微流体数字化喷射技术及其在微混合中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流体系统是微系统中一个重要的研究领域,微流体的喷射和混合是微流体系统中重要的研究方向。目前实现微喷射及微混合的方法很多,但大多对流体的性质有较高要求,且微器件的加工工艺较复杂、成本相对较高,限制了微喷射及混合的实际应用。为此研究新型的微流体驱动方式,对工作流体无特殊要求,具有广泛适用性的微喷射和微混合技术是值得研究的重要课题;同时需要很好的解决核心微器件的设计与制作、微喷射及混合的应用等问题。
     微流体数字化技术在基本概念和理论上有原创性,该技术为建立与信息化、能量传输及固体运动数字化有同等意义的物质传输数字化开辟了道路。本论文以微流体数字化技术为起点,从微流体理论和实验研究、基础微器件的设计与制造等方面,研究了微流边界层流固摩擦耦合作用驱动理论、数字化微喷射技术、数字化微喷射混合理论、数字化微喷射混合器的设计、制作及应用,取得以下成果:
     给出了微流边界层流固摩擦耦合作用驱动圆柱形微管内流体的理论分析结论,对圆柱形微管道内流体的运动进行了理论分析、数值模拟及驱动实验;在此基础上设计了新型微喷管结构,对微喷射原理及过程进行了分析,并对影响微喷射的主要因素进行了讨论。
     进行了数字化微喷射的实验研究。对影响微喷射过程的相关因素及喷射过程中相关参数测量进行了研究,表明数字化微喷射具有稳定性强、均匀性好、分辨率高、过程实时可控、广泛的适用性及良好的抗气泡阻断性等特征。
     基于数字化微喷射技术设计了两种类型的微喷射混合器——Y型微混合器和同轴型微混合器。提出了一种新的微流体器件的制作方法:用水平式玻璃微器件制备仪拉制出微管道,将一维微管道直接粘接组合成微管道网络,不需要键合及钻孔工艺,制得具有微特性而非微外形的微器件,该方法制作简单,成本低。进行了微喷射混合原理实验,实现了不同种类组分间的混合反应,对于混合反应的流体没有特殊要求,具有混合尺度可控、混合比例可调以及混合均匀性好等特征。
     进行了数字化微混合器在微制造中的应用实验研究,利用同轴型与Y-同轴结合型微混合器进行了微胶囊的制备,无需加热加压,可以制备不同种类芯材的微胶囊,制备的微胶囊大小均匀,形状规则,尺寸和形态可控。采用Y型数字化微混合器结合常温下化学沉积金属银的方法,制造出了组织致密、边缘光滑、线宽均匀的金属银线;通过重复沉积,获得了所需厚度的金属银微结构。
Micro fluidic system is an important branch of micro systems. And micro jetting and micro mixing technology are the important research contents of the micro fluidic system. There are a lot of realization methods for micro jetting and micro mixing, but most of them have bottlenecks such as special properties request for fluid, difficulty of fabrication of the micro components and so on. Therefore problems in method for driving microfluid, micro jetting and mixing technology without special fluid properties request, designing and fabrication of the micro components and application researchs of micro jetting and mixing technology should be well solved.
     There are some creative theories in the digitalization of micro fluidic technology, which exploits the field of the digital matter transportation, equaled with the informationization, digital energy transmission and solid movement. Considering the aspects of theory and experiment research on micro fluidic and designing and fabrication of the basic micro components, the research achievements on the theory of micro fluidic driving, digital micro jetting technology, designing and fabrication of the micro jet-mixer and confirmed and applied experiments of digital micro jet-mixer are presented as follow base on the digitalization of micro fluidic technology.
     A novel micro fluidic driving technique is proposed on the friction coupling effect between the micro fluidic boundary layer and solid wall of the microchannel. Dynamic aspects of the micro flow in cylindrical microchannels are analysed. The validity of the presented principle is verified by experiments. A new structure of microchannel is designed and the principle and impact factors of micro jetting are analyzed.
     Digital micro jetting has been realized by micro jetting experiment. The impact factors of micro jetting were summarized, and the correlative parameters of micro jetting were measured. The digital micro jetting has the characteristic of high stability, uniformity, resolution and real time control. The kinds of the fluid materials that can be injected include conventional liquids as well as solid powders, pastes, and other substances of similar characteristics.
     Two types of micromixer are designed by micro jetting technology. One is Y-type and other is co- axial. The micro jet-mixer is fabricated by fitting glass microchannels together without micro moving parts. These glass microchannels are produced by microchannel puller dispense with complicated microfabrication technology, hence greatly simplifying the structure and reducing the cost. The performance of the mixer is verified by the different experiments. Digital micro mixing- reaction has been realized. The kinds of the fluid materials that can be mixed include conventional liquids as well as solid powders, pastes, and so on. By changing the driving parameters, the mixing effect can be improved effectively.
     The application of digital micro jet-mixer in micro manufacturing is researched. A new method of microcapsule molding by digital micro jet-mixer is proposed. The microcapsule with different kinds of core materials can be modeled by co-axial type and Y- combined co-axial micro jet-mixer at normal temperature and pressure. The microcapsule has regular appearance and even size. The size and conformation of microcapsules can be controlled through changing driving parameters. By Y- type micro jet-mixer and technology of chemical deposition of silver, micron scale silver lines were obtained with fine structure, smoothness of edge and width. Micro component of silver in three dimensions was manufactured by superposition of the composite coat.
引文
[1]Bryzek J.Impact of MEMS technology on society[J].Sensors and Actuators A,1996,56:1-9.
    [2]Judy J W.Microelectromechanical systems(MEMS):fabrication,design and applications[J].Smart Mater Struct,2001,10:115-134.
    [3]Shoji S,Esashi M.Microflow devices and system[J].J.Micromech Microeng,1994,4(4):157-171.
    [4]Bouhm S,Olthuis W,Bergveld P.An integrated micromachined electrochemical pump and dosing system[J].Journal of Biomedical Microdevices,1999,2:121-130.
    [5]Kang S W,Huang D.Fabrication of star grooves and rhombus grooves micro heat pipe[J].J Micromech Microeng,2002,12:525-531.
    [6]周兆英,叶雄英,李勇,等.微流量系统的基础技术研究[J].中国机械工程,1999,10(9):991-993.
    [7]国家自然科学基金委员会工程与材料科学部机械工程科学技术编委会.机械工程科学技术前沿[M].北京:机械工业出版社,1996.
    [8]程秀兰,蔡炳初,徐东,等.基于硅结构的微流体控制系统[J].微细加工技术,2002,2(2):58-67.
    [9]Stemme G.Micro fluid sensors and actuators[C].Int Symp on Micro Machine and Human Science(MHS'95),Nagoya,Japan,1995:45-52.
    [10]陆峰,谢里阳.微型泵的加工技术及应用[J].流体机械,2005,33(6):29-34.
    [11]Elmqvist R.Measuring instrument of the recording type[P].USP 2566443,1951.09.04.
    [12]R G Sweet.Fluid droplet recorder[P].USP 3596275,1971.07.27.
    [13]E L Kyse,S B Sears.Method and apparatus for recoding with writing fluids and drop projection means thereof[P].USP 3946398,1976.3.23.
    [14]A Mikalesen.Ink-jet apparatus and method employing phase change ink[P].USP 4742364,1988.05.03.
    [15]Wolfgang R W.Ink-Jet printing:the present state of the art[J],VLSI and Computer peripherals,1989,46-52.
    [16]Tirumala M,Lee F C.Thermal analysis of thermal ink-jet heater structure[c],SID 88,May 1988,Anaheim USA.
    [17]Unger MA,Chou HP,Thorsen T,et al.Monolithic microfabricated valves and pumps by multilayer soft lithography[J].Science,2000,288:113-116.
    [18]高琛,黄孙祥,陈雷,等.液滴喷射技术的应用进展[J].无机材料学报,2004, 19(4):714-722.
    [19]魏大忠,张人佶,吴任东,周浩颖.压电微滴喷射装置的设计[J].清华大学学报(自然科学版),2004,44(8):1107-1110.
    [20]赵钧,陈硕,尚智.热气泡式微喷技术研究[J].中国机械工程,2005,16(增刊):377-379.
    [21]乔治,许宝建,周洪波,等.基于PZT厚膜驱动的微喷芯片的设计[J].微细加工技术,2006(6):28-31.
    [22]许立宁,崔大付.新型压电微喷的研制[J].微细加工技术,2007(2):41-44,48.
    [23]乔治,金庆辉,许宝建,等.基于MEMS的生物微喷点样技术研究现状与展望[J].微纳电子技术,2006(10):481-486.
    [24]杨伟东,檀润华,颜永年,徐安平.基于微滴喷射技术的快速铸造方法探讨[J].铸造技术,2005,26(1):1-4.
    [25]刘丰,吴任东,张人信,颜永年.喷射技术在生物制造工程中的应用[J].机械工程学报,2006,42(16):13-20.
    [26]徐谷仓.我国数码喷墨印花技术的发展[J].纺织导报,2005(2):22-26.
    [27]高盛东,姚学英,崔成松.金属均匀液滴束流技术的应用[J].材料导报,2006,20(1):95-97
    [28]Reynolds O.Study of fluid motion by means of colored bands[J].Nature,1894,50:161.
    [29]J.M.Ottino,S.C.Jana and V.S.Chakravarthy.From reynolds stretching and folding to mixing studies using horseshoe maps[J].Phys.Fluids,1994,6:685-699.
    [30]Hassan Aref.Stirring by chaotic advection[J].Journal of Fluid Mechanics,1984,143:1-21.
    [31]J.M.Ottino,C.W.Leong,H.Rising,P.D.Swanson.Morphological structures produced by mixing in chaotic flows[J].Nature,1988,333,419-425.
    [32]Andrew Evan Kamholz,Bernhard H.Weigl,Bruce A.Finlayson,and Paul Yager.Quantitative Analysis of molecular interaction in a microfluidic channel:The T-Sensor.Anal.Chem[J].1999,71(23):5340-5347.
    [33]Gobby D,Angeli P,Gavriilidis A.Mixing characteristics of T-type microfluidic mixers[J].J.Micromech.Microeng,2001,11:126-132.
    [34]S.H.Wong,M.C.L.Ward,C.W.Wharton.Micro T-mixer as a rapid mixing micromixer[J].Sensors and Actuators B:Chemical,2004,100(3):365-385.
    [35]V.Mengeaud,J.Josserand and H.H.Girault.Mixing processes in a zigzag microchannel:finite element simulation and optical study[J].Anal.Chem,2002,74(16),4279-4286.
    [36]Scott W.Jones,Oran M.Thomas,Hassan Aref.Chaotic advection by laminar flow in a twisted pipe[J].Journal of Fluid Mechanics,1989.209:335-357.
    [37]卢著敏,王林翔,范毓润.扭管混合实验研究[J].实验力学,2000,15(2):217-223.
    [38]F.H.Ling.Chaotic mixing in a spatially periodic continuous mixer[J].Physics of Fluids,1993,5(9):2147-2160.
    [39]Norbert Schwesinger,Thomas Frank,Helmut Wurmus.A modular microfluid system with an integrated micromixer[J].J.Micromech.Microeng,1996,6(1):99-102.
    [40]Bessoth F G,DeMello A J,Manz A.Microstructure for efficient continuous flow mixing[J].Anal.Commun,1999,36:213-215.
    [41]S.H.Wong,P.Bryant,M.Ward,C.Wharton.Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies[J].Sens.ActuatorsB.Chem,2003,95:414-424.
    [42]Zeng-Yuan Guo et al.Size effect on microscale single-phase flow and heat transfer[J].International Journal of Heat and Mass Transfer,2003,46:149-159.
    [43]Ismagilov et al,Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels[J].Appl.Phys.Lett,2000,76:2376-2378.
    [44]V.Kumar et al.,Numerical simulation of laminar mixing surfaces in converging microchannel Flows[J].ICCSA,LNCS 2668,2003,837-846.
    [45]J.B.Knight,A.Vishwanath,J.P.Brody and R.H.Austin.Hydrodynamic focusing on a silicon chip:mixing nanoliters in microseconds[J].Phys.Rev.Lett,1998,80:3863-3866.
    [46]N.T.Nguyen,X.Y.Huang.Mixing in microchannels based on hydrodynamic focusing and time-interleaved segmentation:modeling and experiment[J].Lab Chip,2005,5,1320-1326.
    [47]Branebjerg J,Gravesen P,Krog J P,Nielsen C R,et al.Fast mixing by lamination[C].Proc.MEMS'96,9th IEEE Int.Workshop Micro Electromechanical System,1996:441-446.
    [48]B.L.Gray,D.Jaeggi,N.J.Mourlas,et al.Novel interconnection technologies for integrated microfluidic systems[J].Sensors Actuators,1999,A 77:57-65.
    [49]B.He,B.J.Burke,X.Zhang,et al.A picoliter-volume mixer for microfluidic analytical systems[J].Anal.Chem,2001,73(9):1942-1947.
    [50]Miyake R,Tsuzukil K,Takagi T,and Imai K.A highly sensitive and small flow-type chemical analysis system with integrated absorbtionmetric micro-flowcell[C].Proc.MEMS'97,10th IEEE Int.Workshop Micro Electromechanical System,1997:102-107.
    [51]W.Wang,R.Yang,J.D.Williams.Micro-mixer/reactor based on arrays of spatially impinging micro-jets[P].US 20050213425,2005.09.29.
    [52]Nakashima T,Shimizu M,Kukizaki M.Membrane emulsification by microporous glass[J].Key Engineering Materials,1991,61/62:513-516.
    [53]孙永.学位论文:液液体系膜分散及其传质性能研究[D]北京:清华大学,2002.
    [54]徐建鸿,骆广生,陈桂光,等.一种微型膜分散式萃取器[J].化学工程,2005,33(4):56-59.
    [55]徐建鸿,骆广生,陈桂光,等.液-液微尺度混合体系的传质模型[J].化工学报,2005,56(3):435-440.
    [56]Hengzi Wang,Pio Iovenitti,Erol Harvey and Syed Masood.Optimizing layout of obstacles for enhanced mixing in microchannels[J].Smart Mater Struct,2002,11(5):662-667.
    [57]Virginie Mengeaud,Jacques Josserand,Hubert H.Girault.Mixing processes in a zigzag microchannel:Finite Element Simulations and Optical Study[J].Anal.Chem.2002,74(16):4279-4286.
    [58]Hong CC,Choi JW,Ahn CH.A novel in-plane passive microfluidic mixer with modified tesla structures[J].Lab Chip,2004,4:109-113.
    [59]Robin H.Liu,Mark A.Stremler,Kendra V.Sharp,et al.Passive mixing in a three-dimensional serpentine microchannel[J].Journal of Microelectromechanical Systems,2000,9(2):190-197.
    [60]Vijiayendran et al,Evaluation of a three-dimensional micromixer in a surface-based biosensor[J].Langmuir,2003,19:1824-1828.
    [61]Chen H and Meiners J C,Topologic mixing on amicrofluidic chip[J].Appl.Phys.Lett.2004,84:2193-2195.
    [62]Park S Jet al,Rapid three-dimensional passive rotation micromixer using the breakup process[J].J.Micromech.Microeng.2004,14:6-14.
    [63]T.J.Johnson,D.Ross,L.E.Locascio.Rapid microfluidic mixing[J].Anal.Chem.2002,74:45-51.
    [64]Stroock AD,Dertinger S K W,Ajdari Aet al.Chaotic mixer for microchannels[J].Science,2002,295:647-651.
    [65]Dong Sung Kim,Seok Woo Lee,Tai Hun Kwon and Seung S Lee.A barrier embedded chaotic micromixer[J].J.Micromech.Microeng,2004,14:798-805.
    [66]Chuang Li,Tianning Chen.Simulation and optimization of chaotic micromixer using lattice Boltzmann method[J].Sensors and Actuators B,2005,106:871-877.
    [67]D.G.Hassell,W.B.Zimmerman.Investigation of the convective motion through a staggered herringbone micromixer at lowReynolds number flow[J].Chemical Engineering Science,2006,61:2977-2985.
    [68]LilinWang,Jing-TangYang,Ping-Chiang Lyu.An overlapping crisscross micromixer[J].Chemical Engineering Science,2007,62:711-720.
    [69]Suet Ping Kee,Asterios Gavriilidis.Design and characterisation of the staggered herringbone mixer[J].Chemical Engineering Journal,2008,1-13.
    [70]Jing-Tang Yang,Wei-Feng Fang,Kai-Yang Tung.Fluids mixing in devices with connected-groove channels[J].Chemical Engineering Science,2008,63:1871-1881.
    [71]Fr(?)d(?) ric Bottausci,Caroline Cardonne,Igor Mezi(?),et al.An actively controlled micromixer:3-Daspect.http://www.engineering.ucsb.edu/~mgroup.
    [72]Zhen Yang,Sohei Matsumoto,Hiroshi Goto,et al.Ultrasonic micromixer for microfluidic systems[J].Sensors and Actuators A,2001,93:266-272.
    [73]Peter Huang,Kenneth S.Breuer.Performance and scaling of an electro-osmotic mixer[C].TRANSDUCERS,Solid-State Sensors,Actuators and Microsystems,12th International Conference,2003,1:663-661.
    [74]Chen CH,Santiago JG.A planar electroosmotic micropump[J].J Microelectromechanical systems,2002,11(6):672-683.
    [75]Haim H.Bau,Jihua Zhong,Mingqiang Yi.A minute magneto hydro dynamic (MHD) mixer[J].Sensors and Actuators B,2001,79:207-215.
    [76]Ajay A.Deshmukh,Dorian Liepmann,Albert P.Pisano.Continuous micromixer with pulsatile micropumps[C].Proceedings of the IEEE Solid-state Sensor and Actuator Workshop,Hilton Head Island,SC,2000:73-76.
    [77]Darabi J,Rada M,Ohadi M et al.Design,fabrication,and testing of an electrohydrodynamic ion-drag micropump[J].J Microelectromechanical systems,2002,11(6):684-690.
    [78]朱丽,侯丽雅,章维一.微混合器研究进展[J].微纳电子技术,2005(4):164-171, 199.
    [79](美)徐泰然.MEMS和微系统——设计与制造[M].北京:机械工业出版社,2004.
    [80]方肇伦.微流控分析芯片[M].北京:科学出版社,2003.
    [81]章维一,侯丽雅.微系统领域的关键技术[J].中国机械工程,2000,11(11):1305-1312.
    [82](德)W.埃尔费尔德,V.黑塞尔,H.勒韦.微反应器——现代化学中的新技术[M].北京:化学工业出版社,2004.
    [83]章维一,侯丽雅.影响流体流动的方法及其装置和应用[P].中国:ZL 03152948.8,2006-5-24.
    [84]科技导报编辑部.2004年中国重大科学、技术与工程进展[J].科技导报,2005,23(2):58-62.
    [85]章维一,侯丽雅.微流体数字化的科学与技术问题(Ⅰ):概念、方法和效果[J].科技导报,2005,23(8):4-9.
    [86]章维一,侯丽雅.微流体数字化的科学与技术问题(Ⅱ):物质数字化及物质能量信息统一数字化概念研究[J].科技导报,2006,24(3):41-47.
    [87]文书明.微流边界层理论及其应用[M].北京:冶金工业出版社,2002.
    [88]W L M Nyborg.Acoustic streming,physical acoustics[M].New York:Academic Press,1965.
    [89]Moroney,R.M.,White,R.M.,and Howe,R.T.,Fluid motion produced by ultrasonic lamb waves[C].IEEE 1990 Ultrasonics Symposium Proceedings,Honolulu,1990:355-358.
    [90]R.M.Moroney,R.M.White and R.T.Howe,Microtransport induced by ultrasonic Lamb waves[J].Appl.Phys.Lett.1991,59(7):774-776.
    [91]Madou,M.Fundamentals of microfabrication[M].CRC Press,boca Raton,1997.
    [92]魏守水,江兴娥,白光磊,姜春香.直管形超声行波微流体驱动模型的模态与谐响应分析[J].山东大学学报(工学版),2006,36(6):67-70.
    [93]zhuli,Hou liya,Zhang weiyi.Digital Microinjection technique driven by piezoelectric actuator[C].International Conference on Mechanical Engineering and Mechanics 2007:1786-1789.
    [94]朱丽,侯丽雅,章维一.基于压电驱动的数字化微喷射技术的研究[J].机床与液压,2008,36(8):17-20.
    [95]Hirt C W,Nichols B D.Volume of fluid(VOF) method for the dynamics of free boundaries[J].J Comput Phys,1981,39:201-225.
    [96]刘儒勋,王志峰。数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [97]周严,侯丽雅,章维一.波形和参数在线可编程的功率电源及其应用[J].电测与仪表,2004,41(457):16,17-19.
    [98]刘中春,侯吉瑞,岳湘安.微尺度流动界面现象及其流动边界条件分析[J].水动力学研究与进展,2006,A辑,21(3):339-346.
    [99]穆莉莉,章维一,侯丽雅,等.疏水化工艺在数字化超微量微注射中的应用[J].化工学报,2004,55(11):1773-1776.
    [100]刘天军.学位论文:数字化细胞微注射技术及其应用研究[D].南京:南京理工大学,2004.
    [101]王奎升.工程流体与粉体力学基础[M].北京:中国计量出版社,2002.
    [102]朱丽,侯丽雅,章维一.一种新型的数字化微粉体混合器[J].华中科技大学学报自然科学版,2007,35(增刊Ⅰ):71-73.
    [103]周一览,黄傲,殷浩.一种CCD显微测量系统[J].计量技术,2000,6(2):12-14.
    [104]徐飞,施晓红等.MATLAB应用图像处理[M].西安:西安电子科技大学出版社,2003.
    [105]赵文珍.材料表面工程导论[M].西安:西安交通大学出版社,1998.
    [106]张灵.DNA超微注射量精密控制技术的研究[D].广州:广东工业大学,2004.
    [107]周强,赵东,宗光华,毕树生.生物芯片点样针性能指标实验研究[J].仪器研制与应用开发.2002(2):28-30.
    [108]程斌,杨尚平,马骏骑,赵斌.浅谈我国流量测量研究的现状[J].中国仪器仪表,2005(10):42-45.
    [109]沙菁契,侯丽雅,章维一,朱丽.数字化无阀微泵的泵送性能实验研究[J].中国机械工程,2006,17(14):1439-1442.
    [110]郭彤,胡春光,胡晓东,等.利用频闪成像方法进行微机电系统的计量[J].计量学报,2005,26(4):299-303.
    [111]曾亚兵,马志豪,徐斌,等.运用频闪成像系统进行喷油嘴喷雾特性的研究[J].现代车用动力,2004(4):40-43.
    [112]陈培正.自由落体频闪照片的应用探索[J].物理教学探讨,2005,23(241):24-25.
    [113](以)A.Tamir.撞击流反应器:原理和应用[M].北京:化学工业出版社,1996.
    [114]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.
    [115]K(?)hler J M,Henkel Th,Grodrian A.Digital reaction technology by micro segmented flow:components,concepts and applications[J].Chemical Engineering Journal,2004,101:201-216.
    [116]A.Li and G.Ahmadi.Dispersion and deposition of spherical particles fiom point sources in a turbulent channel flow[J].Aerosol Science and Technology,1992,16:209-226.
    [117]P.G.Saffman.The lift on a small sphere in a slow shear slow[J].J.Fluid Mech.,1965,22:385-400.
    [118]文华.学位论文:基于CFD的柴油机喷雾混合过程的多维数值模拟[D].武汉:华中科技大学,2004.
    [119]O'Rourke,P.J.,Bracco,F.V.Modeling of drop interactions in thick sprays and comparisons with experiments[J].Proc.I.Mech.E,1980,9:101-116.
    [120]Brazier-Smith,P.,Jennings,S.,Latham,J.The interaction of falling rain drops:coalescence[J].Proccedings of the Royal Society of London A,1972,326:393-408.
    [121]Kitron A,Elperin T,and Tamir A.Stochastic modeling of the effects of liquid droplet collisions in impinging streams absorbers and combustors[J].International Journal of Multiphase Flow,1991,17(2):247-265.
    [122]N.Ashgriz and P.Givi.Coalescence efficiencies of fuel droplets in binary collisions[J].International Communications in Heat and Mass Transfer,1989,16(1):11-20.
    [123]Orme,M.E.Experiments on droplet collisions,bounce,coalescence and disruption[J].Progress in Energy Combustion Science,1997,23 65-79.
    [124]Ashgriz,N.,Poo,J.Y.Coalescence and separation in binary collisions of liquid drips[J].Journal of Fluid Mechanics,1990,221 183-204.
    [125]Estrade,J.P.,Carentz,H.,Lavergne,G.Experimental investigation of dynamic binary collision of ethanol droplets-a model for droplet coalescence and bouncing[J].International Journal of Heat and Fluid Flow,1999,20:486-491.
    [126]Tomohiro Taniguchi.Micro chemical reactor using electrostatic manipulation of micro droplets in liquid.http://www.aml.t.u-tokyo.ac.jp/research/micro_chem/micro chem e.html.
    [127]王凯,冯连芳.混合设备设计[M].北京:机械工业出版社,2000.
    [128]方肇伦,吴志勇,关艳霞,等.微流控分析芯片的制作及应用[M].北京:化学工业出版社,2005.
    [129]魏守水,张玉林,崔大付,等.分析芯片微通道制作技术进展[J].中国工程科学,2004,6(10):90-94.
    [130]Effenhauser,C.S.,Bruin,G.J.M.,Paulus,A.and Ehrat,M.Integrated capillary electrophoresis on flexible silicone microdevices:analysis of DNA restriction fragments and detection of single DNA molecules on microchips[J].Anal.Chem,1997,69(17):3451-3457.
    [131](美)J.I.达菲.玻璃工艺最近进展[M].北京:中国建筑工业出版社,1986.
    [132]沙菁契,侯丽雅,朱丽.玻璃微流体器件制备仪的设计研究[J].机械设计与研究,2007,23(1):54-57,64.
    [133]朱丽,侯丽雅,章维一.基于微流体数字化技术的微化学反应器[J].中国机械工程,2007,18(5):597-599.
    [134]朱丽,侯丽雅,章维一.数字化微混合反应器的研究[J].微纳电子技术,2007,44(11):1004-1007.
    [135]李淑娴,吴一辉,宣明.电磁式微流体动态混合器的动力学数值模拟[J].光学精密工程,2005,13(5):127-134.
    [136]宋健,陈磊,李效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001.
    [137]李保国,华泽钊,田泽正,刘占杰.医用微胶囊成型装置的研制[J].医疗卫生装备,2003(3):1-2,4.
    [138]梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社,1999.
    [139]Zhang Weiyi,Hou Liya,Mu Lili,Zhu Li.Femtoliter micro injector using digital microfluidic control[C].SPIE International Symposium on Micromaching and Microfabrication.San Jose:SPIE,2004:135-144.
    [140]刘天军,侯丽雅,章维一,张晓乐.基于微喷技术的微胶囊制造实验研究[J].中国机械工程,2006,17(23):2499-2502.
    [141]丁惠锋,汤亭亭.微胶囊技术及其在骨科领域的应用[J].中国修复重建外科杂志,2005,19(12):1029-1032.
    [142]R.Merz,et al.Shape deposition manufacturing[C].Proc.of SFF symposium.University of Texas at Austin,Texas:1994:15-29.
    [143]L.E.Weiss,R.Merz.Shape deposition manufacturing of heterogeneous structure[J].Journal of Manufacturing Systems,1997,16(4):239-248.
    [144]Chun Jung-Hoon.Production of charged uniformly sized metal droplets[P].USP 5266098,1993.11.30.
    [145]杨伟东,颜永年,钟敏霖,张人佶.直接制造金属型的RP方法探讨[C].特种加工技术——2001年中国机械工程学会年会暨第九届全国特种加工学术年会论文集:287-290.
    [146]覃奇贤,郭鹤桐,刘淑兰,张宏祥。电镀原理与工艺[M].天津:天津科学技 术出版社,1993.
    [147]沈宁.表面处理工艺手册[M].上海:上海科学技术出版社,1991.
    [148]唐清.一种实验室冷镀制镜的新方法[J].天津化工,2003,17(3):51-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700