射流式单重态氧发生器的气液两相模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单重态氧O_2(~1△)发生器(Singlet Oxygen Generator,SOG)是氧碘化学激光器(COIL)的重要组件。O_2(~1△)发生器的工作性能直接影响到化学氧碘激光器的工作效率。因此,研究O_2(~1△)发生器的动力学理论及其模型对于发生器的优化设计有重要的指导作用。目前,可以较好的应用于工程的单重态氧发生器主要有两种:射流式和均匀液滴式。由于前者结构较为简单,易于建模,故本文选择射流式单重态氧发生器(JSOG)作为研究对象。
     本文采用以数值模拟为主的研究手段,针对JSOG建立了气液两相理论模型,通过数值计算验证了模型的可行性,分析了发生器内的动力学过程,讨论了实验参数对发生器性能的影响,可为JSOG工作参数的优化提供理论支持。论文的主要工作和特色如下:
     1.通过充分地调研和分析,确定了能描述JSOG内化学反应过程的反应动力学模型,并选定了各化学反应的化学反应速率常数;确定了JSOG模型中要考虑的组分,并给出了描述其物理化学性质(扩散系数、Henry常数和粘性系数等)的可靠参数体系。
     2.通过一些合理的近似和假设,针对逆流型JSOG建立了直角坐标系下的气液两相模型(TPM),并分析了TPM与一维简化模型的区别与联系;通过数值计算验证了模型的可行性,发现了决定发生器动力学过程类型的主要因素,并给出了利用氯气吸收速率变化曲线判定发生器动力学过程类型的方法。
     3.在TPM中考虑了热效应及其对组分物理化学性质和发生器性能的影响,首次计算了气液两相温度和气相中的水蒸气含量,讨论了各个热力学过程对发生器内温度场的影响。
     4.通过数值模拟,分析了各个实验参数对发生器Cl_2利用率、O_2(~1△)产率、化学效率以及温度场的影响,可为JSOG工作参数的优化提供理论支持。
     5.针对逆流型JSOG建立了柱坐标系下的气液两相模型(CTPM),通过数值计算验证了模型的可行性;这一模型较之TPM更接近于JSOG的实际工况,为下一步建立单重态氧发生器的工程应用型模型奠定了基础。
     此外,本文还在附录里介绍了求解偏微分方程的傅立叶变换法,以及TPM和CTPM中的相关数值算法。
Singlet oxygen generator(SOG)is one of the key components of the chemical oxygen-iodine laser (COIL).The generation rate of O_2(~1△)has a significant impact on COIL performance,therefore,the kinetic theory modeling plays an important guiding role to optimize the design of SOG.At present,there are two main types of SOG working well in industrial applications:the Jet SOG and the Uniform-Droplet SOG.In this paper,the JSOG is chosen as the object of our study since its structure is relatively simple and easy to model.The main progresses are:
     1.The chemical reaction kinetics model describing JSOG and the chemical reaction rate constants are determined based upon the sufficient investigations and analysis.The reliable parameters,describing the physical and chemical properties(such as diffusion coefficient,Henry constant and viscosity,etc.)of these species considered in the model of JSOG,are also given.
     2.A two-phase model(TPM)is developed in Cartesian coordinate system for JSOG with counter flows by means of some reasonable approximations and assumptions.The differences and connections between TPM and the simplified one-dimensional models are analyzed.The TPM is proved to be usable in calculation of JSOG and illustrated by the results of numerical simulations.The results show the main factors on which the type of the generator kinetics is dependant.A method of determining the type of the generator kinetics with the curve of chlorine absorption rate is presented.
     3.The impact of thermal effect on the physical and chemical properties of species and on the performance of the generator is considered.It is the first time that the vapor content in the gas and the temperatures of the gas and liquid are computed.The effect of thermodynamic process inside the generator on the temperature field is also discussed.
     4.The influence of experiment conditions on the performance(such as Cl2 utilization,O2(1△) yield and chemical efficiency,etc.)of SOG is studied with numerical simulation.It is referential to optimize the JSOG system.
     5.A two-phase model(TPM)is developed in cylindrical coordinate system for the JSOG with counter flows(CTPM).The feasibility of CTPM is verified with numerical calculations.CTPM is more reliable to simulate the processes of JSOG than TPM.It is referential for the establishment of SOG industrial application models.
     In addition,the Fourier transform method for solving PDE is introduced in Appendix,as well as the numerical algorithm used in the TPM and CTPM.
引文
[1]Held A M,Halko D J,et al.Mechanisms of chlorine oxidation of hydrogen peroxide[J],Journal of the American Chemical Society,1978,100(18):5732-5740
    [2]McDermott W E,et al.An Electronic Transition Chemical Laser[J].Appi Phys Lett,1978,32(8):469-470
    [3]李守先,COIL及相关技术进展,GF-A-OOG ZW-J-2003138 909-001-26,2004.
    [4]Zagidullin M V.Gain and gas-dynamic parameters of COIL active medium generated by ejector nozzle bank[R].COIL R&D Workshop,28-29 May 2001,Prague.Czech Republic.
    [5]Ananev Y A.Properties of unstable resonator with field rotation[J].Soy J Quantum Electron,1979,(9):1105-1114
    [6]Paxton A H,William P,and Latham J.Unstable resonator with 900 beam rotation[J],Applied Optics,1986,25(7):2939-2946
    [7]Jin Y Q,Yang B L,Sang F T,et al.Experimental investigation of an unstable resonator with 90-deg beam rotation for a chemical oxygen iodine laser[J].Applied Optics,1999,38(15):3249-3252
    [8]Zagidullin M V.Investigation of a jet generator of O2(?)[J].Sov J Quantum Electron,1989.19(11):1412-1415
    [9]Thayer Ⅲ W J.and Fisher C H.Comparison of predicted and measured output from a transverse how uniform droplet singlet oxygen generator[J].AIAA 1994.2454
    [10]Vyskubenko A A.et al.Supersonic oxygen-iodine laser evolution of Russian Federal Nuclear Center[C]//Proc of SPIE.2000.4184:56
    [11]Zagidullin M V,Kurov A Y,Kupriyanov N L,et al.Highly efficient jet O_2(1△)generator[J].Sov J Quantum Electron,1991.21(7):747-753
    [12]McDermott W E.StephensJ C,Vetrovec J.et al.Operating experience with a high throughput jet generator[C]//AIAA-97-2385,Conference on Gas Flow & Chemical Lasers.San Jose,CA,1997.
    [13]李富岭.杨柏龄.庄崎.射流式单重态氧发生器一维数值模型计算[J].量子电子学报,1998,15(4):371-375.(Li F L,Yang B L.Zhuang Q.One-dimension model calculation of JSOG.Chinese Journal of Quantum Electronics,1998,15(4):371-375)
    [14]Copeland D A.Quan J,Blauer A,et al.Two-Phase model of O2(1△)production with application to rotating disk generators[C]//Proc of SPIE,1993,1871:203-228.
    [15]Liu W F,Han X M,Jin Y Q,et al.Jet singlet oxygen generator modeling.High Power Laser and Particle Beams,2005,17(10):1497-1504.
    [16]JohnHon D N,Plummer P G,crowell J,et al.Heuristic Method for Evaluating COIL Performance[J],AIAA Journal,1996,34(8):1595-1603
    [17]Hurlock S C,Goldberg I B,Laeger H O,et al.Engineering development of a singlet delta oxygen generator[R].AFWL-TR-80-143,Air Force Weapons Laboratory,Kirtland AFB,NM,December 1981
    [18]Cussler E L.Diffusion—Mass Transfer in Fluid Systems[M].London:Cambridge University Press,2000.
    [19]Zagidullin M V.The study and development ofjet type singlet oxygen generator for COIL[C]//Proc of sPIE,1998.3574:569-576.
    [20]Lilenfeld H V.Oxygen iodine laser kinetics[J].AFWL TR-83-01.Kirtland AFB,NM,1983.11
    [21]Masuda W,Satoh M.Yamada H.Effects of water vapor condensation on the performance of supersonic flow chemical oxygen-iodine laser[J].JSME International Journal,1996,B39(2):273-279.
    [22]Sandall O C,Goldberg I B,Hurlock S C,Laeger H O,Wagner R I.Solubility and rate of hydro1ysis of chlorine in aqueous sodium hydroxide at 273 K[J].AIChE Journal,1981,27:856
    [23]McDermott W E.Performance characteristics of a high pressure jet generator[C]//Proc of SPIE,1998,3268:88-98.
    [24]McDermott W E.The generation of singlet oxygen-atechnology update[C]//Proc of SPIE,1994,2119:2-14.
    [25]Richardson R J,Carr P A G,Hovis F E,et al.Evaluation of amines as bases for the H_2O_2-C12 singlet-oxygen generration[J].J Appl Phys,1982,53(4):3272-3277
    [26]Merkel P B,and Kearns D R.Radiationless decay of singlet molecular oxygen in solution.An experimental and theoretical study of electronic-to-vibrational energy transfer[J].J Am Chem Soc,1972,94(21):7244-7253
    [27]Rodgers M A J.and Shand M A.Lifetime of singlet oxygen in aqueous hydrogen peroxide(BHP)[R].Final report,AFWL,Kirtland AFB.New Mexico,1989
    [28]Truesdell K A,Helms C A.Hager G D.COIL development in the USA[J].AIAA,1994.2421
    [29]Copeland D A,and Blauer A.“Universal”solution for the utilization and yield of an O2(1△)generator[C]//Proc of SPIE,1994,2117:101-117.
    [30]Richardson R J,Viswall C E,Carr P A G,et al.An effcient singlet oxygen generator for chemically pumped iodine lasers[J].J Appl Phys,1981,52(8):4962-4969
    [31]Ruiz-Ibanez G,Bidarian A,et al.Solubility and diffusivity of oxygen and chlorine in aqueous hydrogen peroxide solutions[J].Journal of Chemical and Engineering Data.1991:36(4):459-466.
    [32]Basov N G,Zagidullin M V,Igoshin V I,et al.A theoretical analysis of oxygen-iodine chemical laser,Chemical lsaer[M].Springer-Verlag,Berlin,1990
    [33]王运生,骆广生,刘谦.传递过程原理[M].北京:清华大学出版社,2002.(Wang Y s.Transfer Principle[M].Bejing:Tsinghua University Press,2002
    [34]Harpole G M,English W D,Berg J G,et al.Rotating disk oxygen generator[J].AIAA,1992,3006
    [35]Thayer 111 W J,Cousins A K,Romea R D.Modeling of uniform droplet singlet oxygen generators[C]//Proc of SPIE.1994.2117:71-100.
    [36]房本杰,桑凤亭,魏凌云.JSOG中BHP液面的温升与水蒸气含量[J].强激光与粒子束,2001,13(1):27-30.(Fang B J,Sang F T,Wei L Y.BHP surface temperature rise and water vapor content in JSOG,2001,13(1):27-30)
    [37]Li L X.Singlet oxygen generation for chemical oxygen-iodine-a literature review[R].Final report,AFWL-ML-TY-TR,2004:4541
    [38]Paschkewitz J,Miller J,Madden T,et al.An assessment of COIL physical property and chemical kinetic modelong methodologies[J].AIAA,2000,2574
    [39]Zagidullin M V,Igoshin V I,Kupriyanov N L.Water vapor content in the active medium of an oxygen-iodine chemical laser[J].Sov J Quantum Electron,1987,17(3):320-324
    [40]Spalek O.Kodymova J,Zapidullin M V,et al.Optimization of jet singlet oxygen generator for chemical oxygen-iodine laser[C]//Proc of SPIE,1997,3092:565-568.
    [41]戴锅生.传热学[M].北京:高等教育出版社,1999:320.(Dai G S.Heat Transfer[M],Bejing:Higher Education Press,1999:320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700