多孔软管水力特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔管分为沿程多孔管和断面多孔管两种,其中沿程多孔管被广泛用于在化工、电力、通风、农业等多个领域。本文所研究的多孔软管仅是沿程多孔管,用于对水流实行均匀分流,其应用价值最终体现在其分流均匀度的高低。通过理论分析发现,如果多孔软管要实现均匀分流,其沿程压力就必须均匀分布,沿程压力分布的均匀度越高多孔软管出流均匀度也就越高。因此,对于多孔软管,研究重点就落在如何使其能够在工程应用中实现沿程压力的均匀分布。
     以多孔软管沿程压力分布规律为出发点,将影响多孔软管压力分布规律的几个主要因素(多孔软管的长度、软管管径、孔间距、入口水头和铺设坡度)作为研究重点。对多孔软管的压强分布规律,流量分布规律和出流均匀度变化规律进行了实验研究,并着重对多孔软管沿程压力分布规律进行了理论研究。得出了以下主要研究成果:
     (1)分析了多孔软管沿程压力分布规律,根据动量守恒和质量守恒建立了多孔软管变质量动量方程,给出了多孔软管沿程任意一点处的压强计算公式,用微元法建立了多孔软管沿程水头损失计算公式。
     (2)得出了多孔软管受软管长度、管径、孔间距、入口水头和铺设坡度影响时,单孔出流量、平均单孔出流量和沿程总出流量的变化规律。随入口水头、坡度增加,沿程单孔流量逐渐加大,沿程单孔流量大小与开孔比成负相关。多孔软管平均单孔出流量随入口水头、铺设坡度、孔距的增加而增加,增加的幅度随着孔距、管长的增加而减小。
     (3)得出了多孔软管出流均匀度随多孔软管的长度、孔间距、入口水头和铺设坡度变化的规律,提出了提高多孔软管出流均匀度的措施。随入口水头、孔距增加,出流均匀度增加;当铺设坡度大于多孔软管沿程水头损失变化率时,出流均匀度出现下降,反之增加;管长增加,出流均匀度降低。
The porous hose has a wide range of applications; it has been used in many varied areas. The perforated flexible conduit, which has been studied in this thesis, is a kind of the porous hose; evenly distribution is its familiar role. For a perforated flexible conduit, the degree of its good and bad often judge by the level of evenly distribution. After theoretical analysis, we find that if we want to have a perforated flexible conduit which has much better level of evenly distribution, we must make it has better level of evenly distribution of pressure. So how to make the perforated flexible conduit has better level of evenly distribution of pressure has been the main aim of the study in this thesis.
     This thesis takes pressure distribution rule of the perforated flexible conduit as a starting point, and focus on studying the length of the hose, the imported pressure head, the diameter of hose, drop-distance and laying of pipelines slope which are primary factors affecting the evenly distribution of pressure. At the same time, experimental study of the pressure distribution rule, the current capacity distribution rule and flowed the uniformity change rule are made, and emphatically focusing on the theoretical study of the pressure distribution rule. Final, we come to some conclusions:
     After the theoretical study to pressure distribution rule of the porous hose, according to the law of momentum, in condition of the laying only one slope along the porous hose, the variable mass of momentum equation had been established. The pressure formula of random point of the perforated flexible conduit has been given. The formula of the head losses along the porous hose are demonstrated through the infinitesimal method.
     The regularity for change of single-hole flow, single-hole flow average have been obtained, when the porous hose is influenced by the hose length, the calibre, the pitch of holes, the hose pressure head and the laying slope. When the hose pressure head or the laying slope enhance, the single-hole flow will increase. There is a negative correlation between the single-hole flow and the open ratio. With the increasing of the hose pressure head, the laying slope or the pitch of holes, the single-hole flow average of the porous hose will increase, the incremental amount will reduce besides these.
     The regularity for change of the flow uniformity of the porous hose have been obtained, when the porous hose is influenced by the hose length, the pitch of holes, the hose pressure head and the laying slope. At the same time, the method how to improve the flow uniformity of the porous hose has been brought forward. With the increasing of the hose pressure head or the pitch of holes, the flow uniformity of the porous hose will increase. But when the laying slope is greater than change rate of the head losses along the porous hose, the flow uniformity of the porous hose will reduce. Otherwise the flow uniformity of the porous hose will increase. With the increasing of the hose length, the flow uniformity of the porous hose will reduce.
引文
[1]Brown L R,Halweil B.China’s water shortage could shake world food security[J].World Watch,1998,(114):10-21.
    [2]Seckler D,Barker R,Amarasinghe U.Water scarcity in the twenty-first century[J].Water Resources Development,1999,15(1-2):29-42.
    [3]吴普特,冯浩.中国节水农业发展战略初探[J].农业工程学报,2005,21(6):152-157.
    [4]康绍忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,2004,20(1):1-6.
    [5]康绍忠,胡笑涛,蔡焕杰,冯绍元.现代农业与生态节水的理论创新及研究重点[J].水利学报,2004(12):1-7.
    [6]水利部科技司.节水农业技术发展综述[J].节水灌溉,1997(2):31-34.
    [7]刘昌明,何希吾等.中国21世纪水问题方略[M].科学出版社,1998.
    [8]山仑,黄占斌等.节水农业[M].北京:清华大学出版社,2000,5.
    [9]刘昌明等.我国21世纪上半叶水资源供给分析[J].中国水利,2000(2):34-35.
    [10]康绍忠,蔡焕杰等主编.农业水管理学[M].北京:中国农业出版社,1996.
    [11]张志新.新疆微灌发展现状、问题和对策[J].节水灌溉,2000(3):8-10.
    [12]董谊仁,过健.填料塔排管式液体分布器的研究和设计[J].化学工程,1990,6.8(18):28-34.
    [13]缪正清.多孔分配管与汇集管内单相流体的流动特性[J].上海交通大学学报,1999,33(3).
    [14]王峻晔,章明川,吴东棣.流体在多孔管分支系统中的流动机理研究[J].水动力学研究与进展, 1999, A.1(14).
    [15]Acrivos A,Bacoch B D,Pigford R L,Flow distributions in manifolds[J].Chemical Engineering Science,1959(10):112-124.
    [16]罗永浩,杨世杰,王孟浩.T型进口三通对分配集流箱流量分配的影响[J].动力工程,1998, 18(3).
    [17]杨世铭,罗永浩.并联管组流动特性的研究[J].水动力学研究与进展,1998,13(2).
    [18]郑耀泉.小管出流灌水技术的研究[J].喷灌技术,1994(1).
    [19]王昂,王黎,张士博等.变孔径直管液体分布器的研究与设计[J].化学工程,1993,21(3).
    [20]陈水悌,张祥中,谢善斌.变孔径多孔集水管的水力设计[J].福州大学学报(自然科学版), 2003,3l(2).
    [21]罗金耀.节水灌溉理论与技术[M].武汉大学出版社,2003.
    [22]王峻晔.分支流理论研究进展[J].力学进展,1998,28(3).
    [23]黄守琳.多孔式微喷带在低压管灌中的应用[J].海河水利,2000,9.
    [24]彭世彰,丁加丽.国内外节水灌溉技术比较与认识[J].水利水电科技进展,2004,24(4).
    [25]白丹.多孔管允许最大长度的计算[J].农业机械学报,1994,25(4).
    [26]陈水悌,张祥中,史华.变孔径配水多孔管的设计[J].给水排水,2002,5.
    [27]黄兴国,刘焕芳,华根福.自流多孔软管平均单孔出流量的特性[J].石河子大学学报(自然科学版),2008,26(1):76-79.
    [28]Haerter A A. Flow distribution and pressure change along slotted or branched ducts[J].J. of ASHRAE,1965,5(1):47-59.
    [29]黄凤良,任立义.流量分配管浅析[J].化工装备技术,1997,18(3):16-19.
    [30]Shen P I. The Effect of Friction on Flow Distribution in Dividing and Combining Flow Manifolds[J].ASMEJ.of Fluids Engineering,March 1992,114:121-123.
    [31]Haerter A A. Flow Distribution and Pressure Change along Slotted of Branched Ducts[J].J.of ASHRAE,Jan. 1963,5(1):47-59.
    [32]赵镇南.集管系统压力与流量分布的研究-(Ⅰ)U型布置时的分析解[J].太阳能学报,1999,20(4):377-384.
    [33]赵镇南.集管系统压力与流量分布的研究-(Ⅱ)U型布置时的分析解[J].太阳能学报,2001, 21(3):363-366.
    [34]白丹.沿程均匀泄流管水头损失的简化计算[J].西安理工大学学报,1998,14(2):149-151.
    [35]白丹,魏小抗.多孔突径管沿程水头损失计算[J].地下水,1995,17(3):109-110.
    [36]白丹.多孔管沿程压力分析[J].农业机械学报,1992,23(3):49-55.
    [37]刘福国,魏恩宗,杨祥良等.均匀分流、变节距多孔分配管的设计[J].中国电机工程学报, 2002,22(9):150-154.
    [38]伍钦,蔡美琳,曾朝霞等.等直径流量分配管的计算[J].华南理工大学学报(自然科学版), 2000,28(7):94-98.
    [39]王昂,刘衍烈,倪炳华,李永祥等.多孔管流体流动行为研究[J].化学工程,1992,20(3):52-57.
    [40]戴干策、陈敏恒.化工流体力学[M].北京,化工出版社,1988.
    [41]Pair, C.H.etal., Sprinkler irrigation. Sprinkler Irrigation Association, Silver Spring, Maryland, U.S.A., 1975.
    [42]瞿树东.灌溉支管的修正多口系数[J].喷灌技术,1981(2):49-51
    [43]Jensen M C,Fratini A M. Adjusted“F”factors sprinkler latera design[J].Agricultural Engineering,1957,33(4):247-248.
    [44]张国祥.多孔系数的一个近似公式[J].排灌机械,1983(2):33-35.
    [45]张国祥.等距、等量多孔管的摩损比计算[J].喷灌技术,1983(4):20-23.
    [46]王金如.多孔口管道水力计算中多口系数和摩损比的计算方法[J].喷灌技术,1991(4):20-23.
    [47]吴持恭编著.水力学[M].北京,人民教育出版社,1991.
    [48]吕宏兴,裴国霞,杨玲霞等.水力学[M].北京,中国农业出版社,2002.
    [49]郑耀泉,陈渠昌.微灌均匀度参数之间的关系及其应用[J].灌溉排水,1994,12(2):7-10.
    [50]王金如.均匀坡下微灌毛管水力设计的平均水头法[J].喷灌技术,1992(3):26-32.
    [51]苏德荣.微灌系统压力变化对出流均匀度影响的概率分析[J].水利学报,1991,12:31-35.
    [52]张国祥,吴普特.滴灌系统滴头设计水头的取值依据[J].农业工程学报,2005,21(9):20-22.
    [53]王留运.微灌灌水器制造偏差系数的计算方法与研究[J].喷灌技术,1993, 2:6-11.
    [54]张国祥,杜茂林.微灌水力设计方法的商榷与建议:微灌水力设计计算方法探讨之二[J].喷灌技术,1990(3):27-31.
    [55]王金如.均匀坡下微灌支管系统允许压力偏差分配比例的数值解法[J].灌技术1995(2):26-30.
    [56]谭明,陈天胜,马卫兵等.滴灌系统设计灌水均匀度问题的分析[J].节水灌溉,2003,5:18-23.
    [57]张志彭,郑耀泉,田春元.灌水器的工作水头对微灌系统灌水均匀度影响的研究[J].内蒙古水利,1996,1:28-34.
    [58]喻黎明,吴普特,牛文全.喷头组合间距、工作压力和布置形式对喷灌均匀系数的影响[J].水土保持研究,2002,9(1):154-157.
    [59]常凤生,张顶山.关于滴灌均匀度问题的探讨[J].东北水利水电,2003,12:38-39.
    [60]牛文全,吴普特,范兴科.微灌系统综合流量偏差率与灌溉均匀度模拟计算[J].灌溉排水学报,2005,24(1):69-71
    [61]朱德兰,吴普特,王建等.田面微地形对滴灌灌水均匀性的影响[J].中国农学通报,2005,21(6):420-423
    [62]王建众,牛文全,吴普特等.滴灌毛管灌水均匀度试验研究[J].人民黄河,2008,30(3):56-57,68.
    [63]M. Teeluck, B.G.Sutton. Discharge characteristics of a porous pipe micro-irrigation lateral[J].Agricultural Water Management,1998,38:123-134.
    [64]Antonina Capra,Baldassare Scicolone,Water Quality and Distribution Uniformity in Drip/Trickle Irrigation Systems[J].J.agric. Engng Res.1998,(70):355-365
    [65]V. Ravikumar,C.R.Rangathan,S.Santhana Bosu. Analytical equation for variation of discharge in drip irrigation laterals[J].Journal of Irrigation and Drainage Engineeri, 2003,129(4):295-298.
    [66]张鸿雁,王昊利,王元.基于MATLAB的滴灌毛管计算机分析[J].西安建筑科技大学学报,2004(3).
    [67]秦为耀,丁必然,曾建军等.节水灌溉技术[M].北京:水利电力出版社,2000.
    [68]I-pai Wu,Harris M. Gitlin,Hydraulics and Uniformity for Drip Irrigation[J].Journal of the Irrigation and Drainage Division,1973,99(2):157-168.
    [69]蔡小超,刘焕芳,李强等.微灌自压软管毛管灌水均匀度的试验研究[J].节水灌溉,2005(5): 8-10.
    [70]蔡小超.自压软管微灌田间管网水力性能及优化设计研究[D].新疆:石河子大学水利建筑工程学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700