兆赫超声分散系统的设计及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区别于传统超声波分散,本文提出了浴槽式脉冲兆赫超声分散技术,即采用大功率高频兆赫超声换能器,在液体介质中产生高速、强辐射声流能来进行材料分散,同时有效抑制传统超声处理中无法避免的因过度空化而造成的材料损伤。该技术将超声技术、先进制造技术和材料科学结合起来,为材料分散提供新的技术手段。它具有能量可控性好、成本低、安全环保和应用范围广等优点,将在材料分散和制备领域拥有广阔的应用前景。
     本文主要研究内容如下:
     1.从声空化、空化气泡运动学、声流等方面对兆赫超声分散的作用机理进行了探讨。从理论上证明了当超声频率提高至600kHz以上时,声场内的空化阈值提高、可闭合空化气泡数减小,从而有效抑制了空化损伤。同时,初步探讨了兆赫超声分散系统的能量转化过程,分析了兆赫声场中的高速、强辐射声流能以及高频振荡作为材料分散主要动力的理论条件和作用机理。
     2.设计制作了单阵元换能器,总结了设计、制作换能器的工艺流程。设计制作了兆赫逆变电源,利用电力分析仪监测了兆赫逆变电源的输入、输出波形。
     3.应用兆赫超声分散技术进行了纳米材料分散试验。利用该方法对PZT纳米颗粒进行了分散试验。利用扫描电镜、透射电镜、X射线衍射仪等仪器对分散效果进行了检测和表征,结果表明该技术分散效率高、效果好。
     4.试验了兆赫超声分散技术用于油包水/水包油乳液制备的效果,制备了反向胶束微反应器和无乳化剂乳浊液。利用工具测量显微镜对所制备乳液的分散性进行了分析,结果显示经兆赫超声精细化分散后的乳液分散性最佳。
Distinguishing from dispersion in traditional ultrasonic wave, this thesis proposes, for the first time, a pulsed megasonic dispersion technology in a bath trough type. Namely by using high frequency megasonic transducer with high efficiency, high speed sonic flow and strong sound pressure, which responsible for the material dispersion, are produced in liquid medium. Simultaneously, it is effective to suppress material damage which the tradition ultrasonic dispersion is unable to avoid because of the excessive cavitation inherited. This technology unifies supersonic technology, the advanced technique of manufacture and materials science, providing a new technical method for material dispersion. In the mean time, it features good energy controllability, cost efficiency and environmental friendliness. The megasonic dispersion technology has broad prospect of applications in the fields of material dispersion and preparation. Main contents in this thesis are as follows:
     1. Discussion about the megasonic dispersion mechanism on the basis of sound cavitation, cavitational air bubble kinematics and sonic flow. Theoretically prove that when the ultrasonic frequency exceeds 600 kHz, the cavitation threshold values up, while the number of cavitational air bubble reduces, thus the cavitation damage to the materials would be suppressed effectively. At the same time, this thesis initially discusses the process of energy conversion in this megasonic dispersion system, and analyzes the theoretical conditions required for the high speed sonic flow effect and the higher mode of sonic oscillation to be the main power in the megasonic sound field and the material dispersion process.
     2. Summary of design of the single element transducer and the process of manufacture. A mega Hertz inverter is designed and manufactured as power source. Debugging details of the input and output waveform of mega Hertz inverter recorded by an electric power analyzer.
     3. The application of megasonic dispersion method to nano particles dispersion, specifically PZT nano particles. The effects are characterized by Scanning Electron Microscopy, X-Ray Diffraction and Transmission Electron Microscopy. The results indicate a high efficiency and harmless effects.
     4. Preparations of O/W, W/O emulsion and ultra-large reverse micellar micro reactor are reported, as well as the initial study of non-emulsifier emulsion by the megasonic dispersion technology. The emulsion dispersivity is characterized by Measuring Microscope, which demonstrates that a combined refinement treatment by magasonic dispersion has the best dispersive effects.
引文
[1]郭林伟,林书玉.功率超声的主要应用及研究进展[J].陕西师范大学继续教育学院报. 2007, 24(03): 106~108.
    [2]张永发,马凯,胡长华.超声波在原油中的吸收衰减[J].北京理工大学学报. 2005, 25(06): 517~521.
    [3] Hamaker, H. C. London-der. Waals attraction between sphericles[J]. Physica. 1997, 12(4): 26-28.
    [4]任俊,卢寿慈,沈健.超微颗粒的静电抗团聚分散[J].科学通报. 2000(11): 2289-2292.
    [5]鲍重光.静电技术原理[M].北京:北京理工大学出版社, 1993: 116-120.
    [6]吉林大学.物理化学基本原理[M].北京:人民教育出版社, 1975: 133-137.
    [7]刘粤惠,王迎军,吴东晓.超细粉透射电镜试样分散新方法[J].中国陶瓷. 1997(5): 16-17.
    [8]刘超,于如军,徐世明, et al.液-液体系中均匀液滴分散装置的研制[J].山东理工大学学报(自然科学版). 2008, 22(5): 36-39.
    [9]洪波,王保国.膜乳化法制备微小粒径单分散乳液[J].清华大学学报(自然科学版). 2006, 46(3): 389-395.
    [10] R. B. Bhagat. Cavitation erosion of composites-a materials perspective[J]. Journal of Materials Science Letters. 1987, 6(12): 1473-1475.
    [11] P. Diodati, G. Giannini, F. Sacchetti. Complex particles produced from graphite powder by acoustic cavitation in water[J]. Ultrasonics Sonochemistry. 2002, 9(4): 215-217.
    [12] B. E. Noltingk, E. A. Neppiras. Cavitation produced by Ultrasonics[J]. Proceedings of Physical Society. 1950, 63: 674-685.
    [13] A. Mayer, S. Shwartzman. Megasonic cleaning a new cleaning and drying system for use in semiconductor processing[J]. Journal of Electronic Materials. 1979, 8(6): 855-864.
    [14] H. Chen, X. J. Li, M. X. Wan. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field[J]. Ultrasonics Sonochemistry. 2006, 13(6): 480-486.
    [15]张林夫,夏维洪.空化与空蚀[M].南京:河海大学出版社, 1989: 24-27.
    [16] R. T. Knapp, J. W. Daily, F. G. Hammitt.空化与空蚀[M].北京:水利出版社, 1981: 40-44.
    [17]丘泰球,曾荣华,张晓燕.双频超声强化提取的机理[J].华南理工大学学报. 2006, 34(8): 90-93.
    [18]钱梦騄,程茜.单泡声致发光——气泡的动力学特性[J].声学技术. 2003, 22(03): 203-208.
    [19]李子丰.空化射流形成的判据和冲蚀机理[J].工程力学. 2007, 24(3): 185-188.
    [20]冯若,赵逸云,陈兆华, et al.声化学主动力──声空化及其检测技术[J].声学技术. 1994, 13(02): 56-61.
    [21] S. J. Doktycz, K. S. Suslick. Interparticle collisions driven by ultrasound[J]. science. 1990, 247(4946): 1067-1069.
    [22]汪家道,陈皓生,秦力, et al.水力机械空蚀中微颗粒的关键作用[J].科学通报. 2007, 52(22): 2683-2686.
    [23]李伟,梁川.水利水电工程抗空蚀材料研究新进展[J].四川水力发电. 2000, 19(2): 78-81.
    [24]应崇福.关于液体内大规模声处理中空化研究的几点思考——再论声空化工程[J].应用声学. 2008, 27(05): 333-337.
    [25] T. J. Mason, J. P. Lorimer. Sonochemistry:Theory, Applications and Uses of Ultrosound in Chemistry[M]. Ellis Horwood, Chester, 1988: 580-615.
    [26]马大猷,沈儫.声学手册[M].北京:科学出版社, 2004: 512-515.
    [27] J. Sponer. Dependence of the Cavitation Threshold on the Ultrasonic Frequency[J]. Czech. J. Phys. 1990, 40: 1123-1132.
    [28] W. C. Moss, D. B. Clarke, J. W. White, D. A. Young. Sonoluminescence and the prospects for table-top microthermonuclear fusion[J]. Physics Letter. 1996, 211: 69-74.
    [29] C. C. Wu, P. H. Roberts. Shock-wave propagation in a sonoluminescing gas bubble[J]. Physics Review Letter. 1993, 70(22): 3424-3427.
    [30] R. Pecha, B. Gompf. Microimplosions:Cavitation collapse and shock wave emission on a nanosecond time scale[J]. Physics Review Letter. 2000, 84(6): 1328-1330.
    [31] W. C. Moss, D. B. Clarke, J. W. White, D. A. Young. Hydrodynamic sumilations of bubble collapse and picosecond sonoluminescence[J]. Physics Fluids. 1994, 6(9): 2979-2981.
    [32]应崇福.超声学[M].北京:科学出版社, 1990: 511-515.
    [33] O. V. Rudenko, S. I. Soluyan. Theoretical Foundations of Nonlinear Acoustics[M]. New York: Plenum, 1977: 274-279.
    [34] S. Tjotta, J. N. Tjotta. Acoustic Streaming in Ultrasound Beams[C]. Bergen: Would Scientific, 1993.
    [35]李太宝.计算声学声场的方程和计算方法[M].北京:科学出版社, 2005: 250-279.
    [36] J. Lighthill. Acoustic streaming[J]. Journal of Sound Vibration. 1978, 61: 391-418.
    [37]王萍辉,方湄.超声空化清洗机理的研究[J].水利水电科技进展. 2004, 24(1): 32-35.
    [38] C. Sauter, M. A. Emin, H. P. Schuchmann, S. Tavman. Infuence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles[J].Ultrasonics Sonochemistry. 2008, 15(4): 517-523.
    [39]汪炜,刘正埙.液体压力激波发生器试验研究[J].中国机械工程. 2003, 14(18): 1542-1544.
    [40]林广义,汪炜,刘正埙.多阵元液体压力激波发性器设计与声场数值模拟[J].南京航空航天大学学报. 2005, 35(2): 78-83.
    [41]林广义,汪炜,刘正埙, et al.透镜式聚焦压电换能器超声功率测试分析[J].东南大学学报(自然科学版). 2006, 36(1): 79-84.
    [42]汪炜,刘正埙.液体压力激波发生器试验研究[J].中国机械工程. 2003, 14(18): 1542-1544.
    [43]袁易全.超声换能器[M].南京:南京大学出版社, 1992: 1-19.
    [44] A. Abdullah, M. Shahini, A. Pak. An approach to design a high power piezoelectric ultrasonic transducer[J]. Journal of Electroceramics. 2009, 22(4): 369-382.
    [45]周志敏,周纪海,纪爱华.逆变电源实用技术[M].北京:中国电力出版社, 2005: 1.
    [46]曲学基,曲敬铠,于明扬.逆变技术基础与应用[M].北京:电子工业出版社, 2007: 1-15.
    [47] Y. C. Chen, S. Wu, P. C. Chen. The impedance-matching design and simulation on high power electro-acoustical transducer[J]. Sensors and actuators. 2004, 115: 38-45.
    [48]林广义.压电陶瓷液体压力激波发生器系统关键技术基础研究[D].南京:南京航空航天大学, 2006.
    [49] T. Suzuki, H. Ikeda, H. Yoshida, S. Shinohara. Megasonic Transducer Drive Utilizing MOSFET DC-to-RF Inverter with Output Power of 600 W at 1 MHz[J]. IEEE Transactions on Industrial Electronics. 1999, 46(6): 1159-1173.
    [50]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001: 52-75.
    [51]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社, 2001: 1-13.
    [52]徐滨士.纳米表面工程[M].北京:化学工业出版社, 2003: 1-20.
    [53] F. Lange. Power processing science and technology for increased reliability[J]. Journal of American Ceramic Society. 1989, 72(1): 3-7.
    [54]罗守靖,程远胜,杜之明.陶瓷基复合材料伪半固态触变成型[J].中国有色金属学报. 2004, 14(8): 1286-1291.
    [55]李国栋.纳米粉体表面结构与分散机理研究[J].襄樊学院学. 2002, 23(5): 50-53.
    [56]李国栋,熊翔,黄伯云.纳米粉体大气环境团聚机理及无团聚纳米粉体制造方法[J].中南大学学报. 2004, 35(4): 537-541.
    [57]冯若.超声手册[M].南京:南京大学出版社, 2001: 110-140.
    [58]白春礼.纳米科技及其发展前景[J].科学通报. 2001, 46(2): 1335-1339.
    [59]邓元,南策文,杨青林, et al. PZT纳米材料低温合成及性能研究[J].功能材料. 2004, 35:2713-2716.
    [60]冯艳,许晓慧,杨景超, et al. PZT厚膜的气雾化湿法减薄制备技术[J].纳米技术与精密工程. 2008, 6(1): 59-63.
    [61]曹建明.碳纳米管在水中的分散性[J].广州化学. 2005, 30(3): 12-16.
    [62]崔爱莉,王亭杰,何红, et al.超细二氧化钛粉末在水溶液中的分散[J].过程工程学报. 2001, 1(1): 99-101.
    [63]刘建平,刘莉,何平笙.微反应器和微聚合反应[J].化学通报. 2002(11): 758-761.
    [64]王萍.油包水型难燃工作液的研究[J].煤矿开采. 1999(04): 56-59.
    [65] Tadao Nakashima, Masataka Shimizu, Masato Kukizaki. Particle control of emulsion by membrane emulsification and its applications[J]. Advanced Drug Delivery Reviews. 2000, 45: 47-56.
    [66] Isao Kobayashi, Mitsutoshi Nakajima, Hiroshi Nabetani, Yuji Kikuchi, Atsushi Shohno, Kazumi Satoh. Preparation of micron-scale monodisperse oil-in-water microspheres by microchannel emulsification[J]. Journal of the American Oil Chemists' Society. 2001, 78(8): 797-802.
    [67] Toshio Sakai. Surfactant-free emulsions[J]. Current Opinion in Colloid &Interface Science. 2008(13): 228-235.
    [68]刘艳新,赵传山,韩玲.影响石蜡乳化的因素[J].造纸科学与技术. 2004(04): 30-36.
    [69]王宝峰,张裕丁,孙德军.乳化石蜡的研制及应用[J].山东化工. 2004(02): 14-17.
    [70]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社, 2003: 1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700