微光学器件的气动膜片式微滴喷射制造技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近代光学和光电子技术的迅猛发展使光电子仪器及其元件发生了巨大的变化,微型化和智能化成为实现这一变化的主要发展方向,由此诞生了一门崭新的学科——微光学(micro-optics)。微光学器件在几乎所有的工程应用领域,尤其在现代国防科技领域中有重要的应用价值和广阔的应用前景。然而,微光学器件的实际制作水平远远落后于理论设计水平,加工问题已成为阻碍其迅速发展和应用的巨大障碍。因此,针对微光学器件制作的高效率、大批量、低成本制造技术是各国学者竞相研究的重要课题。微滴喷射是一种通过产生微米级的液滴实现微量流体精确分配的技术,属于非接触直写式制作技术的范畴,作为一种增材式制造方法,它不仅可以节约材料、减少工艺步骤、提高生产效率,而且具有极好的环境兼容性,并能与计算机控制紧密结合,直接喷射制作复杂的三维结构,可以满足未来制造技术的发展对环境保护、材料利用率以及工艺灵活性等诸多方面的要求。
     本文提出了一种具有自主知识产权的用于微光学器件制作的气动膜片式微滴喷射技术。该技术融合了压电喷射装置和气压直接驱动装置的优点,具有结构简单、操作维修及拆卸方便、驱动功率大以及可靠性优良的特点。本文在构建气动膜片式微滴喷射平台的基础上,进行了气动膜片式喷射机理及实验研究,所做的工作阐述如下:
     首先,以膜片模态、载荷-挠度特性、膜片与液体的固-液耦合关系为理论基础,运用非平衡伯努利方程和质量守恒方程建立了气动膜片式喷射过程的数学模型,获得输入气压与膜片变形、腔内压力以及喷嘴出口流体速度的关系,并以此作为优化微喷射装置结构参数和控制参数的理论依据。
     其次,构建了包括微喷射装置、电磁阀驱动系统、压力控制系统、温度控制系统、图像在线监测系统及精密运动平台的气动膜片式微滴喷射系统。重点研究了玻璃喷嘴的可控制作技术和基于延时触发的图像采集与处理系统。该系统可用来获取微液滴喷射形成和沉积成型过程的图像信息,运用数字图像处理方法计算出液滴大小、飞行距离与速度。
     接着,基于Fluent 6.3中的VOF模型模拟了喷射形成主液滴及卫星滴的全过程,探讨了微液滴形成的规律。利用喷射平台进行了微液滴喷射的一致性分析,研究了设备结构参数及控制参数与液滴大小及喷射速度的关系。此外,以不同物理性质的溶液为对象进行了粘度及表面张力对液体喷射过程影响的实验研究。
     然后,利用能量守恒的分析方法对微液滴碰撞基板后的各个过程进行理论研究,运用反弹阈值公式根据微液滴碰撞前的初始条件判定碰撞后的变形状态。此外,通过实验方法得到不同物理性质的微液滴在多种润湿性基板上的沉积过程,并分析了液滴物理性质、液滴与基板的相互作用对微液滴沉积过程的影响,为喷射制作中的沉积过程提供了理论与实验依据。
     最后,利用紫外固化胶完成了直径为75-400μm微透镜阵列的制作。对平均直径为333.28μm的9x9微透镜阵列进行检测,其尺寸偏差约为1.6%,表面平均粗糙度约为0.243nm,焦距计算平均值为389.07μm、均匀性误差为1.6%,利用玻罗板测得焦距平均值为482.04μm、均匀性误差为1%,结果表明微喷射方法用于制作微光学器件具有很大的灵活性和极大的发展潜力。
     此外,附录中还介绍了一种适用于聚合物微光学器件复型制作的微压印技术。分别探讨了采用接触式压印技术制作光栅和采用非接触式压印技术制作微透镜阵列的方法。结果表明,微压印技术是完成聚合物微光学器件高效率、大批量、低成本制作的良好方法,具有较大的研究价值和广泛的应用领域。
Along with the rapid development of modern optics and optoelectronic technology, photoelectronic equipment and devices have made significant changes. Miniaturization and intellecturalization have been the main building blocks for realizing the change. A new subject, micro-optics, was born. Micro-optical devices have wide application prospects almost in all engineering applications, especially in the area of defense science and technology industry. However, actual production quality lags far behind theoretical design ability. Manufacturing problem becomes a great barrier to its development and applications. Consequently, fabrication technology aiming at micro optical devicess of high efficiency, low cost and volume production has become one of important research domains in the world. As one of precision fluid dispensing techniques, micro-droplet jetting indicates a fabricating process which is used to precisely dispense functional and/or structural materials on a substrate in digitally defined locations. Being a material increase manufacturing (MIM) technology, it belongs to the domains of direct writing technology. It can not only simplify processing steps and improve productivity, but also lower consumption of energy or raw materials. Furthermore, it posess better environmental compatibility. As an additive fabrication technique of data-driven type, it can directly manufacture complicated 3D structures. The progress of the technology meets the needs of environmental protection, material utilization and technical flexibility for the development trend of modern manufacturing process.
     A pneumatic diaphragm-based Drop-on-Demand (DOD) microdroplet jetting technology with independent intellectual property right is presented in this dissertation. Combining the advantages of piezoelectric and pneumatic generators, the pneumatic diaphragm-based DOD generator has the following key features:simple construction, convenient operation and maintenance, large driving power and robust. The self-developed pneumatic diaphragm-based DOD system is set up and used to complete the studies on principle and fabrication technique of microdroplet jetting. And the main contents are summarized as follows:
     Firstly, the mathematical model of jetting process of the pneumatic diaphragm actuator is carried out by unsteady Bernoulli equation and mass conversation equation based on analysis of diaphragm modal, load-deflection characteristics and fluid-diaphragm coupling. The relationships between the input pneumatic pulse and diaphragm deformation, internal pressure of chamber, nozzle and throttle outflow velocity were attained. The model and calculation results may be used as theoretical basis for structure and control parameters optimization of jetting generator.
     Secondly, the pneumatic diaphragm-based DOD microdroplet jetting system is set up, including several units:the generator, solenoid valve driving circurt, pressure control unit, temperature controller, the 3-dimensional working platform and the in situ vision subsystem. The research emphasises on the controllable making method of glass nozzle and the in situ vision system. Delayed external trigger is put to stir up the CCD to capture images. The droplet dimension, flying distance and velolcity can be caculated from these images through digital image processing.
     Thirdly, in order to discuss the mechanism to form microdroplet, the formative process of primary droplet and satellite droplet is simulated using VOF model by Fluent 6.3. The performance of the generator was studied by adjusting the structure and control parameters. Furthermore, the influence of fluid properties on the droplet ejection process was experimentally investigated.
     Next, the post-impact micro droplet deformation processes, from spreading and recoiling, to either oscillation of rebound are described in detail and an analytical expression of the energy state at each discrete stage is presented. Bouncing criterion coming from energy conservation can be used to determine the deformation state after impacting through initial condition of microdroplet. Furthermore, the post-impact processes of different physical properties microdroplets on substrate of different wettability were obtained. The influence of micro droplet characteristics and the interaction of micro droplet and substrate on post-impact process afford key theoretical and experimental proof for jetting technology.
     Finally, micro-lens arrays with 75-400μm in diameter, were produced by UV curing glue. Through testing 9x9 micro-lens array with diameter of 333.28μm, the results indicated that the variation of diameter is about 1.6%, surface roughness is about 0.243nm, the calculated mean focal length is aout 389.07μm, the uniformity error is 1.6%, the measured mean focal length by Porro reticle is 482.04μm, the uniformity error is 1%. The experimental results demonstrate that the jetting technology is a quite potential and very flexible manufacture method for micro-optical devices.
     In addition, a micro hot embossing technoloty suitable for polymer micro-optical devices replication methods are also studied. Micro grating is fabricated by contact-type embossing method, while micro-lens array is fabricated by contactless embossing process. The results indicate that micro hot embossing technology is an excellent manufacture way in batch quantity with high-efficiency and low cost and shows a good application prospect.
引文
[1]H.P.赫尔齐克.微光学元件、系统和应用.北京:国防工业出版社,2002
    [2]杨国光.微光学与系统.杭州:浙江大学出版社.2008
    [3]Manouchehr E. Motamedi微光机电系统.北京:国防工业出版社.2010
    [4]Motamedi M E.Micro-opto-electro-mechanicalsystem. Opt Eng,1994(33):3505-3517
    [5]Philips N J.Micro-optics studies using photopolymers.Proceedings Vol.1544 Miniature and Micro-Optics:Fabrication and System Applications,1990(1544):10-21
    [6]Nogues J R.Fabrication of pure silica micro-optics by sol-gel process.Proc. SPIE, Vol. 1751,1993(214)
    [7]Wencai J, Yimo Zh, Ge Zh.Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network.Optics Express,2002, 10(14):591-596
    [8]Yong Q F, Ngoi K A B. A novel one step integration of edge-emitting laser diode with micro-elliptical lens using focused ion beam direct deposition.IEEE Transactions on Semiconductor Manufacturing,2002(15):2-8
    [9]Dennis W P,Sriram V, Marion L.Optoelectronic multichip module integration for chip level optical interconnects.IEEE Photonics Technology Letters,2001(13):1112-1114
    [10]Rohrbach A,Brenner K H.Surface-relief phase structures generated by light-initiated polymerization. Applied Optics.1995(34):4747-4754
    [11]http://osdlab.eic.nctu.edu.tw/psoc/download/PSOCtalk921205.pdf
    [12]刘德森,微小光学的研究现状,物理,1994,23(6),321-328
    [13]Suleski T J,Oshea D C.Gray-scale masks for diffractive-optics fabrication:Ⅰ.Comm-ercial slide imagers.Applied Optics,1995(34):7507-7517
    [14]Oshea D C,Rockward W S.Gray-scale masks for diffractive-optics fabrication:Ⅱ.Spat-ially filtered halftone screens.Applied Optics.1995(34):7518-7526
    [15]Daschner W,Lee S H,Larsson M.Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step.Applied Optics.1995(34):2534-2539
    [16]Yu W,Yuan X,Ngo N.Single-step fabrication of continous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing.Optical Express,2002(10): 443-442
    [17]许乔,叶钧,包正康等.热熔微透镜阵列的综合性能测试.仪器仪表学报,1996(17):125-128
    [18]许乔,叶钧,周光亚等.折射型微透镜阵列的光刻胶热熔法研究.光学学报,1996(16):1326-1331
    [19]Hon K K B, Li L, Hutchings I M,Direct writing technology-Advances and developm-ents,CIRP Annals-Manufacturing Technology,2008(57):601-620
    [20]Lee E R.Microdrop Generation.CRC, Boca Raton,2002
    [21]Burgold J, Weise F, Fischer M.Evolution and operating experiences with different drop-on-demand systems.Mac-romolecular rapid communications,2005(26):265-280
    [22]高琛,黄孙祥,陈雷等.液滴喷射技术的应用进展.无机材料学报.2004,(19):714-722
    [23]黄华,齐乐华,杨方等.均匀液滴产生技术及其应用.制造技术与机床.2008(19):59-63
    [24]Rayleigh L.On the Instability of Jets.Proc London Math Soc,1878,s1-10(1):4-13
    [25]Sweet R GHigh frequency recording with electrostatically deflected ink jets.Review Scientifc Instruments,1965(36):131-136
    [26]Yim P.The role of surface oxidation in the break-up of laminar liquid metal jets:[Doctoral Disserttation]. Massachusetts Institute of Technology,1996
    [27]Vaught J L, Cloutier F L, Donald D K, Thermal ink jet printer:USA, US4490728 [P/OL].1984
    [28]Zoltan S L.Pulsed droplet ejection system:USA, US3683212.1972
    [29]Dong H M, Carr W W, Morris J F. Visualization of drop-on-demand inkjet:Drop formation and deposition. Review of Scientific Instruments,2006(77):085101-085108
    [30]Dong H, Carr W W, Morris J F. An experimental study of drop-on-demand drop formation. Physics of Fluids,2006(18):072102-072117
    [31]Brunahl J,Grishin A M.Piezoelectric shear mode drop-on-demand inkjet actuator. Sensors and Actuators A:Physical,2002(101):371-382
    [32]Wang D A, Cheng C H, Hsieh Y H.Analysis of an annular PZT actuator for a droplet ejector.Sensors and Actua-tors A:Physical,2007(137):330-337
    [33]Cheng S X, Li T G, Chandra S. Producing molten metal droplets with a pneumatic droplet-on-demand generator. Journal of Materials Processing Technology.2005(159): 295-302
    [34]Cheng S, Chandra S. A pneumatic droplet-on-demand generator. Experiments in Fluids. 2003(34):755-762
    [35]Wallace D, Hayes D J, Chen T. Think Additive:Ink-jet deposition of materials for MEMS Packaging.6th Topical Workshop on Packaging of MEMS and Related Micro-Nano-Bio Integrated Systems,Long Beach,California,2004
    [36]Hayes D J,Grove M E,Cox W R, Development and application by ink-jet printing of advanced packaging materials, Proceedings. International Symposium on Advanced Packaging Materials:Processes, Properties and Interfaces, Braselton, GA, USA,1999
    [37]Lee T M, Kang T G, Yang J S.Drop-on-Demand solder droplet jetting system for fabricating microstructure, IEEE transac-tions on electronics packaging manufacturing,
    2008(31):202-210
    [38]Gans B J, Duineveld P C,Schubert U S, Inkjet printing of polymers:state of the art and future developments, Advanced Ma-terials,2004(16):203-213
    [39]Mott M, Song J H, Evans J R G. Microengineering of ceramics by direct ink-jet Printing. Journal of the American Ceramic Soci-ety,1999(82):1653-1658
    [40]Fan K C, Chen J Y, Wang C H.Development of a drop-on-demand droplet generator for one-drop-fill technology. Sensors and Actuators A:Physical,2008(147):649-655
    [41]Duineveld P C, Kok M M, Buechel M. Ink-jet printing of polymer light-emitting devices. Proceedings of SPIE, the Interna-tional Society for Optical Engineering, San Diego, CA,2002
    [42]Zaugg F G, Wagner P, Drop-on-demand printing of protein biochip arrays,Materials Research Society,2003(28):837-842
    [43]http://www.microfab.com
    [44]Calvert P. Inkjet printing for materials and devices.Chemical Matereials.2001(13): 3299-3305
    [45]Hayes D J,Chen T.Opto-electronic packaging enabled by direct write micro-printing technology, OFC 2005, USA. P.29/48
    [46]David B W,Donald J H.Solder Jet Technology Update.Proceedings,ISHM 97
    [47]Donald J H, Weldon R C, David B W. Printing systems for MEMS packaging. Proc. SPIE of Reliability,Testing,and Characterization of MEMS/MOEMS,2002(4558): 206-214
    [48]Wallace D, Hayes D, Chen T.Ink-jet deposition of materials for MEMS fabrication. Proceedings of the SMTA's Pan Pacific Microelectronics Symposium, Hawaii, F Jannuary 17-19,2006
    [49]Wallace D, Hayes D, Chen T.Ink-jet as a MEMS manufacturing tool.Smta Hawaii 2006
    [50]Sirringhaus H, Kawase T, Friend R H.High-resolution inkjet printing of all-polymer transistor circuits.Science,2000(290):2123-2126
    [51]Fuller S B, Wilhelm E J, Jacobson J W. Ink-jet printed nanoparticle microelectromech-anical systems.Journal of Microelectromechanical Systems,2002(11):54-60
    [52]Ainsley C, Reis N, Derby B. Freeform fabrication by controlled droplet deposition of powder filled melts. Journal of Materials Science.2002(37):3155-3161
    [53]陈金鑫,黄孝文OLED有机电致发光材料与器件.北京:清华大学出版社,2007
    [54]http://www.epson.co.jp.Epson/
    [55]http://www.universaldisplay.com/
    [56]3D printing LAB M.What is 3D printing[M].MIT,2000,http://www.mit.edu/
    [57]Schena M, Heller R A, Theriault T P. Microarrays:biotechnology's discovery platform
    for functional genomics. Trends in Biotechnology.1998(16):301-306
    [58]Li B, Dutta T R,Smith C M.A Robust true direct-print technology for tissue engine-ering. ASME(American Society of Mechanical Engineers) International Conference on Manufacturing Science and Engineering; 2007(10):15-18
    [59]Varniere P,Tagger M.Accretion-Ejection instability:jet and QPOS.Semaine Astrophysi-que Francaise,Paris Frane,2002
    [60]Timoshenko S,Woinowhki K S.Theory of plates and shells,McGraw,New York,1959
    [61]Bardell R L, Sharma N R, Forster F K.Designing high-performance micro-pumps bas-ed on no-moving-parts balve. DSC-Vol.62/HTD-Vol.354, Microelectromechanical Systems(MEMS):47-53
    [62]Lee T M, Kang T G, Yang J S,Drop-on-Demand solder droplet jetting system for fabricating microstructure, IEEE transactions on electronics packaging manufacturing, 2008(31):202-210
    [63]白兰.基于MEMS的无阀泵数值仿真与实验研究:[博士学位论文].长春:长春光学精密机械与物理研究所,2005
    [64]Pan L S,Ng T Y,Liu G R.Analytical solutions for the dynamic analysis of a valveless micro-pump - a fluid-membrane coupling study.Sensors and Actuators A.2001(93): 173-181
    [65]Gregg M D.Design of a drop-on-demand delivery system for molten solder microdrops:[Doctoral Disserttation].Massachusetts Institute of Technology,1997
    [66]Seitz H,Heinz J.Modelling of a microfluidic device with piezoelectric actuators. 2004(14):177-185
    [67]Gerlach T, Wurmus H. Working principle and performance of the dynamic micropump. Sensors & Actuators:A.Physical,1995(50):135-140
    [68]Nedelcu O T, Moagar-Poladian V, Modeling of the piezoelectric micropump for impro-ving the working parameters.Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems:659-662
    [69]Bardell R L, Nigel R S, Fred K F.Designing high-performance micro-pumps based on no-moving-parts valve. DSC-Vol.62/HTD-Vol.354, Microelectromechanical Systems (MEMS):47-53
    [70]舒霞云,气动膜片式金属微滴喷射理论与实验研究:[博士学位论文].武汉:华中科技大学,2009
    [71]肖峻峰,气动膜片式微滴喷射系统研究:[硕士学位论文].武汉:华中科技大学,2009
    [72]Fan K C,Chen J Y,Wang C H.Precision in situ volume measurement of micro droplets, Journal of Optics.A.,2009(11):1-8
    [73]Gonzalez.R.C,Woods.R.E数字图像处理.北京:电子工业出版社,2003
    [74]罗军辉,冯平,哈力旦Matlab 7.0在图像处理中的应用.北京:机械工业出版社,2005
    [75]王爱玲,叶明生,邓秋香Matlab R2007图像处理技术与应用.北京:电子工业出版社,2008
    [76]McCarthy M J,Molloy N A.Review of stability of liquid jets and the influence of nozzle design.The Chemical Engineering Journal,1974(7):1-20
    [77]Langhaar H L, Steady flow in transition length of a straight tube. Journal of Applied Mechanics.1942(9):55-58
    [78]Latzko H, Angew Z.Math.Mech.,1921(1):277
    [79]Bowlus D A,Brighon J A,Basic J. Eng.Trans.ASME,1969(90):431
    [80]Coulson J M,Richardson J F,Chemical Engineering:Pergamon,London,1956
    [81]Rouse H,Howe J W,Metzler D E.Pro.ASCE Hyd.Div.,1951(77):Sep.No.92.
    [82]Yoshizawa Y, Kawashima T, Yanaida K.1965(12)
    [83]Hayes D J, Wallance D B.Overview of small holes.Conference,Non-traditional Machi-ning.MS89184,Orlando,FL,Oct 30-Nov 2,1989,Society of Manufacturing Engineers, 1989
    [84]Wallance D B, Hayes D J, Bush J M. Study of orifice fabrication technologies for the liquid droplet radiator.NAS 3-25275 [R]:Lewis Research Center, NASA,1991
    [85]许兆美,细胞工程用微针的制备工艺研究:[硕士学位论文].南京:南京理工大学,2004
    [86]刘天军,数字化细胞微注射技术及其应用研究:[博士学位论文].南京:南京理工大学,2004
    [87]Manga M,Stone H A.Low Reynolds number motion of bubbles,drops and rigid spheres through fluid-fluid interfaces.Journal of Fluid Mechanics,1995(287):279-298
    [88]Hsiang L P,Faeth G M.Drop deformation and breakup due to shock wave and steady disturbances.International Journal of Multiphase Flow,1995(21):544-560
    [89]Li X f,Pozrikidis C.The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. Journal of Fluid Mechanics,1997(341):165-194
    [90]Sforza P M.Vortex induced breakup of free surfaces in microgravity environments.Acta Astronautica,1997(41):459-469
    [91]Zinchenko A Z,Davis R H.An efficient algorithm for hydrodynamical interaction of many deformable drops.Journal of Computational Physics,2000(157):539-587
    [92]Duan R Q,Koshizuka S,Oka Y.Two-dimensional simulation of drop deformation and breakup at around the critical Weber number.Nuclear Engineering and Desigh, 2003(225):37-48
    [93]张红光,董守平,姜雪梅.剪切或拉伸流场中液滴的变形和破裂准则.科学技术与工程.2006(24):3896-3899
    [94]Fromm J E.Numeriacal calculation of the fluid dynamics of drop-on-demand jets.IBM Journal of Research and Development.1984(28):322-333
    [95]Reis N,Derby B.Ink jet deposition of ceramic suspensions:Modelling and experiments of droplet formation.Symposium on Materials Research Society.2000(4):24-26
    [96]Stone C D,Hadfield M G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface.Proc.R.Soc.London A. 1981(373):419-441
    [97]于仁斌.气泡式喷墨头液滴形成之数值模拟:[硕士学位论文].台湾:国立云林科技大学,2007
    [98]林俊伟.液滴形成的流体特性模拟:[硕士学位论文].台湾:中兴大学,2006
    [99]李燕.液滴撞击固体平壁变形过程的数值模拟:[硕士学位论文].大连:大连理工大学,2009
    [100]宋咏程.液滴掉落现象之数值模拟:[硕士学位论文].台湾:中原大学,2003
    [101]Brackbill J U,Kothe D B,Zemach C.A continuum method for modeling surface tension.Journal of Computational Physics.1992(100):335-354
    [102]李进良,李承曦,胡仁喜.精通FLUENT6.3流场分析.北京:化学工业出版社,2009
    [103]Fluent 6.3 turorial
    [104]Miller C A, Interfacial phenomena-equilibrium and dynamic effects.Surfactant Scien-ce Series.1985(17):20-26
    [105]Dong H M.Drop-on-demand inkjet drop formation and deposition:[Doctoral Disserttation]. Georgia Institute of Technology,2006
    [106]Yarin A L.Drop impact dynamics:splashing, spreading,receding,bouncing.Annual Review of Fluid Mechanics.2006(38):159-192
    [107]陈俊霖.不同体积浓度液滴撞击平板之现象研究:[硕士学位论文].台湾:台湾大学,2004
    [108]Rein M,Phenomena of liquid droplet impact on solid and liquid surface.Fluid Dynamics Research.1993(12):61-93
    [109]Mao T,Kuhn D C S,Tran H. Spread and rebound of liquid droplets upon impact on flat surface. AIChE J.,1997(43):2169-2179
    [110]Hsiao W.Effects of surface properties on solder bump formation by direct droplet deposition:[Doctoral Dissertation].Massachusetts Institute of Technology,2004
    [111]Chandra S,Avedisian C T.On the collision of a droplet with a solid surface. Proc.R.Soc.Lond.A,1991(432):13-41
    [112]Pasandideh F, Qiao M, Chandra Y M.Cappillary effects during droplet impact on a solid surface.Physics of Fluid,1996(8):650-659
    [113]Bussmann M.A three-dimension model of an impacting droplet:[Doctoral Dissertati-on].University of Toronto,2000
    [114]Chandra S, Avedisian C T.On the collision of a droplet with a solid surface. Proceeding of Mathematical and Physical & Engineeing Sciences,1991(432):13-41
    [115]He M, Yuan X C, Ngo N Q.Low-cost and efficient coupling technique using refowed sol-gel microlens.Optics Express,2003(14):1621-1627
    [116]Birkl G, Buchkremer F B J, Dumke R.Atom optics with microfabricated optical elements.Optics communications,2001(191):67-81
    [117]张玉虹,康利军,胡宝文.用按需滴定技术制备聚合物折射微透镜阵列.光子学报.2005(34):1639-1642
    [118]Barghorn C C, Soppera O, Lougnot D J.Fabrication of microlenses by direct photo induced cosslinking polymerization.Applied Surface Science.2000(168):89-91
    [119]Lee C S,Han C H,A novel refractive silicon microlens array using bulk micromaching technology.Sensors and Actuators A:Phsical,2001(88):87-90
    [120]许乔,杨李敬,舒晓武等.微透镜阵列反应离子束刻蚀传递研究.光学学报,1998(18):1523-1527
    [121]Weil M K,Su I L,Jung M C.Real-time observation for the formation of microlens array fabricated using thermal reflow process.Journal of Science and Engineeing, 2004(7):81-86
    [122]Ong N S, Koh Y H, Fu Y Q.Microlens array produced using hot embossing process.Microelectronic Engineering,2002(60):365-379
    [123]刘德森,高应俊,朱传贵等.自聚焦平面微透镜阵列的制作及其基本特性.高技术通讯,1996(4):35-39
    [124]张新宇,裴先登,谢长生.用于进场集成光学头微透镜器件的灰度掩模技术.光学技术,2002(28):291-295
    [125]Yuan X C, Yu W X, Ngo N Q.Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask.Optics Express. 2002(10):303-308
    [126]MacFarlane D L,Narayan V,Tatum J A.Microjet fabrication of microlens arrays. IEEE Photonics Technology Letters,1994(6):1112-1114
    [127]Royall W C,Guan C,Donald J H.Microjet printing of micro-optical interconnects. International Journal of Microcircuits & Electronics Packaging,2000(23):346-351
    [128]Torrest H J,Ayers S,Chen T.Using drop-on-demand technology for manufacturing GRIN Ienses,Proc.2001 Ann.Mig.ASPE,2001,533-536
    [129]Danzerbrink R,Aegerter M A.Deposition of optical microlens arrays by ink-jet processes.Thin Solid Films,2001(392):223-225
    [130]Royall W C,Chen T,Guan C.Micro-jet printing of refractive microlenses,OSA Diffrac-tive Optics and Micro-Optics Topical Meeting.Kailua-Kona,Hawaii,1998
    [131]李建沅.见以微滴定法制作之微透镜阵列.国立清华大学硕士论文.2004
    [132]邓启凌,杜春雷,王长涛.连续表面微透镜列阵元件检测.光子学报.2004(11):1317-1320
    [133]胡凯,蒋向前,刘晓军.微透镜阵列的计量标准化.计量技术.2009(9):13-16
    [134]张玉虹,刘宝元.聚合物微透镜阵列的光学性能测试.中国西部科技.2008(9):14-18
    [135]何平安,林银森.余模智.透镜焦距的CCD图像测量系统.武汉测绘科技大学学报.1999(3):83-85
    [136]朱瑶.光学系统的星点检验方法.红外.2004(9):31-37
    [137]Shen X J,Pan L W, Lin L.Microplastic embossing process experimental and theoretical characterization.Sensor and Actuator.2002(97):428-433
    [138]Kuo C W.Shiu J Y.Cho Y H,Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks.Advanced Materials.2003(15): 1065-1068
    [139]Hirai H,Fujiwara M,Okuno T.Study of the resist deformation in nanoimprint lithography.Journal of Vaccum Science Technology,2001(19):2811-2815
    [140]Slawomir Z,Frese H K.Contactless embossing of microlenses-A parameter study. Optical engineering,2003(42):1451-1455
    [141]Picard A,Ehrfeld W,Lowe H.Refractive microlens arrays made by contactless emboss-ing. Proceeding SPIE,1997(3135):96-105
    [142]Ong N S,Koh Y H,Fu Y Q.Microlens array produced using hot embossing process. Microelectronic Engineering.2002(60):365-379
    [143]范细秋.纳米压印及MEMS仿生功能表面制备的研究:[博士学位论文].武汉:华中科技大学,2006
    [144]陶晟.基于微压印的微光学器件制造技术研究:[硕士学位论文].武汉:华中科技大学,2008
    [145]王文广.塑料材料的选用.北京:化学工业出版社,2001
    [146]徐长庚.热塑性复合材料.四川:四川科技技术出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700