On computer Aided Design, Univ. of Warwick,1972.
    [13] Hooper,J. A. Observations on the behaviour of a piled-raft Foundation on London Clay, Proc. ICE. 1973, 55(2), 855-877.
    [14] Wardle, L. J. and Fraser, R. A. Methords for raft foundation design including soil-structrue interaction. Proc, Symp. on Raft Foundation,Perth, Australia, 1975, 1-11.
    [15] Poulos, H. G. and Davis, E. H. Pile foundation analysis and design. New York:Wiley,1980.
    [16] Mindlin, R. D. Force at a point in the interior of a semi-infinite solid. Jul Appl. Phys. 1936.
    [17]张问清,赵锡宏.逐步扩大子结构法计算高层结构刚度的基本原理.建筑结构学报,1980(4):60-70.
    [18]张国霞,张乃瑞,张风林.非线性差异沉降分析,岩土工程学报,1981(3):41-48.
    [19]何颐华,方寿生,钱力航等.高层建筑箱形基础基底反力确定法,建筑结构学报,1980(1): 72-76.
    [20]叶子政,孙家乐,高层建筑箱形基础与地基和上部结构共同作用机理的初步探讨和采用弹性杆的简化计算方法,北京工业大学学报,1980(3).19-36.
    [21]董建国,路佳,赵锡宏等,共同作用分析在高层建筑箱基设计中的应用,见:曹志远主编,结构与介质相互作用理论及其应用,南京:河海大学出版社,1993,387-93.
    [22]赵锡宏等著,上海高层建筑桩筏与桩箱基础设计理论,上海,同济大学出版社,1989.
    [23]董建国,杨敏,赵锡宏,筏式和箱式承台弯距的计算,岩土工程学报,1992(4):32—37
    [24]杨敏,上部结构与桩筏基础共同作用的理论与试验研究:[博士论文],上海:同济大学,1989.
    [25]黄绍铭,王迪民等,减少沉降量桩基的设计与初步实践,第六届土力学及基础工程学术会议论文集,上海:同济大学出版社.1991,408-410.
    [26]中华人民共和国国家标准.建筑桩基技术规范((JGJ94-94).北京:中国建筑工业出版社,1995
    [27]李广信.有关土的相互作用问题.岩土工程学报,1996 18(6):112-115.
    [28]中国建筑科学研究院PKPMCAD工程部编.独基、条基、钢筋混凝土地基梁、桩基础和筏板基础设计软件JCCAD.北京:中国建筑科学研究院PKPMCAD工程部,2005
    [29]袁聚云,赵锡宏,董建国.高层空间剪力墙结构与各向异性弹塑性地基共同作用的研究.结构工程师, 1999(1):40-45.
    [30]姚祖恩,龙卫国.剪力墙-基础-土共同作用分析.浙江大学学报(自然科学版),1989,23(3):356-362.
    [31]董建国,赵锡宏.高层建筑地基基础-共同作用理论与实践[M].上海:同济大学出版社, 2006: 3-5.
    [32]石坚,武莹,贺建辉.上部结构、筏板基础和地基共同作用的有限元分析.建筑科学与工程学报, 2006, 23(2):72-75.
    [33]王彬,胡正洲,姚文娟,闫威.上部结构-筏基-地基共同作用子结构法FEM分析.地下空间与工程学报,2009,3(5):478-483.
    [34]陆上云.上部结构与地基、基础共同作用的连续—离散化方法:[同济大学硕士论文].上海:同济大学,2004.
    [35]龚晓南.土塑性力学,杭州:浙江大学出版社,1999.
    [36]宰金珉,张问清,赵锡宏.高层空间剪力墙结构与地基共同作用三维问题的双重扩大子结构有限元—有限层分析.建筑结构学报.1983(5).43-47.
    [37]尚守平.文学章.地基一箱形基础一上部结构共同作用分析—第十届全国结构工程学术会议特邀报告.工程力学,2001,A01:123-132.
    [38]刘辉.考虑上下部结构共同作用的筏板基础的有限元分析:[西安理工大学硕士论文].西安:西安理工大学,2007.
    [39]黄和平.共同作用条件下基础与上部结构的相互影响.武汉工业大学学报.1999,21(3):53-55.
    [40]沈清松.剪力墙—桩筏基础—地基共同作用三维有限元分析:[浙江大学硕士论文].杭州:浙江大学,2006.
    [41]干腾君,康石磊,邓安福.考虑上部结构共同作用的弹性地基上筏板基础分析.岩土工程学报,2006,28(1):110-112.
    [42]姚祖恩,张季容,吴志平.墙下筏板基础共同作用分析方法探讨.岩土工程学报,1993,15(2):80-85.
    [43]宰金珉.水平(风)荷载作用下高层建筑一基础一不均匀各向异性地基的共同作用.岩土工程师. 1989,1(1):37-45.
    [44]李园辉,杨兰州,邓德学.水平荷载作用下筏板基础共同作用分析.工程结构. 2009,29(4):163-165.
    [45]姜福香,王玉田.上部结构-厚筏基础-土共同作用分析.土工基础. 1998,12(3): 6-10.
    [46]中国建筑科学研究院建筑结构研究所主编.高层建筑结构设计[M].北京:科学出版社, 1982.
    [47] Drucker, D.C. and Prager, W. Soil mechanics and plastic analysis or limit design. Q,Appl.Math.(10),1952, 157-165.
    [48] Drucker, D.C, R. E. Gibson,and D. J. HenkeL. Soil mechanics and work hard theories of plastcity. Proc, ASCE, Tran, 1957, 122-338.
    [49]宰金珉,宰金璋,高层建筑基础分析与设计—土与结构物共同作用的理论与应用.北京:中国建筑工业出版社,1994.
    [50]中华人民共和国建设部.《建筑地基基础设计规范》(GB 50007—2002).北京:中国建筑工业出版社,2002.
    [51]张问清,赵锡宏,宰金珉.任意力系作用下层状弹性半空间的有限层分析方法.岩土工程学报,1981,3(2):27—42.
    [52]张问清,赵锡宏,董建国.上海粉砂土弹塑性应力-应变模型的探讨.岩土工程学报,1982(4):159-173.
    [53]黄文熙.土的弹塑性应力-应变模型理论.北京:清华大学水利系,1978.
    [54]熊益农.半解析数值法分析中厚板基础与地基相互作用:[湖南大学硕士学位论文].长沙:湖南大学,2007.
    [55]沈蒲生.高层建筑结构设计.北京:中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700