喷射轧制7050铝带材的过程原理与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射轧制是一种金属半固态近净成形加工新技术,与传统的带材制造工艺相比,具有节能节材、短流程、制备高性能的板带材等优势。对该工艺及其原理进行深入研究有助于在一步工序内从液态金属直接制备具有均匀细晶组织和优异综合性能的近终形板带材。本文将喷射轧制过程分为雾化阶段、沉积阶段、轧制阶段三个部分,主要针对喷射轧制过程中的密度、沉积物形貌、温度的变化进行了数值模拟,并对相关实验研究进行了讨论和分析,为获得最大的制备效率,稳定连续制备带材,并获得较好的组织性能提供了理论依据。
     建立了喷射轧制过程中熔滴在雾化阶段的热力学和动力学行为的模型。采用非线性方程描述了熔滴与气体之间的相对速度与工艺参数之间的关系。分析关键工艺参数对熔滴和气体的动力学行为和热力学行的影响。模拟结果表明喷射轧制过程中不同工艺参数(如喷射距离、气体初始速度、过热度、熔滴质量流率)对熔滴的尺寸、熔滴的速度、传热系数、温度、固相分数有较大的影响。
     基于熔滴在雾化时的动力学和热力学行为,对喷射轧制过程中沉积阶段的沉积材料的相对密度进行了建模和理论分析,研究了主要工艺参数(如熔滴喷射距离、气体初始速度、过热度和熔体质量流率)对喷射轧制7050铝合金沉积时的平均固相分数和相对密度的影响。采用坐标追踪的方法,建立了喷射轧制7050铝合金过程中熔滴沉积到轧辊表面的形貌模型。该模型考虑了熔滴的反弹、二次沉积现象以及轧辊表面的几何特征,可预测不同工艺参数下的沉积层的厚度,并能对咬入角进行定量的分析。分析了工艺参数对沉积层厚度和咬入角的影响。建立了喷射轧制过程中沉积阶段的温度场模型,与沉积物形貌进行耦合,对沉积阶段的温度分布进行了研究。模拟结果与实验结果较吻合。分析了工艺参数对沉积层温度分布的影响。结果表明沉积阶段的沉积物内部形成孔隙主要是由于液相不足引起的。当熔滴沉积时的平均固相分数为60~70%时,沉积材料具有较高的相对密度。轧辊的直径、轧辊转速、参考位置处最大质量通量、轧辊间距、喷射距离对沉积层厚度和制备效率有较大的影响。在此基础上采用正交优化法对喷射轧制的主要工艺参数进行了优化。沉积物沿轧辊径向的降温速率较切向的降温速率大。工艺参数主要通过改变沉积物厚度和能否为体系提供能量来影响温度的分布。为体系提供能量(如提高接触时的初始温度,对轧辊表面预热等),增加沉积层的厚度(如增大雾化锥中心的最大质量通量、减小轧辊转速等),可以使沉积材料在沉积阶段具有较低的降温速率,获得均匀的冷却和凝固条件。
     对喷射轧制过程中带材的相对密度、平均固相分数和压下量之间的关系进行了研究。在轧制阶段考虑了温度对材料性能的影响和变形对温度产生影响,将温度场与应力场进行耦合,并采用更新的拉格朗日参考描述和网格重划分方法对其进行求解。为了对其显微组织进行分析,在相同的材料体系、熔滴尺寸、固相分数和轧制条件下,采用半固态粉末轧制和沉积坯的半固态轧制模拟喷射轧制条件制备出带材。评估了半固态轧制工艺的可行性。分析了加热温度和预热时间对生带材组织演变和力学性能的影响,并分析了生带材在烧结过程或者后处理过程中的显微组织的变化情况。实验结果与模拟结果吻合。结果表明平均固相分数为60~70%时,较小的压下量就能制备出较高密度的带材。喷射轧制过程中的致密化机制主要是以消除孔隙或者消除原始颗粒的边界为主。工艺参数如雾化锥中心的最大质量通量,轧辊预热温度和熔滴沉积初始温度对轧制变形区域的温度场有较大的影响。提高熔滴沉积时的初始温度,增加沉积层的厚度、对轧辊表面进行预热,可以使沉积材料在轧制变形区获得均匀的冷却条件。将气体雾化制备的粉末和喷射成形制备的材料加热到半固态温度区间,二次相和液相的数量发生了较大的变化。加热温度对颗粒边界的变化、孔隙的消失、溶质元素的扩散以及晶粒的长大有重要的影响。加热温度越高,制备的材料内MgZn2相的数量越少。随半固态粉末加热温度的升高,显微组织的演变机制由孔隙率的消失转变为以粗化为主。采用“预烧结冷压变形再烧结”工艺制备的带材相对密度达92.6%,显微硬度可达到310HV。喷射沉积态7050铝合金晶粒长大的激活能值为70.5KJ/mol,其粗化速率较低,最优的半固态加热温度为590。喷射沉积坯在半固态轧制时,形变的主要作用是使材料致密化、破碎晶粒、促进动态再结晶的发生。沉积坯在580下轧制的带材延伸率可达13.31%。沉积坯在550轧制后经固溶处理15h后,再经时效处理后,获得较高的屈服强度533.1MPa和较高的抗拉强度555.6MPa。
As a novel metallic semi-solid near-net-shape forming technology, spray rolling has manycompelling advantages over the traditional manufacturing processes, such as the energy andmaterial saving, the short production run and high-performance process for the metal industry.A comprehensive study on the technology of spray rolling and its process principles will helpto manufacture plates and strips with a fine grain size and excellent mechanical propertiesfrom liquid metal within one step.The process of spray rolling aluminum strips were dividedinto three different regions: atomization stage, deposition stage and semi-solid rolling stage.In order to provide a theoretical basis for achieving continue production with high productionrate and producing a high quality materials, the relative density model, shape evolution modeland heat transfer model during spray rolling have been established in this paper. Thecorresponding experimental discussions and analyses are conducted.
     The thermal history and dynamic behavior of droplets during atomization stage in sprayrolling have been established. A nonlinear quadratic is used to describe the relationshipbetween the gas/droplet slip velocity and the processing parameters. The qualitativeinfluences of the key processing parameters on the history of dynamic behavior and enthalpyof the gas and atomized droplets in spray rolling of7050aluminum alloy were investigated.Results show that the processing parameters such as spray distance, gas initial velocity,droplet diameter, metal mass flow rate have remarkable influence on process performanceincluding the heat transfer coefficient, droplet velocity, temperature and solid fraction.
     During deposition stage in spray rolling, the relative density of materials at the deposit/rollsurface during spray rolling was estimated and analyzed theoretically in detail based on themodel of dynamic behavior of droplets and solidification. This simulation study reveals therelationship among the processing parameters of spray rolling, average solid fraction, relativedensity of the deposit. The deposit shape evolution during spray rolling of7050alluminumalloy was investigated using mathematical models, tracing the coordinates of a growingdeposit with respect to time. Some important realistic scenarios, such as droplet reboundingand redeposition, the geometrical features of deposition surface were considered. Then thecalculated results of the shape evolution were utilized to predict the deposit thickness and thecorresponding entry angle. The effects of spray-rolling parameters on the deposit thicknessand drag in angle were studied and discussed. The heat transfer model was coupled with theshape model during deposition stage. By means of modeling, evolution of temperature filedunder stead state for the deposition stage during spray rolling have been analyzed and discussed. The simulated results are in good agreement with the experimental results. Theeffects of spray-rolling parameters on the evolution of temperature filed were studied anddiscussed. The porosity mechanism during spray rolling process corresponds to the coldporosity dominant regime. The solid fraction at the range of60~70%corresponds with ahigh density level of strips. Results show that the deposit shape and production rate aresensitive to processing parameters such as the roll gap, the roller diameter and rotationalspeed, the spray distance and the mass flux distribution in the spray cone. The optimumspray-rolling processing parameters were determined and presented by using an orthogonaldesign method. Results also show that the temperature of deposited materials decreases morequickly at the radial direction of the roll than that at the tangential direction of the roll. Thedeposit thickness and the enthalpy input from the spray of droplets are found to be thedominant influencing factors on the thermal profiles of the deposit. A suitable depositthickness, initial droplet temperature and preheating the roller surface will produce ahomogeneous deposit with uniform cooling and solidification condition.
     During semi-solid rolling stage in spray rolling, the relationship among the average solidfraction, relative density of the strip and thickness reduction ratio was investigated. A heattransfer model for the rolling stage during spray rolling has been established. This modelconcentrates on the effects of temperature on material properties and the effect of materialsdeformation on temperature. In addition, generic algorithms of coupling of temperature fieldand strain field based on updated Lagrangian model and mesh adaptivity methods weredeveloped. Strips have been prepared form gas atomized powders and spray depositedaluminum alloy by semi-solid rolling also taking account of materials system, droplet massmedia diameter, solid fraction and rolling condition. The feasibility of semi-solid rolling wasevaluated. The effect of heating temperature and holding time on the microstructuralevolution and mechanical properties of the rolled strips was investigated, as well as themicrostructural evolution of strips after sintering or post treating. The simulations agree withexperimental results well. The average solid fraction at the range of60~70%correspondswith a low thickness reduction rate and a high density level of strips. The densificationmechanism during spray rolling process corresponds to the removal of porosity dominantregime or the removal of prior droplet boundaries dominant regime. The main processingparameters, such as metal mass max flux, substrate pre-heating temperature and initial droplettemperature have a great influence on the thermal profiles during spray rolling. A suitabledeposit thickness, droplet temperature and preheating of the rollers before spray rolling will produce a homogeneous strip with uniform cooling and solidification condition. On reheatingthe gas atomized powders and spray deposited aluminum alloy into semisolid state, the phasechemistry and quantity of liquid were typically changed. As the heating temperature wasincreased, the disappearance of primary powder boundary and isolated pores, inter-diffusionof species and grain coarsening were accelerated during semi-solid powder rolling. Moreover,the amount of MgZn2phase decreases with increasing of heating temperature. During thesemi-solid powder rolling process, the mechanism of microstructure evolution changes fromthe densification dominant regime to the coarsening dominant regime with the increasingheating temperature. By means of―pre-sintering—cold deformation—terminal sintering‖, therelative density of the strip is92.6%and the microhardness is310HV. The activation energyof grain growth for the spray deposited7050aluminum alloy is about70.5KJ/mol. Spraydeposited7075aluminum alloy is resistant to coarsen due to the presence of particles. Theoptimum semi-solid heating temperature for spray deposited7050aluminum alloy is590.The rolling deformation has great influences on the elimination of pores, broken of grain anddynamic recrystallization. The elongation of the alloy semisolid rolled at580was thehighest up to13.31%. The tensile property of spray deposited alloy semi-solid rolled at550after solution treated for15h and annealed was the best with yield strength of555.6MPa, ultimate tensile strength of533.1MPa.
引文
[1]王祝堂.铝合金中厚板的生产、市场与应用[J].轻合金加工技术,2005,123:1-20
    [2]Li BQ, Anyalebechi PN. A micro/macro model for fluid flow evolution and microstructure formation in solidification processes [J]. International Journal of Heat and Mass Transfer,1995,38(13):2367-2381
    [3]Yun M, Lokyer S, Hunt JD. Twin-roll casting of aluminum alloys [J]. Materials Science and Engineering A,2000,280(1):116-123
    [4]McHugh KM, Lavernia EJ, Zhou Y, Lin Y, Delplanque J-P, Johnson SB. Spray rolling aluminum strip-process development and strip properties [C]. In Hot Deformation of Aluminum Alloys Ⅲ, Jin Z, Beaudoin A, Bieler T, and Radhakrishnan B eds. TMS, Warrendale, PA,2003:443-452
    [5]Sanctis MD. Structure and properties of rapidly solidified ultrahigh strength Al-Zn-Mg-Cu alloys produced by spray deposition [J]. Materials Science and Engineering A,1991,141(1):103-121
    [6]Singer ARE.The principle of spray rolling of metals [J]. Metals&Materials,1970,4:246-250
    [7]Evams RW, Leatham AG, Brook RE. The osprey preform process [J]. Powder Metallurgy,1985,28(1):12-20
    [8]Jeyakumar M, Kumar S, Gupta GS. Microstructure and properties of the spray-formed and extruded7075Al alloy [J]. Materials and Manufacture Process,2010,25(8):777-785
    [9]Leon DD, Kozarek RL, Denzer DK. In liquid metal atomization:fundamentals and practice [A]. Cooper KP, the Minerals Metals and Materials Society [C]. Warrendale, PA,2000,115-130
    [10]Hyung-Jun Chang, Heung Nam Han, Kwang-Hee Lee, Sang-Hoon Joo, Kyu Hwan Oh. Hot powder pressing-an analysis of the thermo-mechanical behavior of the roller [J]. Journal of Materials Processing Tecnology,2005,170(1-2):317-322
    [11]赵祖德,罗守靖.轻合金半固态成形技术[M].北京:化学工业出版社,2007:4-5
    [12]毛卫民.金属半固态成形技术[M].北京:机械工业出版社,2004:75-76
    [13]McHugh KM, Delplanque JP, Johnson SB, Lavernia EJ, Zhou Y, Lin Y. Spray rolling aluminum alloy strip [J]. Materials Science and Engineering A,2004,383(1):96-106
    [14]McHugh KM, Lin Y, Zhou Y, Lavernia EJ, Delplanque JP, Johnson SB. Spray rolling aluminum strip for transportation applications [A]. Trends in Materials and Manufacturing Technologies for the Transportation Industry and Powder Metallurgy Research and Development in the Transportation Industry, TMS [C]. San Francisco, CA,2005:219-224
    [15]Johnson SB, Delplanque JP, Lin Y, Zhou Y, Lavernia EJ, McHugh KM. Numerical simulation and experimental characterization of a binary aluminum alloy spray Application to the spray rolling process [A].134th Annual Meeting and Exhibition-The Minerals, Metals&Materials Society TMS [C]. San Francisco, CA,2005:509-517
    [16]McHugh KM, Lin Y. Microstructure evolution during spray rolling and heat treatment of2124Al [J]. Materials Science and Engineering A,2008,477(1-2):26-34
    [17]Johnson SB, Lin Y, Zhou Y, Delplanque JP, McHugh KM, Lavernia EJ. Modeling and simulation of the spray rolling processs [A]. International Conference on Process Modeling in Powder Metallurgy&Particulate Materials [C]. Newport Beach, California, USA,2002
    [18]McHugh KM, Lavernia EJ, Zhou Y, Lin Y, Delplanque, Johnson SB. Aluminum strip processing by spray rolling [A].Bauckhage K, Fritsching U. Spray Deposition Melt Atomization Conference SDMA [C]. University Bremen, Collaborative research center,2003:6.27-6.38
    [19]Johnson SB, Delplnque JP, Lavernia EJ. Spray rolling aluminum strip:Process modeling and parametric studies [A]. in:Proceedings of the Symposium on Hot Deformation of Aluminum Alloys,132TMS Annual Meeting&Exhibition [C], San Diego, CA,2003:433-441
    [20]Liu Y. Studies on process optimization of multistage atomization [J]. Materials Science and Technology,2002,18(8):929-934
    [21]Rogers JW. Spray rolling aluminum strip process [J]. Sci Techn Program,2005,1:5
    [22]Delplanque JP, McHugh KM. Spray Rolling Aluminum Strip [R]. CO80401Yearly Progress Report,2003
    [23]Johnson SB, Delplanque JP, Lin Y, et al. Assisting spray rolling process development and scale-up with modeling and numerical simulation [A]. Bauckhage K, Fritsching U. Spray Deposition and Melt Atomization Conference SDMA and ICSF V [C]. Bremen, Germany,2003:3-13
    [24]Delplanque JP, Lavernia EJ, Rangel RH. Analysis of in-flight oxidation during reactive spray atomization and deposition processing of aluminum [J]. Journal of Heat Transfer,2000,122(1):126-134
    [25]Lin Y, McHugh KM, Zhou Y, Lavernia EJ. The transient to steady-state transition during the spray-rolling process [J]. Metallurgical and Materials Transaction A,2004,35(11):3633-3639
    [26]Lin Y, Zhou Y, Johnson SB, et al. On the selection of processing parameters during spray rolling process [A]. Bauckhage K, Fritsching U. Spray Deposition and Melt Atomization Conference SDMA and ICSF V [C]. Bremen, Germany,2003,7:7-17
    [27]Lin Y, McHugh KM, Zhou Y, Lavernia EJ. The selection of the spray deposition rate during the spray rolling process [J]. Metallurgical and Materials Transaction A,2004,35(11):3595-3603
    [28]Anderson IE, Figliola RS, Morton H. Flow mechanisms in high pressure gas atomization [J].Materials Science and Engineering A,1991,148(1):101-114
    [29]孙峰,段先进,崔华,张济山,陈国良.导流管中液态金属热传输的数值分析[J].北京科技大学学报,1997,1:22-27
    [30]Mathur P, Annavarapu S, Apelian D, Lawley A. Spray casting:an integral model for process understanding and control [J]. Materials Science and Engineering A,1991,142(2):261-276
    [31]Lavernia EJ, Grant NJ, Spray deposition of metals:A review [J]. Materials Science and Engineering A,1988,98:381-394
    [32]See JB, Johnston GH. Interactions between nitrogen jets and liquid lead and tin streams [J]. Powder Technology,1978,21(1):119-133
    [33]Zaidi MA. Micro structure of rapidly solidified aluminum alloy powders for elevated temperature applications [J]. Materials Science and Engineering A,1988,98:221-226
    [34]Lubanska H. Correlation of spray ring data for gas atomization of liquid metals [J]. Journal of Metals,1970,22(1):45-49
    [35]Liu Y, Minagawa K, Kakisawa H, Halada K. Melt film formation and disintegration during novel atomization process [J]. Transaction of Nonferrous Metals Society of China,2007,17(6):1276-1281
    [36]Mi J, Figliola RS, Anderson IE. A numerical simulation of gas flow field effects on high pressure gas atomization due to operating pressure variation [J]. Materials Science and Engineering A,1996,208(1):20-29
    [37]Bewlay BP, Cantor B. Gas velocity measurements from a close-coupled spray deposition atomizer [J]. Materials Science and Engineering A,1989,118:207-222
    [38]Liu H, Rangel RH, Lavernia EJ. Modeling of droplet-gas interactions in spray atomization of Ta-2.5W alloy [J]. Materials Science and Engineering A,1995,191(1-2):171-184
    [39]Liu H, Lavernia EJ, Rangel RH. Modeling of molten droplet impingement on a non-flat surface [J]. Acta Metallurgica et Materialia,1995,43(5):2053-2072
    [40]Liu Yunzhong, Chen Zhenhua, Jian NW. Simulation study of heat transfer in multi-stage rapid solidification [J]. Materials Science and Engineering A,2000,280(1):229-232
    [41]Lee Eon-Sik, Ahn S. Solidificaiton progress and heat transfer analysis of gas atomized alloy droplets during spray forming [J]. Acta Metallurgica et Materialia,1991,42(9):3231-3243
    [42]Grant PS, Cantor B, Katerman L. Modeling of droplet dynamic and thermal history during spray forming-Ⅰ individual droplet behavior [J]. Acta Metallurgica et Materialia,1993,41(11):3097-3108
    [43]Grant PS, Cantor B, et al. Modeling of droplet dynamic and thermal history during spray forming-Ⅱ effect of process parameters [J]. Acta Metallurgica et Materialia,1993,41(11):3109-3118
    [44]Grant PS, Cantor B. Modeling of droplet dynamic and thermal history during spray forming-Ⅲ analysis of spray solid fraction [J]. Acta Metallurgica et Materialia,1995,43(3):913-921
    [45]Garbero M, Vanni M, Fritsching U. Gas/surface heat transfer in spray deposition processes [J]. International Journal of Heat and Fluid Flow,2006,27(1):105-122
    [46]Zeoli N, Gu S. Computational simulation of metal droplet break-up, cooling and solidification during gas atomization [J]. Computational Materials Science,2008,43(2):268-278
    [47]Pillai SK, Ando T. Modeling of the in-flight solidification of droplets produced by the uniform-droplet spray process [J]. International Journal of Thermal Science,2009,48(8):1494-1500
    [48]Fritsching U, Zhang H, Bauckhage K. Numerical simulation of temperature distribution and solidification behavior during spray forming [J]. Steel Research,1994,65(7):273-278
    [49]Annavarapu S, Applian D, Lawley A. Spray casting of steel strip-process analysis [J]. Metallurgical and Materials Transaction A,1990,21(12):3237-3256
    [50]Madejski J. Solidification of droplets on a cold surface [J].Internaltional Journal of Heat and Mass Transfer,1976,19(9):1009-1013
    [51]Trapaga G, Szekely J. Mathematical modeling of the isothermal impingement of liquid droplets in spraying processes [J]. Metallurgical and Materials Transaction B,1991,22(6):901-914
    [52]Trapaga G, Matthys EF, Valencia JJ, Szckel J. Fluid flow, heat transfer and solidification of molten metal droplets impinging on substrates:Comparison of numerical and experimental results [J]. Metallurgical and Materials Transaction B,1992,23(6):701-718
    [53]Cui C, Fritsching U, Schulz A, Li Q. Mathematical modeling of spray forming process of tubular performs part1shape evolution [J]. Acta Materialia,2005,53(9):2765-2774
    [54]Mi J, Grant PS. Modeling the shape and thermal dynamics of Ni superalloy rings during spray forming Part1:shape modeling-Drolet deposition, splashing and redeposition [J].Acta Materialia,2008,56(7):1588-1596
    [55]陈美英,杨滨,张济山.喷射沉积Si-Al合金的数值模拟结果与分析[J].北京科技大学学报,2003,25(5):428-432
    [56]刘秋林,陈振华.雾化喷射成形过程的计算机模拟[J].中南工业大学学报(自然科学版),2000,31(4):350-352
    [57]朱宝宏,熊柏青,张永安等.喷射成形Al-Fe-V-Si系耐热铝合金的数值模拟及组织分析[J].稀有金属,2002,26(2):87-92
    [58]Grant PS, Maher PP, Cantor B. Heat flow in spray-formed Al-4Cu [J]. Materials Science and Engineering A,1994,179-180(1):72-76
    [59]Fritsching U, Zhang H, Bauckhage K. Thermal history of atomizated and compacted metals [J]. Proc Powder Metallurgy World Congress PM,1993,12-15
    [60]Fritsching U, Zhang H, Bauckhage K. Numerical simulation of temperature distribution and solidification behavior during spray forming [J]. Steel Research,1994,65(7):322-325
    [61]Garcia A, Prates M. Mathematical model for the unidirectional solidification of metals:I. cooled molds [J]. Metallurgical and Materials Transaction B,1978,9(4):449-457
    [62]Garcia A, Clyne TW, Prates M. Mathematical model for the unidirectional solidification of metals:Ⅱ. Massive molds [J]. Metallurgical and Materials Transaction B,1979,10(1):85-92
    [63]张济山,熊柏青,崔华.喷射成形快速凝固技术-原理与应用[M].北京:科学出版社,2007:156-157
    [64]张济山,崔华,段先进.雾化喷射沉积成形中沉积体内的凝固过程(Ⅰ)理论分析[J]. 北京科技大学学报,1997(1):22-27
    [65]张济山,崔华,段先进.雾化喷射沉积成形中沉积体内的凝固过程(Ⅱ)Al-Cu合金的计算[J].北京科技大学学报,1997(1):28-33
    [66]Meyer O, Schnerder A, Uhlenwinkel V, Fritsching U. Convective heat transfer from a billet due to an oblique impinging circular jet within the spray forming process [J]. International Journal of Thermal Sciences.2003,42(6):561-569
    [67]Cui CS, Fritsching U, Schulz A, Li QC. Mathematical modeling of spray forming process of tubular performs part2. Heat transfer [J]. Acta Materialia,2005,53(9):2775-2784
    [68]Mi J, Grant PS. Modeling the shape and thermal dynamics of Ni super alloy rings during spray forming. Part2:Thermal modeling-Heat flow and solidification [J]. Acta Materialia,2008,56(7):1597-1608
    [69]Akhlaghi F, Beech J, Jones H. Influence of operation parameters on characteristic of aluminum powders and spray cast deposit[A]. Proceedings of the first international conference in spray forming [C]. Swansesea, U.K.1990
    [70]Chu MG. Micro structure of aluminum alloy deposit produced by spray forming using a liner nozzle [J]. Kolloquiumsband Spuhkompaktieren, Universitat Bramen, Band1997,2:115-130
    [71]Miiller HR, Ohla K, Zauter R, Ebner M. Porosity in spray formed copper alloy billets [A]. Bauckhage K, Fritsching U. Spray Deposition and Melt Atomization Conference SDMA and ICSF V [C]. Bremen, Germany,2003:5.99-5.112
    [72]Cai WD, Lavernia EJ. Modeling of porosity during spray forming:Part Ⅰ. effects of processing parameters [J]. Metallurgical and Materials Transaction B,1998,29(5):1085-1097
    [73]Cai WD, Lavernia EJ. Modeling of porosity during spray forming:Part Ⅱ. Effects of atomization gas chemistry and alloy compositions [J]. Metallurgical and Materials Transaction B,1998,29(5):1097-1106
    [74]Cai WD, Lavernia EJ. Modeling of porosity during spray forming [J]. Materials Science and Engineering A,1997,226-228(15):8-12
    [75]Bewlay BP, Cantor B. Modeling of spray deposition:measurements of particle size, gas velocity, particle velocity, and spray temperature in Gas-Atomized sprays [J]. Metallurgical and Materials Transaction B,1990,21(5):899-912
    [76]Annavarapu S, Doherty RD. Inhibited coarsening of solid-liquid micro structures in spray casting at high volume fractions of solid [J]. Acta Metallurgica et Materialia,1995,43 (8):3207-3230
    [77]Annavarapu S, Doherty RD. Evolution of micro structure in spray casting [J]. International journal of powder metallurgy,1993,29(4):331-343
    [78]Johanson JR. A rolling theory for granular solids [J]. Journal of applied mechanics,1965,32(4):842-848
    [79]Zubizatteta C, Gimenez S, Martin JM, Iturriza I. Effect of the heat treatment prior to extrusion on the direct hot-extrusion of aluminum powder compacts [J]. Journal of Alloys and Compounds,2009,467:191-201
    [80]Radchenko AK. Mechanical properties of green compacts Ⅱ Effect of powder relative bulk density on the strength of compacts with different forming temperature conditions [J]. Powder Metallurgy and Metal Ceramics,2004,43(11-12):552-563
    [81]Tetsuya Hirohata, Saiji Masaki, Susumu Shima. Experiment on metal powder compaction by differential speed rolling [J]. Journal of Materials Processing Technology,2001(111):113-117
    [82]Katashinskii VP, Vinogradov GA, Kalutskii GY, Len-Yasnyi AA, Moiseev AV, and Orel AG. Effect of feed angle on the process of hot rolling of aluminum-base powders [J]. Poroshkovaya Metallurgiya,1981,10(226):19-21
    [83]Lange FF. Powder processing science and technology for increase reliability [J]. Journal of the American Ceramic Society,1989,72(1):3-15
    [84]Lange FF and Kellett BJ. Thermodynamics of densification Part II:grain growth in porous compacts and relation to densification [J]. Journal of the American Ceramic Society,1989,72:735-741
    [85]Kaneno Y, Tetsuo Y, Takayuki T. Texture evolution during hot rolling and recrystallization in B2-type FeAl, NiAl and CoTi intermetallic compounds [J]. Journal of Materials Science,2006,41(20):6871-6880
    [86]Bolouri A, Shahmiri M, Cheshmeh ENH. Micro structural evolution during semisolid state strain induced melt activation process of aluminum7075alloy [J]. Transaction of Nonferrous Metals Society of China,2010,20(9):1663-1671
    [87]Bolouri A, Shahmiri M, Kang CG. Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA7075aluminum alloy via SIMA process [J]. Journal of Alloys and Compounds,2011,509(2):402-408
    [88]Atkinson HV, Burke K, Vaneetveld G. Recrystallisation in the semi-solid state in7075aluminium alloy [J]. Materials Science and Engineering A.2008,490(1-2):266-276
    [89]Sun YP, Yan HG, Chen ZH, Chen D, Chen G. Effect of a novel sequential motion compaction process on the densification of multi-layer spray deposited7090/SiCp composite [J]. Journal of Materials Science,2008,43(18):6200-6205
    [90]刘慧敏,何建平,杨滨,张济山.半固态喷射沉积TiCp/7075铝合金的晶粒长大规律[J].金属学报,2006,42(2):158-162
    [91]Atkinson HV, Liu D. Micro structural coarsening of semi-solid aluminum alloys [J]. Materials Science and Engineering A,2008,496:439-446
    [92]Atkinson HV, Liu D. Coarsening rate of microstructure in semi-solid aluminum alloys [J]. Transaction of Nonferrous Metals Society of China,2010,20(9):1672-1676
    [93]Bewlay BP, Lipsitt HA, Jackson MR, Reeder WJ, Sutliff JA. Solidification processing of high temperature intermetallic eutectic-based alloys [J]. Materials Science and Engineering A,1995,192-193(2):534-543
    [94]Liang X, Lavernia EJ. Solidification and microstructure evolution during spray atomization and deposition of Ni3Al[J]. Materials Science and Engineering A,1993,161(2):221-235
    [95]Geiger GH, Poirier DR. Transport Phenomenon in Metallurgy, MA:Addison Wesley,1973:616
    [96]刘东明,赵九洲,叶恒强.喷射成形中金属液滴凝固过程的计算机模拟[J].金属学报,2003,39(4):375-380
    [97]韩雅芳,戴圣龙,杨守杰,李树索.均匀液滴喷射沉积模拟研究[J].航空制造技术,2003,7:25-27
    [98]Ranz WE. Marshall WR. Evaporation from drops (part1)[J]. Chemical Engineering Progress,1952,48(3):141-180
    [99]Mathur P, Apelian D, and Lawley A. Analysis of the spray deposition process [J]. Acta Metallurgical,1989,37(2):429-443
    [100]Flemings MC. Solidification Processing [M]. MvGraw-Hill, New York,1974:34-36
    [101]Cantor B, Doherty RD. Heterogeneous nucleation in solidifying alloys [J]. Acta Metallurgica,1979,27(1):33-46
    [102]Libera M, Olsen GB, Vander Sande JB. Heterogeneous nucleation of solidification in atomized liquid metal droplets [J]. Materials Science and Engineering A,1991,132:107-118
    [103]Battle TP. International materials reviews [M].1992:37(6):249-270
    [104]Mathur P, Annavarapu S, Apelian D, and Lawley A. Process control, modeling and applications of spray casting [J]. Journal of Metals,1989,41:23-28
    [105]Frigaard IA. The dynamics of spray-formed billets [J]. SIAM Journal on Applied Mathematics,1995,55(5):1161-1203
    [106]Djuric Z, Newbery P, Grant PS. Two-dimensional simulation of liquid metal spray deposition onto a complex surface [J]. Modelling and Simulation in Materials Science and Engineering,1999,7:553-571
    [107]Markus S, Cui C, Fritsching U. Analysis of deposit growth in spray forming with multiple atomizers [J]. Materials Science and Engineering A,2004,38(1):166-174
    [108]Pryds NH, Hattel JH, Pedersen TB, Thorborg J. An integrate numerical model of the spray forming process [J]. Acta Materialia,2002,50(16):4075-4091
    [109]Uhlenwinkel V, Buchholz M, Kramer C, Bauckhage K. In:Powder Metallurgy World Congress&Exhibition, Granada, Spain, October1998:18-22
    [110]Harris JN. Mechanical working of metals international series on materials science and technology [M]. Pergamon Press Ltd., Oxford, United Kingdom,1983,112-114.
    [111]Bland R and Ford H. The calculation of roll force and torque in cold strip rolling with tensions [J]. Proceedings of the Institution of Mechanical Engineers,1948,159(1):144-163
    [112]Annavarapu S, Doherty R. Evolution of microstructure in spray casting [J]. International Journal of Powder Metallurgy,1993,29(4):331-343
    [113]Xu Q, Gupta VV, Lavernia EJ. On the mechanism of mushy layer formation during droplet based processing [J]. Metallurgical and materials transaction B,1999,30(3):527-539
    [114]邢磊,张立文,张兴致,岳重祥.基于瞬态法的铝合金与模具钢接触换热实验研究[J].锻压技术,2010,35(2):120-123
    [115]Dube RK, Bagdi PK. Densification and deformation behavior [J]. Metallurgical and Materials Transaction A,1993,24(8):1753-1760
    [116]Ning ZL, Guo S, Cao FY, Wang GJ, Li ZC, Sun JF. Microstructural evolution during extrusion and ECAP of a spray deposited Al-Zn-Mg-Cu-Sc-Zr alloy [J]. Journal of Materials Science,2010,45(11):3023-3029
    [117]German MR. Supersolidus liquid phase sintering. I:process review [J]. International Journal of Powder Metallurgy,1990,26(1):23-34
    [118]Lange FF. Densification of powder compacts:an unfinished story [J]. Journal of the European Ceramic Society,2008,28(7):1509-1516
    [119]Bhuiyan MH, Kim TS, Koo JM, Hong SJ. Microstructure behavior of the heat treated n-type95%Bi2Te3-5%Bi2Se3gas atomized thermoelectric powders [J]. Journal of Alloys and Compounds,2011,509(5):1722-1728
    [120]Sharma MM, Amateau F, Eden TJ. Microscopic structure control of spray formed high strength Al-Zn-Mg-Cu alloys [J]. Acta Materialia,2005,53(10):2919-2924
    [121]Kawanishi S, Isonishi K,Okazaki K. Grain growth and its kinetics of nanophase niobium aluminide produced by mechanical alloying [J]. Materials Transaction, JIM.1993,34(1):49-53
    [122]Braisford AD, Wynblatt P. The dependence of Ostwald ripening kinetics on particle volume fraction [J]. Acta Materialia,1979,27(3):489-497
    [123]Chayong S, Atkinson HV, Kapranos P. Multistep induction heating regimes for thixoforming7075aluminium alloy [J]. Materials Science and Technology,2004,20(4):490-496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700