基于微流体数字化喷射的细胞微胶囊制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞微胶囊在疾病治疗、组织培养、三维药物筛选、细胞新陈代谢分析等方面有着广阔应用前景。以“节拍化”方式制备细胞微胶囊对单细胞微胶囊的制备以及后续细胞的高效集成化、自动化操作都具有重要意义,现有微流控芯片液滴生成技术存在成本高、通用性差,对细胞活性影响较大等不足。
     将高黏度细胞悬浮液分割为微小均匀液滴是细胞微胶囊制备技术的核心。本文以微流体数字化技术为起点,对微流体数字化驱动细胞悬浮液的原理、理论及微流体数字化驱动下细胞悬浮液微流动特性进行了分析,建立了微流体数字化驱动下圆管中细胞悬浮液脉冲运动流量理论模型,定性确定了影响微流体脉冲流动的各种系统参量。
     基于微流体数字化技术设计制作了电磁铁为作动器,电磁吸合撞击振动梁产生交替脉冲惯性力的撞击式微流体数字化喷射实验系统,实现了微尺度、低雷诺数微管内高黏度液体以及高黏度固-液两相流体的稳定脉冲喷射。实现了海藻酸钠微胶囊的“节拍化”制备和对固体颗粒“节拍化”的包囊。系统结构简单,具有良好的微结构特性,对液体的极性没有要求。
     进行了细胞悬浮液稳定脉冲喷射和“节拍化”包囊细胞研究。以微流体数字化脉冲喷射实现了尺度量级10-103μm细胞的“节拍化”包囊,对不同粒径以及粒径不均匀的细胞都具有良好的适应性。制备的细胞微胶囊平均粒径可小至30μm,相应的粒径标准偏差小于5μm,具有较好单分散性。可通过驱动电压和微喷嘴内径参数控制细胞微胶囊的粒径大小和分布。在细胞的活性影响和粒径的控制等方面优于微流控芯片技术。
     进行了微流体数字化喷射制备单细胞微胶囊研究。通过控制管径不大于2倍细胞粒径,将细胞序列整列为单列排列,控制脉冲喷射步长控制喷射的细胞数量,当脉冲喷射步长不大于2倍细胞粒径时,以微流体数字化脉冲喷射可实现单细胞的脉冲喷射和对单细胞“节拍化”包囊。调节驱动电压及细胞与喷嘴内径比,可控制单细胞微胶囊的粒径大小和分布。
     设计制作了脉冲喷射用同轴微喷嘴,进行了低雷诺数微流体同轴脉冲喷射特性和稳定喷射实验研究,进行了微流体同轴脉冲喷射“节拍化”包囊细胞研究。确定了稳定同轴脉冲喷射合适内径比和端口相对位置等几何参数,实现了细胞液和海藻酸钠溶液同轴、同步脉冲喷射,以“节拍化”方式实现了细胞共微胶囊的制备。将淋巴细胞与台盼蓝溶液制成共微胶囊,实现了微胶囊中细胞活性的直接检测。
Cell microcapsule is wildly applied in disease treatment, tissue culture, analysis of cell metabolism and3-D drug screening. Preparation of cell microcapsule rhythmically has important significance on integrated and automated manipulating of cell microcapsule subsequently. Droplet formation based on the microfluidic chip is expensive, has bad generality and negative influence on the cell activity.
     The key technology in cell microcapsule preparation is to divide the high viscosity cell suspending liquid to unified micro droplets. In this paper, based on the digital of micro-fluids, the pulse inertia driving principle, theory and the flow field characters of cell suspending liquid were analyzed, theoretical model of pulse moving cell suspending liquid in micropipette driven by pulse inertia force was built, the system parameters that had influence on the pulse flow of micro-fluids were determined qualitatively.
     Based on the digital of micro-fluids, an experiment system for micro-fluids ejection with pulse inertia force produced by the electromagnet impact on beam was built. Steady ejection of liquid and solid-liquid two-phase flow with high viscosity and low Re in micro-pipette was realized. The sodium alginate microcapsule and microcapsule with solid particles were respectively prepared rhythmically. The system has simple structure and fine micro-structural properties, and is versatile to the polarity of the liquid.
     Steady pulse ejection of cell suspending solution and rhythmically cell encapsulating were researched. Based on the digital of micro-fluids pulse ejection,10~103μm scale cells were encapsulated rhythmically and the system was well adapted to different size cells and heterogeneous cells. The average diameter of cell microcapsules prepared could reach as small as30μm, and was smaller than those prepared by other method such as pressure spray, electrostatic spray. The standard deviation could be less than30μm, and the microcapsules prepared were well mono-disperse. The size and size distribution of cell microcapsule could be changed by adjusting driving voltage and inner diameter of the micro-nozzle. This method was superior to microfluidic chip on the cell activity influence and cell microcapsule size control.
     Single cell microencapsulating based on the digital of micro-fluids was researched. Cells could be single lined when the nozzle diameter was less than two times of the cell size. The cells number in a capsule could be changed by adjusting the pulse ejection step length. When the step length was less than two times of the cell diameter, a single cell could be dispensed and encapsulated rhythmically. The size and size distribution of cell microcapsule could be changed by adjusting the driving voltage and ratio of the cell size and nozzle diameter.
     A kind of coaxial micro-nozzle for pulse ejection was designed and fabricated. The steady pulse ejection state and micro ejection character of low Re coaxial fluid were experimentally studied, and pulse ejection of coaxial fluid and cell microencapsulating rhythmically were researched. The diameter ratio and relative geometric position of the coaxial micro-nozzle in steady ejection state were determined, and the coaxial and synchronous pulse ejection of cell suspending solution and sodium alginate solution was realized. Cell co-microcapsules were prepared through'rhythmically method'. Direct testing of cell activity was realized by co encapsulation of lymphocyte cells and Trepan blue solution.
引文
[1]Chang T M S. Semipermeable microcapsules [J]. Science,1964,146:524-525
    [2]Lim F, Sun A M. Microencapsulated islets as bio-artificial endorcrine pancreas[J]. Science,1980,210:908-909
    [3]Aldo Leal-Egana, Anatol Fritsch. Tuning liver stiffness against tumours:An in vitro study using entrapped cells in tumour-like microcapsules [J]. Journal of the Mechanical Behavior of Biomedical Materials,2012,9(5):113-121
    [4]Prakash S, Chang T M S. Microencapsulated genetically engineered live E.coli DH5 cells administered erally to maintain nomal plasma urea lebel in uremic rats[J]. Nat. Med.,1996,2(8):883-887
    [5]Sanchez A, Gupta R K, Alonso M J, et al.. Pulsed controlled-released system for potential use in vaccine delivery[J]. J Pharm Sci,1996,85(6):547-552
    [6]Basic D, Vacek I, Sun A M. Microencapsulation and transplantation of genetically engineered cells:a new approach to somatic gene therapy [J]. Art Cells Blood Subs Immob Biotechnol,1996,24(3):219-255
    [7]Chang T M S. Therapeutic applications of polymeric artificial cells [J]. Nature Reviews Drug Discovery,2005,4:221-235
    [8]Chang T M S. Artificial cells for cell and organ replacements[J]. Artificial Organs, 2004,28:265-270
    [9]Orive G, Hernandez R M, Gascon A R, et al.. Cell encapsulation:promise and progress[J]. Nature Medicine,2003,9(1):104-107
    [10]Orive G, Hernandez R M, Gascon A R, Chang T M S, et al.. History, challenges and perspectibes of cell microencapsulation[J]. Trends in Biotechnology,2004,22:87-92
    [11]Prakash S. Artificial cell therapy:New strategies for the therapeutic delivery of live bacteria[J]. Journal of Biomedicine and Biotechnology,2005,44-56
    [12]Rosa Ma Hernandez, Gorka Orive, Ainhoa Murua, et al.. Microcapsules and microcarriers for in situ cell delivery[J]. Advanced Drug Delivery Reviews,2010,62: 711-730
    [13]刘袖洞,于炜婷,马小军,等.海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J].化学进展,2008,20(1):126-139
    [14]Sun Y, Ma X, Zhou D, et al.. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression [J]. J Clin Invest,1996,98:1417-1422
    [15]Soon-Shiong P, Heintz R E, Merideth N, et al.. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation[J]. The Lancet,1994,343, (8903):950-951
    [16]张胜兰,姜兆顺,邢万佳,等.改良的微囊化新生猪胰岛细胞移植治疗Ⅰ型糖尿病八例报告[J].中华器官移植杂志,1998,19:45-47
    [17]何立敏,薛毅珑,张莉,等.微囊化大鼠胰岛异种移植于糖尿病小鼠的实验观察[J].军医进修学报,1999,20(2):98-100
    [18]Calafiore R, Basta G. Artificial pancreas to treat type 1 diabetes mellitus[J]. Methods Mol. Med.2007,140:197-236
    [19]Calafiore R, Basta G, Luca G, et al.. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes:first two cases[J]. Diabetes Care, 2006,29:137-138
    [20]Elliot R B, Escobar L, Calafiore R, et al.. Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys[J]. Transplant. Proc.2005,37: 466-469
    [21]Elliott R B, Escobar L, Tan P L, et al.. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation[J]. Xenotransplantation,2007,14: 157-161
    [22]Jones P M, Courtney M L, Burns C J, et al.. Cell-based treatments for diabetes[J]. Drug Discov. Today,2008,13:888-893
    [23]Date I, Shingo T, Yoshida H, et al.. Grafting of encapsulated dopamine-secreting cells in Parkinson's disease:long-term primate study[J]. Cell Transplant.,2000,9(5):705-709
    [24]Lindner M D, Emerich D F. Therapeutic Potential of a Polymer-Encapsulated-DOPA and Dopamine-Producing Cell Line in Rodent and Primate Models of Parkinson's Diseas e [J]. Cell Transplant.,1998,7 (2):165-174
    [25]Xue Y L, Wang Z F, Zhong D G, et al. Artif. Xenotransplantation of microencapsulated bovine chromaffin cells into hemiparkinsonian monkeys[J]. Cell Blood Substit. Immobil. Biotechnol.,2000,28 (4):337-345
    [26]薛毅珑,王振福,李新建,等.微囊化牛肾上腺髓质嗜铬细胞脑内移植治疗偏侧帕金森病样大鼠及猴的实验研究[J].解放军医学杂志,1998,19:45-47
    [27]Jeon Y, Kwak K, Kim S, et al.. Intrathecal implants of microencapsulated xenogenic chromaffin cells provide a long-term source of analgesic substances[J]. Transplant. Proc.,2006,38:3061-3065
    [28]Winkler C, Kirik D, Bjorklund A. Cell transplantation in Parkinson's disease:how can we make it work? [J]. Trends Neurosci.,2005,28:86-92
    [29]Laguna G R, Tyers P, Barker R A. The search for a curative cell therapy in Parkinson's disease[J]. J Neurol. Sci.2008,265:32-42
    [30]Dixit V, Arthur M, Gitnick G. A morphological and functional evaluation of transplanted isolated encapsulated hepatocytes following long-term transplantation in Gunn rats[J]. Artif. Cells Immobil. Biotechnol.,1993,21(2):119-133
    [31]Umehara Y, Hakamada K, Seino K, et al.. Improved survival and ammonia metabolism by intraperitoneal transplantation of microencapsulated hepatocytes in totally hepatectomized rats[J]. Surgery,2001,130(3):513-520
    [32]Z C Liu, T M Chang. Coencapsulation of hepatocytes and bone marrow stem cells:in vitro conversion of ammonia and in vivo lowering of bilirubin in hyperbilirubemia Gunn rats[J]. Int. J. Artif. Organs.2003,26:491-497
    [33]Liu Z C, Chang T M S. Transdifferentiation of bioencapsulated bone marrow cells into hepatocyte-like cells in the 90% hepatectomized rat model[J]. Liver Transpl.,2006,12: 566-572
    [34]Prakash S, Chang T M S. Growth and survival of renal failure rats that received oral microencapsulated genetically engineered E. coli DH5 cells for urea removal[J]. Artif. Cells Blood Substit. Immobil. Biotechnol,1998,26 (1):35-51
    [35]Prakash S, Chang T M S. In vitro and in vivo uric acid lowering by artificial cells containing microencapsulated genetically engineered E. coli DH5 cells[J]. Int. J Artif. Organs,2000,23 (7):429-435
    [36]于炜婷,雄鹰,马小军,等.海藻酸钠-壳聚糖微胶囊作为肠道内生化微反应器的研究[J].高等学校化学学报,2004,25(7):1381-1383
    [37]雄鹰,付颖丽,于炜婷,马小军,等.海藻酸钠/壳聚糖微胶囊包埋人卵巢癌细胞腹腔移植的实验研究[J].中华器官移植杂志,2001,2:
    [38]Joki T, Machluf M, Carroll R S, et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy[J]. Nat. Biotechnol.,2001,19: 35-39
    [39]Cirone P, Shen F, Chang P L. A multiprong approach to cancer gene therapy by coencapsulated cells[J]. Cancer Gene Ther.,2005,12:369-380
    [40]Cirone P, Bourgeois J M, Chang P L, Antiangiogenic cancer therapy with micro-encapsulated cells[J]. Hum. Gene Ther.,2003,14:1065-1077
    [41]Cirone P, Bourgeois J M, Shen F et al.. Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells[J]. Hum. Gene Ther.,2004,15: 945-959
    [42]Salmons B, Gunzburg W H, Orive G et al.. Therapeutic application of cell microencapsulation in cancer[J]. Landes Bioscience, Austin,2009:92-103
    [43]Teng H, Zhang Y, Ma X J. Inhibition of tumor growth in mice by endostatin derived from abdominal transplanted encapsulated cells[J]. Acta Biochim. Biophys. Sin.,2007, 39:278-284
    [44]Juan Dubrot, Aitziber Portero, Gorka Orive, et al.. Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells[J]. Cancer Immunology, Immunotherapy,2010,59(11):1621-1631
    [45]Tousoulis D, Briasoulis A, Antoniades C, et al.. Heart regeneration:what cells to use and how?[J]. Curr. Opin. Pharmacol.,2008,8:211-216
    [46]Zang H, Zhu S J, Wang W, et al.. Transplantation of microencapsulated genetically modified xenogenic cells augments angiogenesis and improves heart function[J]. Gene Ther.,2008,15:40-48
    [47]Choi D, Hwang K, Lee K, et al.. Ischemic heart diseases:current treatments and future[J]. J Control. Release,2009,140:194-202
    [48]Tagalakis A D. Apolipoprotein E delibery by peritoneal implantation of encapsulated recombinant cells improves the hyperlipidaemic profile in apoE-deficient mice[J]. Biochimica et biophysica acta-Molecular and cell biology of lipids,2005,1686: 190-199
    [49]Van Raansdonk, J M Ross. Treatment of hemophilia B in mice with monautologous somatic gene therapeutics[J]. Journal of Laboratory and Clinical medicine,2002,139: 35-42
    [50]吴美慧,张晓梅,郝金盛,等.微囊化猪甲状腺组织移植治疗甲状腺功能减退大鼠的实验研究[J].解放军医学杂志,1999,24(4):242-244
    [51]林乐岷,宋一民,宋纯,等.微囊化新生猪甲状旁腺细胞异种移植的实验研究[J].中华器官移植杂志,1998,19:45-47
    [52]Picariello L, Benvenuti S, Rencenti R, et al.. Microencapsulation of human parathyroid cells[J]. J Surg Res,2001,96(1):81-89
    [53]Tyler J E. Microencapsulation of mammalian cells[J]. Bioprocess Technol.,1990,10: 343-361
    [54]Yuet P K, Harris T J, Goosen M F A. Mathematical modelling of immobilized animal cell growth[J]. Art Cells Blood Subs Immob Biotechnol,1995,23(1):109-133
    [55]Sakai S, Kawabata K, Ono T, et al.. Development of mammalian cell-enclosing subsieve-size agarose capsules (100μm) for cell therapy[J]. Biomaterials,2005,26: 4786-4792.
    [56]Weiting Yu, Huiyi Song, Xiaojun Ma, et al.. Study on membrane characteristics of alginate-chitosan microcapsule with cell growth[J]. Journal of Membrane Science, 2011,377(7):214-220
    [57]Pik-Ling Lam, Roberto Gambari. Development of phyllanthin containing microcapsules and their improved biological activity towards skin cells and Staphylococcus aureus[J]. Bioorganic & Medicinal Chemistry Letters,2012,22(1): 468-471
    [58]Wen-tao Qi, Wei-ting Yu, Yu-bing Xie, et al.. Optimization of Saccharomyces cerevisiae culture in alginate-chitosan-alginate microcapsule[J]. Biochemical Engineering Journal,2005,25:151-157
    [59]Tibbitt M W, Anseth K S. Hydrogels as extracellular matrix mimics for 3D cell culture[J]. Biotechnol. Bioeng.,2009,103:655-663
    [60]Zhi-jie Sun, Shuang-yue Li, Guo-jun Lv, et al.. Metabolic response of different osmo-sensitive Sacchromyces cerevisiae to ACA microcapsule[J]. Enzyme and Microbial Technology,2008,42(7):576-582
    [61]Wen-tao Qi, Yu-bing Xie, Xiaojun Ma et al.. Behavior of microbial growth and metabolism in alginate-chitosan-alginate (ACA) microcapsules[J]. Enzyme and Microbial Technology,2006,38(5):697-704
    [62]Jing Xiao, Ying Zhang, Jianzheng Wang, et al..Monitoring of Cell Viability and Proliferation in Hydrogel-Encapsulated System by Resazurin Assay[J].Applied Biochemistry and Biotechnology,2010,162,(7):1996-2007
    [63]Xiuli Wang, Wang We, Xiaojun Ma, et al.. Proliferation and Differentiation of Mouse Embryonic Stem Cells in APA Microcapsule:A Model for Studying the Interaction between Stem Cells and Their Niche[J]. Biotechnol. Prog.,2006,22:791-800
    [64]Shuangyue Li, Hua Wang, Wei Wang, et al.. Expansion of umbilical cord blood hematopoietic stem/progenitor cells in an APA microcapsule culture system[J]. Journal of Biotechnology,2008,136(10):128-136
    [65]Guang-wei Sun, Xiao-xi Xu, Xiao-jun Ma et al.. Three-Dimensional Culture for Expansion and Differentiation of Embryonic Stem Cells[M]. Springer Protocols Handbooks,2012, Human Embryonic and Induced Pluripotent Stem Cells, Part 1: 51-58
    [66]Weihua Chen, Daping Yang, Peng Wang, et al.. Microencapsulated Myoblasts Transduced by the Vascular Endothelial Growth Factor (VEGF) Gene for the Ischemic Skin Flap[J]. Aesthetic Plastic Surgery,2011,35(3):326-332
    [67]程介克.单细胞分析[M].北京:科学出版社,2005,6:1-20
    [68]He M, Edgar J S, Jeffries G D, et al.. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets[J]. Anal Chem., 2005,77:1539-1544
    [69]Kelly T, Baret J C, Taly V, et al.. Miniaturizing chemistry and biology in microdroplets[J]. Chem. Commun. (Camb.),2007,14(5):1773-1788
    [70]Griffiths A D, Tawfik D S. Miniaturising the laboratory in emulsion droplets[J]. Trends Biotechnol.2006,24:395-402
    [71]孙悦,卢敏,殷学锋.纳米脂质体包裹荧光试剂进入单细胞的研究[J].高等学校化学学报,2006,27(4):632-634.
    [72]Jenifer Clausell-Tormos, Diana Lieber, Jean-Christophe Baret, et al.. Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multi-cellular organisms[J]. Chem Biol.,2008,15:427-437
    [73]Germain M, Balaguer P, Nicolas JC, et al.. Protection of mammalian cell used in biosensors by coating with a polyelectrolyte shell[J]. Biosensors Bioelectron.,2006, 21:1566-1573
    [74]Chang H N, Seong G H, Yoo I K, et al. Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules[J]. Biotechnol Bioeng,1996,51:157-162
    [75]Awrey D E, Tse M, Hortelano G, et al. Permeability of alginate microcapsules to secretory recombinant gene products[J]. Biotechnol Bioeng,1996,52:472-484
    [76]Tin S S H, Boadi D K, Neufeld R J. DNA encapsulation by an air-alginated liquid-liquid mixer[J]. Biotechnol Bioeng,1997,56:464-470
    [77]Daugulis A J, Weight C P, Goosen M F A, et al.. Affinity separations using microcapsules[M]. In:Pyle D L, ed. Sep Biotechnol.2nd ed. London:Elsevier,1990. 315-324
    [78]Li Q, Zhu J, Daugulis A J, et al. Polysaccharide microcapsules and macroporous beads for enhanced chromatographic separation[J]. Biomater Artif Cells Immobilization Biotechnol,1993,21(3):391-398
    [79]Achaw O W, Goosen M F A. Affinity microcapsules:chitosan-alginate membrane stability and isolation of bovine serum albumin[J]. Polym Prepr,1994,35(2):75-76
    [80]Goosen M F A, Achaw O W, Grandmaison E W. Chitosan-alginate affinity microcapsules for isolation of bovine serum albumin[J]. Appl Chitin Chitosan,1997,5: 233-254
    [81]De Vos P, Hamel A F, Tatarkiewicz K. Considerations for successful transplantation of encapsulated pancreatic islets[J]. Diabetologia,2003,45:159-173
    [82]De Groot M, Schuurs T A, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts[J]. Journal of Surgical Research,2004,121: 141-150
    [83]Colton C K. Engineering challenges in cell-encapsulation technology[J]. Trends in Biotechnology,1996,14:158-162
    [84]Martijn de Groot, Theo A. Schuurs, Reinout van Schilfgaarde. Causes of Limited Survival of Microencapsulated Pancreatic Islet Grafts[J]. Journal of Surgical Research, 2004,121(9):141-150
    [85]De Vos P, van Straaten J F, Nieuwenhuizenn A G., et al.. Why do microencapsulated islet grafts fail in the absence of fibrotic overgrowth? [J]. Diabetes,1999,48:1381
    [86]De Vos P, De Haan B J, Wolters G H, et al.. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets [J]. Diabetologia,1997,40:262
    [87]De Vos P, Wolters G H, van Schilfgaarde R. Possible relationship between fibrotic overgrowth of alginate-polylysine-alginate microencapsulated pancreatic islets and the microcapsule integrity [J]. Transplant. Proc.,1994,26:782
    [88]De Vos P, De Haan B, van Schilfgaarde R. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules [J]. Biomaterials,1997,18:273
    [89]B Kulseng, G Skjak-Braek, L Ryan, et al.. Generation of Antibodies Against Alginates and Encapsulated Porcine Islet-Like Cell Clustersl[J]. Transplantation,1999,67(4): 978-984.
    [90]Hobbs H A, Kendall W F, Jr Darrabie M, et al.. Prevention of morphological changes in alginate microcapsules for islet xenotransplantation [J]. J Invest. Med.,2001,49: 572
    [91]De Vos P, De Haan B, Wolters G H, et al. Factors influencing the adequacy of microencapsulation of rat pancreatic islets [J]. Transplantation,1996,62:888
    [92]Duvivier Kali V G, Omer A, Parent R J, et al.. Complete protection of islets against allorejection and autoimmunity by a simple barium alginate membrane [J]. Diabetes, 2001,50:1698-1705
    [93]Omer A, Duvivier Kali V F, Trivedi N, et al.. Survival and maturation of microencapsulated porcine neonatal cell clusters transplanted into immunocompetent mice [J]. Diabetes,2003,52:69-75
    [94]De Vos P, De Haan B, Pater J, et al.. Association between capsule diameter adequacy of encapsulation, and survival of microencapsulated rat islet allografts[J]. Transplantation,1996,62(3):893-899
    [95]Gray D W. An overview of the immune system with specific reference to membrane encapsulation and islet transplantation [J]. Ann. N. Y. Acad. Sci.,2001,944:226,
    [96]Omer A, Keegan M, de Vos P, et al.. Macrophage depletion improves survival of porcine neonatal pancreatic cell clusters contained in alginate macrocapsules transplanted into rats [J]. Xenotransplantation,2003,10:240
    [97]Wiegand F, Kroncke K D, Kolb Bachofen V. Macrophage generated nitric oxide as cytotoxic factor in destruction of alginate enpsulated islets[J]. Transplantation,1993, 56:1206-1212
    [98]Kulseng B, Thu B, Espevik T, et al.. Alginate polylysine microcapsules as immune barrier:Permeability of cytokines and immunoglobulins over the capsule membrane [J]. Cell Transplant,1997,6:387
    [99]周骏,王春友,冯来运.共微囊血红蛋白对大鼠胰岛细胞功能的影响[J].临床医药杂志,2003,16(4):8-10
    [100]Contreras J L, Bilbao G, Smyth C A, et al.. Cytoprotection of pancreatic islets before and soon after transplantation by gene transfer of the anti-apoptotic Bcl-2 gene [J]. transplantation,2001,71:10-15
    [101]Siebers U, Horcher A, Bretzel R G, et al.. Transplantation of free and microencapsulated islets in rats:Evidence for the requirement of an increased islet mass for transplantation into the peritoneal site [J]. Int. J. Artif. Organs,1993,16:96
    [102]Kim S K, Yu S H, Son J H, et al.. Calculations on O2 transfer in capsules with animal cells for the determination of maximum capsules size without 02 limitation [J]. Biotechnol Lett.,1998,20:549-552
    [103]Sigrist S, Mechine Neuville A, Mandes K, et al.. Induction of angiogenesis in omentum with vascular endothelial growth factor influence on the viability of encapsulated rat pancreatic islets during transplantation [J]. J Vasc Res.,2003,40: 359-367
    [104]Robitaille R, Dusseault J, Henley N, et al.. Insulin like growth factor Ⅱ allows prolonged blood glucose normalization with a reduced islet cell mass transplantation [J]. Endocrinology,2003,144:3037-3045
    [105]吴刚,蔡端,李保国,等.大鼠胰岛与神经生长因子共微囊提高异种移植胰岛存活率的实验研究[J].外科理论与实践,2008,13(4):345-348
    [106]H L Rebecca. Materials for immunoisolated cell transplantation[J]. Advanced Drug Delivery Reviews,1998,33:87-109
    [107]薛伟明,于炜婷,王为,等.细胞移植用微胶囊的制备材料与制备方法[J].化学通报,2003,66:1-7
    [108]Cleland J L. Protein delivery from biodegradable microspheres[J]. Pharm Biotechnol, 1997,10:1-43
    [109]Leinfelder U, Brunnenmeier F, Cramer H, et al.. A highly sensitive cell assay for validation of purification regimes of alginates[J]. Biomaterials,2003,24:4161-4172
    [110]Tun T, Inoue K, Hayashi H, et al. A newly developed three-layer agarose microcapsule for a promising biohybrid artificial pancreas:Rat to mouse xenotransplantation[J]. Cell Transplant,1996,5:359-363
    [111]Aiedeh K, Gianasi E, Orienti I, Zecchi V, Chitosan microcapsules as controlled release systems for insulin[J]. J. Microencapsul,1997,14:567-576
    [112]Muzzarelli R, Baldassarre V, Conti F, et al.. Biological activity of chitosan: ultrastructural study[J]. Biomaterials,1998,9:247-252
    [113]Arshady R. Methodology and nomenclature in microencapsulation[J]. Polymer Preprints,1994,35(2):63-64
    [114]Antonio Barrero, Ignacio G. Loscertales. Micro-and nanoparticles via capillary flows. Annual Review of Fluid Mechanics,2007,39:89-106
    [115]Jekel M, Vorlop K D. Bioencapsulation Technology. Proceedings of the International Workshop Bioencapsulation(V), (Ed:Poncelet D, Dautzenberg H), Germany,1996, Talk 1
    [116]Leena-Stiina Kontturi, Marjo Yliperttula, et al.. A laboratory-scale device for the straightforward production of uniform, small sized cell microcapsules with long-term cell viability[J]. Journal of Controlled Release,2011,152(3):376-381
    [117]Burgarski B, Smith J, Wu J, et al.. Methods for animal-cell immobilization using electrostatic droplet generation [J]. Biotechnology techniques,1993,7:677-682
    [118]Koch S, Schwinger C, Kressler J, et al.. Alginate encapsulation of genetically engineered mammalian cells:comparison of production devices, methods and microcapsule characteristics[J]. Journal of Microencapsulation.2003,20,303-316
    [119]Whitesides G M. The origins and the future of microfluidics. Nature,2006, 442:368-373
    [120]Jean-Michel Rabanel, Xavier Banquy, Hamza Zouaoui, et al.. Progress technology in microencapsulation methods for Cell therapy[J]. Biotechnol. Prog.,2009,25(4): 946-963
    [121]Amanda K. Andriola Silva, Brun-Graeppi, et al.. Cell microcarriers and microcapsules of stimuli-responsive polymers[J]. Journal of Controlled Release.2011, 149:209-224
    [122]Sugiura S, Oda T, Aoyagi Y, et al.. Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules[J]. Biomed Microdevices,2007,9:91-99
    [123]Hardikar A A, Risbud M V, Bhonde R R J. A simple microcapsule generator design for islet encapsulation[J]. Biosci.,1999,24(3):371-376
    [124]Sakai S, Kawabata K, Ono T, et al.. Preparation of mammalian cell-enclosing subsieve-sized capsules (\100 microns) in a coflowing stream[J]. Biotechnol Bioeng, 2004,86:168-173
    [125]Schwinger C, Klemenz A, Busse K, et al.. Encapsulation of living cells with polymeric systems[J]. Macromolecular Symposia,2004,210:493-499
    [126]Cellesi F, Tirelli N. A new process for cell microencapsulation and other biomaterial applications:thermal gelation and chemical cross-linking in "tandem" [J]. J Mater Sci Mater Med.2005;16:559-565
    [127]Willaert R G, Baron G V. Gel entrapment and micro-encapsulation:methods, applications and engineering principles [J]. Rev Chem Eng.,1996,12:185-205
    [128]Kamisuki S, Fujii M, Takekoshi T, et al.. A high resolution, electrostatically driven commercial inkjet head[C]. International conference on MEMS,2000:793-798
    [129]Xie J W, Wang C H. Electrospray in the dripping mode for cell microencapsulation[J]. J Colloid Interface Sci.,2007,312:247-255
    [130]Schwinger C, Klemenz A, Busse K, et al.. Encapsulation of living cells with polymeric systems[J]. Macromolecular Symposia,2004,210:493-499
    [131]Koch S, Schwinger C, Kressler J, et al.. Alginate encapsulation of genetically engineered mammalian cells:comparison of production devices, methods and microcapsule characteristics[J]. J Microencaps,2003,20:303-316
    [132]Zhang H, Tumarkin E, Sullan R M A, et al.. Exploring microfluidic routes to microgels of biological polymers[J]. Macromol Rapid Commun.,2007,28:527-538
    [133]Sugiura S, Oda T, Nakajima M, et al.. Size control of calcium alginate beads containing living cells using micro-nozzle array[J]. Biomaterials,2005,26(16):3327-3331
    [134]Qiu C, Chen M, Yan H, et al.. Generation of uniformly sized alginate microparticles for cell encapsulation by using a soft-lithography approach[J]. Adv Mat.,2007, 19:1603-1607
    [135]Lencki R W J, Neufeld R J, Spinney T. Method of producing microspheres. US 4 822534,1989
    [136]Poncelet D, Lencki R W J, Neufeld R J, et al.. Production of alginate beads by emulsification/internal gelation. Ⅰ. Methodology[J]. Appl. Microbiol. Biotechnol., 1992,38:39-45
    [137]Poncelet D, Desmet B P, Neufeld R J, et al.. Production of alginate beads by emulsification/internal gelation. Ⅱ. Physicochemistry[J]. Appl. Microbiol. Biotechnol.,1995,43:644-650
    [138]Muramatsu N, Nakauchi K. A novel method to prepare monodisperse microparticles[J]. J. Microencapsule,1998,15 (6):715-723
    [139]Joscelyne S M, Tragradh G. Membrane emulsification-a literature review[J]. J. Membr. Sci.,2000,169:107-117
    [140]Liu X D, Bao D C, Ma X J, et al.. Preparation of uniform calcium alginate gel beads by membrane emulsification coupled with internal gelation[J]. J. Appl. Polym. Sci.,2003,87:848-852
    [141]Vladisavljevic G T. Recent developments in manufacturing emulsions and particulate products using membranes[J]. Advances in colloid and interface science,2005,113: 1-20
    [142]Y Y Kermasha S, Neufeld R J, et al.. Encapsulation of chlorophyllase in hydrophobically modified hydrogel[J]. J. Mol. Catal. B-Enzym.,2002,19:319 325
    [143]Moslemy P, Guiot S R, Neufeld R J. Production of size-controlled gellan gum microbeads encapsulating gasoline-degrading bacteria[J]. Enzyme Microb. Tech., 2002,30:10-18
    [144]Schwinger C, Koch S, Jahnz U, et al.. High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology[J]. Journal of Microencapsulation.2002,19,273-280
    [145]Anilkumar A V, Lacik 1, Wang T G. A novel reactor for making uniform capsules[J]. Biotechnology and Bioengineering,2001,75,581-589
    [146]许时婴,张晓鸣,夏书芹,等.微胶囊技术—原理与应用[M].北京:化学工业出版社,2006,7:56-57
    [147]Strand B L, Gaserod O, Kulseng B, et al.. Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties[J]. Journal of Microencapsulation,2002, 19,615-630
    [148]Canaple L, Rehor A, Hunkeler D. Improving cell encapsulation through size control[J]. Journal of Biomaterials Science-Polymer Edition,2002,13:783-796
    [149]Ross C J D, Chang P L. Development of small alginate microcapsules for recombinant gene product delivery to the rodent brain[J]. Journal of Biomaterials Science-Polymer Edition,2002,13,953-962
    [150]Schrezenmeir J, Kirchgessner J, Gero L, et al.. Effect of Microencapsulation on Oxygen Distribution in Islets Organs[J]. Transplantation,1994,57:1308-1314
    [151]Kan Liu, Hui-Jiang Ding, Jing Liu, et al.. Shape-Controlled Production of Biodegradable Calcium Alginate Gel Microparticles Using a Novel Microfluidic Device[J]. Langmuir,2006,22:9453-9457
    [152]Nie Z H, Xu S Q, Seo M, et al.. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. J Am Chem Soc,2005, 127:8058-8063
    [153]Ulmke H, Wriedt T, Bauckhage K. Piezoelectric droplet generator for the calibration of particle-sizing instruments[J]. Chem Eng Technol,2001,24:265-268
    [154]Amirzadeh G A, Chandra S. Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator[J]. Exp Fluids,2008, 44:105-114
    [155]Koltay P, Birkenmeier B, Steger R, et al.. Massive parallel liquid dispensing in the nanoliter range by pneumatic actuation[C]. International conference on new Actuators,2002,235-239
    [156]Kim S J, Song Y A, Skipper P L, et al.. Electrohydrodynamic generation and delivery of monodisperse picoliter droplets using a poly(dimethylsiloxane) microchip[J]. Anal Chem,2006,78:8011-8019
    [157]He M, Edgar J S, Jeffries G D, et al.. Selective encapsulation of single cells and subcellular organelles into picoliter and femtoliter-volume droplets[J]. Anal Chem 2005,77:1539-1544
    [158]程介克,王玮,吴文展,等.探索脑化学纳米电化学——监测单细胞、单囊泡、 突触间隙释放化学信号分子及形貌分析[J].高等学校化学学报,2008,29(12):2609-2617
    [159]高健,殷学锋,方肇伦,等.微流控芯片单细胞进样和溶膜[J].高等学校化学学报.2003,24(9):1582-1584
    [160]Koster S. Drop-based microfluidic devices for encapsulation of single cells[J]. Lab Chip,2008,8:1110-1115
    [161]Edd J F. Controlled encapsulation of single-cells into monodisperse picolitre drops[J]. Lab Chip,2008,8:1262-1264
    [162]Moya M L, Garfinkel M R, Liu X, et al.. Fibroblast growth factor-1 (FGF-1) loaded microbeads enhance local capillary neovascularization[J]. J. Surg. Res.2010,160: 208-212
    [163]Liu Z C, Chang T M S. Coencapsulation of hepatocytes and bone marrow cells:in vitro and in vivo studies[J]. Biotechnol. Annu. Rev.,2006,12:137-151
    [164]Teramura Y, Iwata H, Islet encapsulation with living cells for improvement of biocompatibility[J]. Biomaterials,2009,30:2270-2275
    [165]科技导报编辑部.2004年中国重大科学、技术与工程进展[J].科技导报,2005,23(2):58-62
    [166]科学技术部基础研究司科技部高技术研究发展中心.新微流体数字化技术可使液滴量分辨率达到飞升级[J].基础研究快报,2004,4(15):6-7
    [167]章维一,侯丽雅.微流体数字化的科学与技术问题(Ⅰ):概念、方法和效果[J].科技导报,2005,23(8):4-9
    [168]章维一,侯丽雅.微流体数字化的科学与技术问题(Ⅱ):概念、方法和效果[J].科技导报,2006,24(3):41-47
    [169]章维一,侯丽雅.影响流体流动的方法及其装置和应用[P].中国:ZL03152948.8,2006-5-24
    [170]H史里希廷著,徐燕侯,徐立功,徐书轩,等,译.边界层理论[M].北京:科学出版社,1988:25-28,105-106,440-443,473-476
    [171]严宗毅.低雷诺数流理论[M].北京:北京大学出版社.2006,2:160-168,492-496
    [172]Caro C G, Pedley T J A. The mechanics of the circulation [M]. Oxford Unibersity Press, Oxford,1978
    [173]Segre G, Silberberg A. Behaveior of macroscope rigid sphere in Poiseuille flow [J]. J. Fluid Mech.,1962,14:136-157
    [174]张晓乐.微胶囊的微流体数字化制备技术及配套微流体器件制作工艺研究[D].南京:南京理工大学,2008:73-78
    [175]金栋平,胡海岩,等.碰撞振动与控制[M].科学出版社2005,9:68-72
    [176]王兰兰,吴健民,等.临床免疫学与检验[M].北京:人民卫生出版社,2007,7:161-168
    [177]Brady J F, Bossis G. Stokesian dynamics, Ann. Rev.[J].Fluid Mech.,1988, 20:111-157
    [178]Chaudhury K, Whitesides G M. How to make water run uphill[J]. Science,1992, 256:1529-1541
    [179]穆莉莉,章维一,侯丽雅.疏水化工艺在数字化超微量微注射中的应用[J].化工学报,2004(11),55(11):1773-1776
    [180]Mattheus F. A. Goosen, Geraldine M OShea. Microencap sulation of living tissue and cells [P]. US,4673566.1987-6-16
    [181]Wujie Zhang, Xiaoming He. Encapsulation of living cells in small alginate microcapsules by electrostatic spraying:A Parametric Study[J]. Journal of Biomechanical Engineering,2009,7(131):074515-1
    [182]Alexander Kumachev, Jesse Greener, Ethan Tumarkin, et al.. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation[J]. Biomaterials,2011,32:1477-1483
    [183]刘文华.小鼠卵母细胞重组实验研究[D].南京:南京师范大学,2006:30-36
    [184]田桂中.自动化细胞注射中微操作与微注射技术及实验研究[D].南京:南京理工大学,2008:27-28
    [185][美]威廉.费勒著,胡迪鹤译.概率论及其应用[M].北京:人民邮电出版社,2006:25-32
    [186]王公金,谭晓东,周晓龙,等.猪卵母细胞第1极体的分离与保存[J].农业生物技术学报,2008,16(5):792-797
    [187]Sarah K"oster, Francesco E. Angile, et al.. Drop-based microfluidic devices for encapsulation of single cells[J]. Lab Chip,2008,8:1110-1115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700