三峡库区澎溪河(小江)富营养化及水动力水质耦合模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库次级河流回水区富营养化问题是当前三峡库区最为严重的生态环境问题之一。三峡大坝建成蓄水后,长江干流总体营养盐浓度变化并不显著,水质总体保持稳定。但由于水滞留时间的延长,长江支流水体富营养化有加重趋势,因水体富营养化出现了较大规模的水华现象。而水动力条件的改变是导致水体富营养化,加剧水华发生的最主要原因。因此,考虑水动力条件对水质污染和水体富营养化的影响及水华控制具有重要意义。
     在分析澎溪河流域气象、水文及污染特征和三峡蓄水后澎溪河水动力条件、水质等水环境因素的变化的基础上,构建SWAT与MIKE21耦合模型,研究调节坝的生态调度控制水体富营养化的可行性并提出优化调度方案。研究成果可为三峡水库支流回水区的富营养化控制提供理论依据和实践参考。论文主要研究内容如下:
     ①澎溪河流域气象水文特征及回水区河道形态特征。
     澎溪河地区具备发生水体富营养化的光热条件,春夏之交是富营养化多发季节。澎溪河流域年际和年内的降水量、径流量分配不均匀。三峡水库蓄水后,澎溪河断面面积为1082-75126m~2,水面宽度为57.60-2026.31m。河道断面面积和水面宽度沿程变化大,河道形态复杂。
     ②澎溪河水质及富营养化现状。
     在收集野外监测数据的基础上分析环境条件和各污染物指标的相互关系,根据回水区的径流量、降水量,结合水温、气温、溶解氧(DO)、氮(N)、磷(P)、叶绿素a(Chla),化学耗氧量(COD)、生化需氧量(BOD_5)等指标的浓度值,分析了水污染与水文条件的关系。研究结果表明:季节性温度、降水量等因素是影响澎溪河水环境的首要原因,其次是三峡水库蓄水的影响,蓄水后水位的变化使回水区水环境因子发生变化:DO升高并趋于均匀分布,总氮(TN)峰值浓度略有下降,总磷(TP)峰值浓度略有增加,N/P值有减小的趋势。蓄水后的水文条件易导致水体富营养化的发生。从年内分析来看,高浓度的TN、TP容易出现在降水量大、流量大的丰水期;流量大于150m~3/s或日平均降水量大于30mm的水文条件下容易测得高的TN、TP浓度值,但Chla含量较低;高含量的Chla容易出现在3-5月份澎溪河流量在35-45m~3/s之间,且前期降水量不超过15mm的情况下。
     ③三峡蓄水对污染物降解系数及水环境容量的影响。
     受天然因素和人工蓄水的影响,澎溪河水域污染物滞留时间及降解率的变化呈现出动态特征,回水区污染物降解系数为蓄水前1/20-1/10,直接影响着水环境容量的变化。采用一二维水动力模型相结合,对澎溪河7个功能区进行计算表明:蓄水后,COD_(Mn)水环境容量减少约15.6%,氨氮(NH_3-N)水环境容量减少量约12.2%,TP水环境容量减少约28.3%。
     ④采用MIKE21水动力模型,研究三峡蓄水对澎溪河回水区水动力特征影响。
     三峡蓄水后,水位上升,澎溪河回水区段河道断面增宽,过水面积增加。在相同流量条件下,断面流速比天然状态下减小,流速与蓄水位成反比。蓄水前澎溪河各个断面的最小流速为0.01-0.19m/s,蓄水后最小流速为0.001-0.005m/s。蓄水后,渠马、高阳、黄石、双江大桥、河口五个断面的平均流速为蓄水前的1/2-1/100。依据本文对澎溪河水动力和水质特征的分析提出了水体类型划分:湖泊型流速<0.016m/s,过渡型流速为0.016-0.050m/s,河道型流速为>0.050m/s。水动力学条件的改变导致水质评价适用标准的改变,从而水质评价结果由蓄水前的Ⅱ-Ⅲ类达标水体变为超过Ⅱ-Ⅲ类水质的不达标水体。
     ⑤采用SWAT分布式水文模型对澎溪河流域非点源污染负荷的研究。
     采用SWAT模型,根据流域的数字高程、土壤分类、植被分类、气象水文、水质等自然特征和行政区划、人口分布等社会经济状况的相关数据和资料,建立模型数据库。划分为25个计算子流域,225个水文相应单元(HRUs),模拟计算流域非点源污染负荷。在7-9月氮、磷负荷最大,丰水期氮平均为928.67吨/月,磷平均为173.47吨/月;在12月至次年1月氮、磷负荷最小,枯水期氮平均为61.91吨/月,磷平均为11.56吨/月。
     ⑥构建SWAT模型与MIKE21耦合模型,预测水质及水体富营养化。
     根据三峡水库的调蓄过程,在175m高水位、小流量、低污染负荷和145m低水位、大流量、高污染负荷的两种设计条件下模拟澎溪河水体断面平均COD_(Mn)、TN、TP浓度和Chla含量,澎溪河回水段从上游到下游的COD_(Mn)、TN、TP浓度有增加的趋势,在接近河口处有趋同于长江水污染物浓度的趋势。145m低水位的大流量、高污染负荷设计条件下Chla含量较高,在弯道下游和河道水面开阔的高阳、双江大桥断面的流速减缓区段,出现Chla含量峰值。
     拟合澎溪河水体流速及Chla含量相关关系,分别在枯丰两种设计条件下建立水体流速(V)与Chla(S)含量的相关关系式,分别为S=0.1860·V~(1.6820)(相关系数r~2=0.8380)和S=10.8449·V~(-0.2939)(相关系数r~2=0.8380)。模拟结果表明:加大水体流速有利于抑制Chla含量。通过改变水动力条件控制富营养化具有可行性。
     ⑦依托已建的澎溪河生态调节坝,提出了澎溪河水华控制生态调度方案。
     根据河流流速与Chla含量的相关性,根据澎溪河水动力学特征和水利工程的控制约束条件,建立了生态调度模型,模拟计算并提出了3-6月控制水华发生机率的调节坝最优化调度运行方案,使生态调节坝下游回水区的断面平均Chla含量控制在20ug/L以下从而达到控制水华的目的。
The eutrophication of the secondary river in the Three Gorges reservoir is one ofthe most severe ecological environmental problems currently in china. After theimpoundment of the Three Gorges reservoir, the nutrient concentrations did not changesignificantly in the Yangtze River and the water quality remained stable in general.However due to water retention time extension, the eutrophication in the secondaryriver shows increased trend, the phenomenon of algae bloom has occurred many times.The change of hydrodynamic condition was the main reason of the water eutrophicationand algae bloom, therefore, it is significant to study the influence of the hydrodynamiccondition on water pollution concentrations and eutrophication in order to control algaebloom.
     In this paper I analyzed the meteorological condition, water hydrological conditionand pollution load in the Pengxi catchment, the change of water environmental factorssuch as hydrodynamic condition and the water quality in the Pengxi River. Based onthis data, I built the SWAT and MIKE21coupled models to study the feasibility of damregulation to control eutrophication, and to put forward proposal of optimizationoperation schemes. My research provided scientific basis for the water environment andeutrophication control in the backwater area of the Three Gorges reservoir tributary.This research is summarized in the following aspects:
     ①The characteristics of meteorology, hydrology in the Pengxi catchment andbackwater morphology.
     In the Pengxi catchment the photothermal conditions meet the need of the watereutrophication which occurs frequently at the end of spring and the beginning of thesummer. The rainfall and runoff distribution are uneven. The Pengxi River morphologyis complicated, the cross section areas are from1082m~2to75126m~2and water surfacewidths vary along the river are from57.60to2026.31m after the impoundment.
     ②The current situation of water quality and eutrophication in the Pengxi River.
     I studied relations between environmental conditions and hydrodynamic conditionsbased on environmental monitoring data. In addition, I analyzed the relations betweenthe water pollution and hydrological factors based on the rainfall, runoff and the valuesof temperature, dissolved oxygen (DO), nitrogen (N), phosphorus (P), chlorophyll-a(Chla), chemical oxygen consumption(COD), five-day biochemical oxygen demand (BOD_5), etc. The results showed that the season factors such as temperature and rainfallwere the main influential factors of the water environment. The other factors are fromthe impoundment of the Three Gorges, and the change in water level due toimpoundment ultimately leads to the water environment change. The DO concentrationrose and tended to be even, the peak concentration of total nitrogen(TN) decreasedslightly and the peak concentration of total phosphorus (TP) increased slightly, and N/Pvalue had the tendency to decrease. After the impoundment the hydrological conditionswere helpful to form water eutrophication. The analysis of a year period showed that thehigh concentrations of TN and TP were easy to develop in the high precipitation andhigh discharge period. The high concentrations of TN and TP occurred under theconditions of runoff higher than150m~3/s, or daily precipitation higher than30mm,however the concentrations of Chla were relatively low during this period. The highChla concentrations were easy to develop from March to May when the runoff is35-45m~3/s and the early precipitation is below the15mm.
     ③Effect of the Three Gorges reservoir impoundment on the pollutant degradationcoefficients and water environmental capacities of the Pengxi River.
     Affected by the natural factors and impoundment regulation, the pollutant retentiontime and the degradation rate in the Pengxi water presented dynamic characteristics.The pollutants degradation coefficients after the impoundment were1/20-1/10of thecoefficients before the impoundment, which affected the water environmental capacities.The results simulated by the1D-2D coupled model from seven water function divisionsshowed that after the impoundment of the Three Gorges, the COD_(Mn) capacity wasreduced by15.6%, the ammonia nitrogen(NH3-N) capacity was reduced by12.2%andthe TP capacity was reduced by28.3%within a year. Water hydrological conditionsafter the impoundment were favorable for the eutrophication in the Pengxi River.
     ④The study on the effect of the impoundment on water dynamic characteristicsin the Pengxi backwater area simulated by the MIKE21model.
     After the impoundment of Three Gorges project, water depth and the area andwidth of river cross section from the Pengxi backwater water increased. On thecondition of the same runoff, flow rate was reduced as compared to the naturalcondition, and it was inversely proportional to the water level. Before the impoundmentthe minimum flow rate is0.01-0.19m/s and after the impoundment the minimum flowrate is0.001-0.005m/s in the Pengxi backwater. The mean flow rates of five sectionsfrom Quma, Gaoyang, Huangshi, Shuangjiang bridge and Hekou after impoundment were1/2-1/100of those before the impoundment. According to the hydrodynamicconditions and the water quality of the river, the water type was defined as thefollowing: the flow rate of lake type is lower than0.016m/s, the flow rate of thetransition type is0.016-0.050m/s, and the flow rate of the river type is greater than0.050m/s. The dynamic change of water type lead to the change of the applicable waterquality evaluation standards, thus the evaluation result of II-III water quality standardturns to exceeded II-III water quality standard.
     ⑤The study on the non-point pollution load in the Pengxi catchment based on theSWAT distributed hydrological model.
     Based on the data from digital elevation, soil types, vegetation types, meteorology,hydrology, water quality, administrative divisions, population distribution, etc., thedatabase was set up with these as the SWAT input conditions. The Pengxi catchmentwas divided into twenty five subcatchments and225hydrological response units(HRUs). The results simulated by SWAT showed that Nitrogen and Phosphorus loadsfrom July to September were high, the mean monthly loads of Nitrogen and Phosphoruswere928.67tons and173.47tons respectively in the flood period; The Nitrogen andPhosphorus loads from December to February is low, the mean monthly loads ofNitrogen and Phosphorus were61.91tons and11.56tons respectively in the dry period.
     ⑥The SWAT and MIKE21models were coupled to predict the water quality andwater eutrophication.
     I simulated the average COD_(Mn), TN, TP concentrations and Chla content along thePengxi River on two design conditions:1)175m high water level with low flow and lowpollutant load;2)145m low level with high flow and high pollutant load. COD_(Mn), TN,TP concentrations from upstream to downstream tended to increase, and the waterquality at the estuary trended toward the Yangtze water quality. In the period of145mlow water level with large flow and high pollutant load, the Chla content was high. Inthe curve or wide surface sections such as Gaoyang or Shuangjiang Bridge, the flowrate was slow and Chla content was high.
     The correlation of flow rate (V) and Chla content (S) was fitted under the twodesign conditions, the equations were S=0.1860·V~(1.6820)(related coefficientr~2=0.8380)and S=10.8449·V~(-0.2939)(related coefficient r~2=0.8380) respectively. Thesimulated results showed that the increase of flow rate tended to keep down the Chlacontent. It is feasible to control water eutrophication through the hydrodynamicconditions.
     ⑦The ecological regulation schemes put forward relied on the Xiaojiangecological regulating dam.
     Based on the correlation between the flow rate and Chla content, the constraintconditions of hydrodynamic feature and hydraulic project, I established the ecologicalscheduling models. And I put forward the optimization schemes from March to June tocontrol Chla content of lower than20ug/L for the purpose of controlling watereutrophication.
引文
Arnold J G,Alien P M.1996.Estimating hydrologic budgets for three Illinois Watersheds [J]. Journalof Hydrology,176:57-77.
    Arnold J G,Srinivasan R,Muttiah R S,et a1.1999.Continental scale simulation of the hydrologicbalance [J]. Journal of the American Water Resources Association,35(5):1037-1051.
    Backhaus J O.1983. A semi-implicit scheme for the shallow water equations for application to shelfsea modelling[J]. Continental Shelf Research,4(2):243-254.
    Bai Y C, Sheng H T, Hu S X.2000. Three dimensional mathematical model of sediment transport inestuarine region[J]. Int. J. Sediment Res.,15(4):410-423.
    Bingner R L.1996. Runoff simulated from Goodwin Creek Watershed using SWAT[J].Transactionsof American Society of Agricultural Engineers,39(1):85-89.
    Blumberg A F, Mellor G L.1983. Diagnostic and prognostic numerical circulation studies of theSouth Atlantic Bight[J]. Journal of Geophysical Research,88(C8):4579-4592.
    Bouraoui F, Grizzetti B.2008.An integrated modeling framework to estimate the fate of nutrient:Application to the Loire (France)[J]. Ecological Modeling,212(3-4):450-459.
    Bruno Tassin, Brigitte Vincon Leite.1998. Forecasting of water quality in lakes: A predictive use ofa one dimensional mode1.Application to Lake Bourget(Savoie,France)[J]. Hydrobiologia,373/374:47-60.
    Bulut E, Aksy A.2008.Impact of fertilizer usage on phosphorus loads to Lake Uluabat[J].Desalination,226:289-297.
    Casulli V, Cattani E.1994. Stability, accuracy and efficiency of a semiimplicit method forthree-dimensional shallow water flow[J].Comput.Math. Appl.,27(4):99-112.
    Cerco C.F.,Cole T.M.1993.Three-dimensional eutrophication model of Chesapeake Bay[J].ASCEJournal of Environmental Engineering,119,1006-1025.
    Chau K W,Jin H S.2002. Two-layered,2D unsteady eutrophication model in boundary-fittedcoordinate system[J]. Marine Pollution Bulletin,45:300-310.
    Chen C W.1970.Concepts and utilities of ecologic model[J].J of Sanit,Engineering Division,ASCE,96:1085-1097.
    Ditoro D M, O.Connor D J, Thomann T V.A.1971.Dynamic model of phytoplankton population inthe Sacramento San Joaquin Delta[J]. Advances in Chemistry,American Chemical Society,106:131-180.
    Duan J G,Wang Sam,Jia Y F.2001. The applications of the enhanced CCHE2D model to study thealluvial channel migration process[J].Journal of Hydraulic Research,39(5):1-12.
    Feleke Arega,Brett F.Sanders.2004. Dispersion Model for Tidal Wetlands[J].Journal of HydraulicEngineering,130(1):739-754.
    Gevaert V,Vang A,Holvoet K.2008.SWAT developments and recommendations for modelingagricultural pesticide mitigation measures in river basins[J].Hydrological Sciences Journal,53(5):1075-1089.
    Jian Y, McCorquodale J A.1997. Depth-averaged hydrodynamic model in curvilinear collocatedgrid[J]. Journal of Hydraulic Engineering,123(5):380-388.
    J Φ rgensen SE.1976. An eutrophication model for lake [J].Ecol Model,2:147-165.
    Leendertse J J.1973.A Three-Dimensional Model for Esturaries and Coastal Seas[M]. Santa Manica:The Rord Corportation.
    Li Y X, Qiu R Z, Yang Z F, et al.2010.Parameter determination to calculate water environmentalcapacity in Zhangweinan canal sub-basin in China[J].Journal of Environmental Sciences,22(6):904-907.
    Luo Y,Zhang M.2009.Mangement—oriented sensitivity analysis for pesticide transport inwatershed-scale water quallity modeling using SWAT[J].Environmental Pollution,157(12):1-9.
    Marinov D,Norro A,Zaldevar J M.2006. Application of coherens model for hydrodynamicinvestigation of Sacca di Goro coastal lagoon(Italian Adriatic Sea shore)[J].EcologicalModelling,193(1/2):52-68.
    Mcginnis D F,Boeaniov S,Teodoru C,et a1.2006. Silica retention in the Iron Gate I reservoir on theDanube River: The role of side bays as nutrient sinks[J].River Research and Applications,22:441-456.
    Mitrovic S M,Oliver R L,Rees C.2003.Critical flow velocities for the growth and dominance ofAnabaena circinalis in some turbid freshwater rivers[J].Freshwater Biology,48:164-174.
    Neitsch S L, Arnold J G, Kiniry J R, et al.2002.Soil and waterass essment tool theoreticaldocumentation[R].Texas Water Resources Institute, College Station, Texas. TWRI ReportTR-191,19-506.
    Osmi Kawara, Eisaku Yura.1998.A study on the role of hydraulic retention time in eutrophication ofthe Asahi River Dam reservoir [J].Wat Sci Tech.,37:245-252.
    Pilar Hernandez,Ambrose Jr,Robert B,et a1.1997.Modelting eutrophication kinetics in ReservoirMicrocosms[J].Water Research,31(9):2511-2519.
    Redfield A C.1958. The biological control of chemical factors in the environment[J]. Am Sci,46:205-221.
    Santhi C, Arnold J G, Williams J R,et al.2001.Validation of the SWAT model on Large River Basinwith point and nonpoint sources[J]. Journal of the American Water Resources Association,37(5):1169-1188.
    Sheng Y P.1987.On modeling three-dimensional estuarine and marine hydrodynamics [J]. ThreeDimensional Model of Marine and Estuarine Dynamics, Elsevier Science Publishers,35-54.
    Sladkvich M.2000. Simulation of transport phenomena in shallow aquatic environment[J].Journal ofHydraulic Engineering,126(2):123-126.
    Srinivasan R,Arnold J G,Jones C A.1998.Hydrologic modeling of the United States with the soil andwater assessment tool[J]. Water Resources Development,4(3):315-325.
    Straskraba M, Dostalkova I.1995.The effects of reservoir on phosphorus concentration[J]. Int.RevueGes. Hydrobiol,80:403-413.
    Teodoru C,Wehrli B.2005.Retention of sediments and nutrients in the Iron Gate I reservoir on theDanube River[J]. Biogeoehemistry,76:539-565.
    V J Shah, C V Devmurari, S V Joshi.2004.A case study of long-term RO plant operation withoutchemical pretreatment[J]. Desalination,161:137-144.
    WagnerM.2000.Effect of hydrological patterns of tributaries on biotic processes in a lowlandreservoir consequences for restoration[J].Ecological Engineering,16:79-90.
    Wang Zhao-hui, Zhao Deng-zhong, CAO Bo.et al.2010.Research on simulation of non-point sourcepollution in Qingjiang River Basin based on SWAT model and GIS[J].Journal of Yangtze RiverScientific Research Institute.27(1):57-61.
    Wright J W, Worrall F.2001.The effects of river flow on water quality in estuarine impoundments[J].Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere.26(9):741-746.
    Wright R M, Mcdonell A J.1979. In-stream deoxygenation rate prediction[J]. Proc ASCE J Env Div.105(4):323-333.
    Y.L.Xu, S.J.Wang,Y.M.Ni.2010.Research on the influence of land use Changing on non-pointsource pollution in Heihe River Basin[J].Journal of Environmental Science and Engineering,4(5):72-77.
    Zhu Y L, et al.2000. Three d imensional nonlinear numerical model with inclined pressure forsaltwater in intrusion at the Yangtze River estuary[J]. J. Hydrodynamic, Ser. B.1,57-66.
    安贞煜,曾光明,张硕辅,等.2006.疏浚对洞庭湖水环境容量的影响分析[J].湖泊科学,18(5):509-514.
    白薇扬,王娟,王英魁,等.2008.嘉陵江重庆段水体富营养化现状分析[J].重庆工学院学报,22(11):66-69.
    白玉川,万春艳,黄本胜,等.2000.河网非恒定流数值模拟的研究进展[J].水利学报,12:43-47.
    蔡其华.2006.充分考虑河流生态系统保护因素完善水库调度方式[J].中国水利,2:14-17.
    蔡庆华,胡征宇.2006.三峡水库富营养化问题与对策研究[J].水生生物学报,30(1):7-11.
    曹玲玲,邓云.2010.水电站建设对水环境容量的影响研究[J].四川环境,9(1):51-55.
    长江水利委员会长江勘测规划设计研究院编.2004.三峡库区小江(澎溪河)流域生态环境综合整治工程可行性研究报告[R].武汉:长江水利委员会长江勘测规划设计研究院,57-85.
    陈丁江,吕军,沈晔娜,等.2008.饮用水水源保护区河流水环境容量计算模型[J].环境科学,29(9):2437-2440.
    陈景仁著,威国才编译.1989.湍流模型及有限分析法[M].上海:上海交通大学出版社.
    陈明曦.2007.蓝藻水华生消机制室内模拟试验研究[D].湖北:三峡大学,57-67.
    陈青毅,吴卫,刘桦.2011.河口水库库内三维流动数值模拟[J].水动力学研究与进展A缉,26(2):140-149.
    陈雪峰,王桂萱.2007.MIKE21计算软件及其在长兴岛海域改造工程上的应用[J].大连大学学报,28(6):93-98.
    陈朝旭,陈振华,高大水等,2011.三峡水库开县调节坝工程泄水闸下游消能工设计优化[J].水利水电快报,32(3):22-24.
    陈振洪.2005.双向流模型在赶潮河段水环境容量计算中的应用探讨[J].福建师范福清分校学报,(2):5-8.
    重庆市水利局编.2010.重庆市水功能区划[R].重庆市水利局,32-33.
    戴昌军,张玻华,管光明.2008.实施联合水量调配防止汉江中下游产生水华[J].湖北水力发电,74(1),62-68.
    代玲玲.2007.三峡水库富营养化藻类特征及环境因素影响研究[D].重庆:重庆大学,19-59.
    邓春光,龚玲.2007.三峡库区富营养化发展趋势研究[J].农业环境科学学报,26:279-28.
    丁京涛,姚波,许其功,等.2009.基于SWAT模型的大宁河流域污染物负荷分布特性分析[J].环境工程学报,3(12):2153-2158.
    窦贻俭,杨戊.1997.曹娥江流域水利工程对生态环境影响的研究[J].水科学进展,7(3):260-267.
    窦振兴,杨连武,Ozer J.1993.渤海三维潮流数值模拟[J].海洋学报,15(5):1-15.
    范丽丽,沈珍瑶,刘瑞民,等.2008.基于SWAT模型的大宁河流域非点源污染空间特性研究[J].水土保持通报,28(4):33-37.
    方芳,周红,李哲,等.2010.三峡小江回水区藻类集群与主要环境要素的典范对应分析研究[J].长江科学院院报,27(10):60-64,87.
    冯民权,郑邦民,周孝德.2003.河流及水库流场与水质的数值模拟[M].北京:科学出版社.
    胡建林,刘国祥,胡征宇,等.2006.三峡库区重庆段主要支流春季浮游植物调查[J].水生生物学报,30(1):116-119.
    高月香,张毅敏,张永春.2007.流速对太湖铜绿微囊藻生长的影响[J].生态与农村环境学报,23(2):57-60,88.
    高月香,张永春.2006.水文气象因子对藻华爆发的影响.水科学与工程技术[J].2:10-11.
    郭劲松,陈杰,李哲,等.2008.156m蓄水后三峡水库小江回水区春季浮游植物调查及多样性评价[J].环境科学,29(10):2710-2715.
    郭劲松,张超,方芳等.2008.三峡水库小江回水区水华高发期浮游植物群落结构特征研究[J].科技导报,26(17):70-75.
    郭平,龚宇,李永建,等.2005.三峡库区135m水位蓄水典型次级河流回水段富营养化监测评价[J].中国环境监测,21(2):88-89.
    郭卫东,章小明,杨逸萍,等.1998.中国近岸海域潜在性富营养化程度的评价[J].台湾海峡,17(1):64-70.
    韩国其,汪德灌,许协庆.1989.潮汐河口三维水流数值模拟[J].水利学报,12:54-60.
    郝芳华,程红光,杨胜天.2006.非点源污染模型—理论方法与应用[M].北京:中国环境科学出版社.
    侯咏梅,李志乾,朱天平.2009.小江调水方案跨越汉江建筑物结构形式的研究[J].华北水利水电学院学报:社会科学版,25(6):44-46.
    胡正峰,张磊,邱勤,等.2009.三峡库区长江干流和支流富营养化研究[J].山东农业科学,12:74-80.
    槐文信,何书琴,曾玉红.2007.弯道水流的混合有限分析解[J].华中科技大学学报(自然科学版),35(2):96-100.
    黄程,钟成华,邓春光,等.2006.三峡水库蓄水初期大宁河回水区流速与藻类生长关系的初步研究[J].农业环境科学学报,25(2):453-457.
    黄真理,李玉樑,陈永灿,等.2006.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社.
    黄真理,李玉粱,李锦秀,等.2004.三峡水库水环境容量计算[J].水利学报,3:7-16.
    黄真理,吴炳方,敖良桂.2006.三峡工程生态与环境监测系统研究[M].北京:科学出版社.
    纪道斌.2008.三峡水库香溪河库湾藻类生长及其对水力学过程响应的规律研究[D].湖北:三峡大学,73-83.
    蒋文清.2009.流速对水体富营养化的影响研究[D].重庆交通大学,17-41.
    焦世珺.2007.三峡库区低流速河段流速对藻类生长的影响[D].重庆:西南大学,12-55.
    焦世珺,钟成华,邓春光,2006.等.浅谈流速对三峡库区藻类生长的影响[J].微量元素与健康研究,23(3):48-50.
    金相灿,刘鸿亮,屠清瑛,等.1995.中国湖泊富营养化[M].北京:中国环境出版社.
    况琪军,毕永红,周广杰,等.2005.三峡水库蓄水前后浮游植物调查及水环境初步分析[J].水生生物学报,29(4):353-358.
    况琪军,胡征宇,周广杰,等.2004.香溪河流域浮游植物调查与水质评价[J].武汉植物学研究,2(6):507-513.
    赖格英.2005.太湖流域1960s-1990s营养物质输移的评估研究—基于分布式环境水文模型SWAT的数值模拟[D].中国科学院南京地理与湖泊研究所博士学位论文,6.
    郎海鸥,王文杰,王维,等.2010.基于土地利用变化的小江流域非点源污染特征[J].环境科学研究,23(9):1158-1166.
    李崇明,黄真理,张晟,等.2007.三峡水库藻类“水华”预测[J].长江流域资源与环境,16(1):1-6.
    李家科,刘健,秦耀民,等.2008.基于SWAT模型的渭河流域非点源氮污染分布式模拟[J].西安理工大学学报,24(3):278-285.
    李锦秀,杜斌,孙以三.2005.水动力条件对富营养化影响规律探讨[J].水利水电技术,36(5):15-18.
    李锦秀,廖文根.2000.水流条件巨大变化对有机污染物降解速率影响研究[J].环境科学研究,15(3):45-48.
    李锦秀,禹雪中,幸治国.2005.三峡库区支流富营养化模型开发研究[J].水科学进展,16(6):777-783.
    李如忠,王超.2003.汪家权,等.不确定性信息下河道型水库纳污能力计算初探[J],环境科学研究16(3):23-26.
    李一平,逢勇,丁玲.2004.太湖富营养化控制机理模拟[J].环境科学与技术,27(3):1-3.
    李一平,逢勇,吕俊,等.2004.水动力条件下底泥中氮磷释放通量[J].湖泊科学,16(4),318-324.
    李哲.2009.三峡水库运行初期小江回水区藻类生境变化与群落演替特征研究[D].重庆:重庆大学,62-78.
    李哲,方芳,郭劲松,等.2009.三峡小江回水区段2007年春季水华与营养盐特征[J].湖泊科学,21(1):36-44.
    李哲,郭劲松,方芳,等.2009.三峡水库小江回水区不同TN/TP水平下氮素形态分布和循环特点[J].湖泊科学,21(4):509-517.
    李哲,郭劲松,方芳,等.2010.回水区蓝藻季节变化及其与主要环境因素的相互关系[J].环境科学,31(2):301-309.
    栗苏文,李红艳,夏建新.2005.基于DELF3D模型的大鹏湾水环境容量分析[J].环境科学研究,18(5),91-95.
    廖平安,胡秀琳.2005.流速对藻类生长影响的试验研究[J].北京水利,2:12-15.
    刘宝晨,柳欣,蒋春华.2007.牡丹江流域水环境容量计算及特征分析[J].环境科学与管理,32(6):60-62.
    刘坤,杨正宇.2009.MIKE软件在水体富营养化研究中的应用[J].给水排水,35:456-459.
    刘凌,崔广柏.2004.湖泊水库水体氮、磷允许纳污量定量研究[J].环境科学学报,24(6):1053-1058.
    刘桦,何友声.2000.长江口水环境数值模拟研究及水动力数值模拟[J].水动力学研究与进展,15(1):17-30.
    刘永明,贾绍凤,蒋良维,等.2003.三峡水库重庆段一级支流回水河段富营养化潜势研究[J].地理研究,22(1):67-72.
    刘玉生,唐宗武,韩梅,等.1991.滇池富营养化生态动力学模型及其应用[J].环境科学研究,4(6):1-8.
    刘元波,陈伟平.1998.太湖梅梁湾藻类生态模拟与藻类水华治理对策分析[J].湖泊科学,10(4):53—59.
    刘昭伟,陈永灿,付健,等.2006.三峡水库万州段岸边环境容量的计算与分析[J].水力发电学报,25(4):51-56.
    罗专溪,朱波,郑丙辉,等.2007.三峡水库支流回水河段氮磷负荷与干流的逆向影响[J].中国环境科学,27(2):208-212.
    蒙国湖,龙天渝,贺栋才,等.2009.嘉陵江重庆磁器口段藻类生长模拟研究[J].工业安全与环保,35(4):23-25.
    蒙万轮,钟成华,邓春光,等.2005.三峡库区蓄水后支流回水段富营养化研究[J].广州环境科学,20(2):38-41.
    牛志广,张宏伟.2004.地统计学和DIS用于计算近海水环境容量的研究[J].天津工业大学学报,25(1):74-76.
    欧阳丽,诸葛亦斯,刘德富.2008.三峡水库香溪河库湾水环境容量研究[J].人民长江,20(39):12-14,36.
    庞靖鹏,刘昌明,徐宗学.2007.基于SWAT模型的径流与土壤侵蚀过程模拟[J].水土保持研究,14(6),89-95.
    裴廷权,王里奥,韩勇,等.2008.三峡库区小江流域水体富营养化的模糊评价[J].科学学报,27(4):1427-1431.
    彭进平,逢勇,李一平,等.2004.水动力过程后湖泊水体磷素变化及其对富营养化的贡献.生态环境[J],13(4):503-505.
    蒲迅赤,李克锋,李嘉,等.1999.紊动对水体中有机物降解影响的实验[J].中国环境科学,19(6):485-489.
    蒲迅赤,赵文谦.2001.纳污河道水环境自净容量的精确计算方法[J].四川大学学报,33(1):1-4.
    冉祥滨,陈洪涛,姚庆祯,等.2009.三峡水库小江库湾水体混合过程中营养盐的行为研究,水生态学杂志[J],2(2),21-27.
    容琨.2009.基于SWAT模型的晋江西溪流域非点源污染模拟[D].福建师范大学硕士论文,26-30.
    阮景荣,蔡庆华,刘建康.1988.武汉东湖的磷—浮游植物动态模型[J].水生生物学报,12(4):289-307.
    史晓新,禹雪中.马巍.2008.湖泊纳污能力动态特征分析及计算[J].中国水利水电科学研究院学报.6(2):105-110.
    宋永昌,王云,戚仁海.1991.淀山湖富营养化及其防治研究[M].上海:华东师范大学出版社.
    宋玉芝,秦伯强,高光.2007.氮及氮磷比对附着藻类及浮游藻类的影响[J].湖泊科学,19(2):125-130.
    孙卫红,姚国金,逢勇.2006.基于不均匀系数的水环境容量计算方法探讨[J].水资源保护,(2):25-26.
    孙秀玲,霍太英,褚君达.2005.水环境容量的不确定性分析计算[J].人民黄河,27(3):34-36.
    田旭东,汪小泉.2008.钱塘江流域污染负荷及水环境容量研究[J].环境污染与防治,30(7):73-77.
    屠清瑛,顾丁锡,尹澄清,等.1990.富营养化研究[M].合肥:中国科学技术大学出版社.
    王关敬,罗麟,程香菊等.2005.紊动对有机物降解影响研究[J].武汉大学学报(工学版),38(4):1-4.
    王海云,程胜高,黄磊.2007.三峡水库“藻类水华”成因条件研究[J].人民长江,38(2):16-18.
    王红萍,夏军,谢平,等.2004.汉江水华水文因素作用机理—基于藻类生长动力学的研究[J].长江流域资源与环境,l3(3):282-285.
    王华,逢勇.2008.藻类生长的水动力学因素影响与数值仿真[J].环境科学,29(4):884-889.
    王华,逢勇,丁玲.2007.滨江水体水环境容量计算研究[J].环境科学学报,27(12):2067-2073.
    王建平,苏保林,贾海峰,等.2006.密云水库及其流域营养物集成模拟的模型体系研究[J].环境科学,27(7):1286-1219.
    王利利.2006.水动力条件下藻类生长相关影响因素研究[D].重庆:重庆大学,98-112.
    王玲玲,戴会超,蔡庆华.2009.香溪河水动力因子与叶绿素a分布的数值预测及相关性研究[J].应用基础与工程科学学报,17(5):652-658.
    王庆改,戴文楠,赵晓宏,等.2009.基于MIKE21FM的来宾电厂扩建工程温排水数值模拟研究[J].环境科学研究,22(3):332-336
    王万战,董利瑾.2007.渤海流场基本特性的MIKE21模拟研究[J].人民黄河,29(10):32-33.
    王霞,吕宪国.2006.基于富营养化阈值的松花江水环境容量分析[J].湖泊科学,18(5):503-508.
    王晓燕,秦福来,欧洋,等.2008.基于SWAT模型的流域非点源污染模拟—以密云水库北部流域为例[J].农业环境科学学报,27(3):1098-1105.
    王亚军,周陈超,贾绍凤,等.2007.基于SWAT模型的湟水流域径流模拟与评价[J].水土保持研究,14(6):428-432.
    韦海英,柴立和.2006.磷循环的非线性动力学特性及富营养化[J].湖泊科学,18(6):557-564.
    吴挺峰,高光,晁建颖,等.2009.基于流域富营养化模型的水库水华主要诱发因素及防治对策[J].水利学报,40(4):391-397.
    夏智宏,周月华,许红梅.2010.基于SWAT模型的汉江流域水资源对气候变化的响应[J].长江流域资源与环境,19(2),158-163.
    熊风,罗浩.2005.河流水环境容量计算模型分析[J].中国测试技术,3(1):116-117.
    熊风,杨立中,罗洁.等.2007.我国西部内陆河流水环境容量研究[J].干旱区资源与环境,21(10),88-92.
    许秋瑾,郑丙辉,朱延忠,等.2010.三峡水库支流营养状态评价方法[J].中国环境科学,30(4):453-457.
    阎非,苏保林,贾海峰.2006.基于排污口权重的一维河流水环境容量计算[J].水资源保护,22(2):16-18.
    杨桂山,翁立达,李利峰.2007.长江保护与发展报告2007[M].武汉:长江出版社.
    杨具瑞,方铎.2004.滇池湖泊富营养化动力学模拟研究[J].环境科学与技术,26(3):37-38.
    杨正健,刘德富,纪道斌,等.2010.三峡水库172.5m蓄水过程对香溪河库湾水体富营养化的影响[J].中国科学,40(4):358-369.
    叶紫,陈伟亚.2010.江汉平原河网区河渠水环境容量研究[J].环境科学与技术,33(6E),297-300.
    易仲强,刘德富,杨正健,等.2009.三峡水库香溪河库湾水温结构及其对春季水华的影响[J].水生态学杂志,2(5):6-11.
    于磊,顾鎏,李建新等.2008.基于SWAT模型的中尺度流域气候变化水文响应研究[J].水土保持通报,28(4):152-154.
    于玲红,郭艳琴.2011.动力条件对引黄水库藻类的影响[J].人民黄河,33(1):81-84.
    袁弘任.2004.三峡水库纳污能力分析[J].中国水利,20:19-22.
    赵红梅,徐宏恩,王士君.2008.松花江佳木斯江段水环境容量分析[J].东北师大学报(自然科学版),40(2):109-114.
    张呈,郭劲松,李哲,等.2010.三峡小江回水区透明度季节变化及其影响因子分析[J],湖泊科学.22(2):189-194.
    张虹.2008.三峡库区消落带土地资源特征分析[J].水土保持通报,28(1):46-69.
    张红举,杨利芝.2009.感潮河流水环境容量计算——以太湖流域太浦河为例[J].水资源保护,25(6):12-15.
    张家瑞,曾勇,赵彦伟.2011.白洋淀湿地水华暴发阈值分析[J].生态学杂志,30(08):1744-1750.
    张俊,余宗莲,王成见,等.2003.大沽河干流青岛段水环境容量研究[J].青岛海洋大学学报,33(5):665-668.
    张蕾,傅瓦利,张治伟,等.2011.三峡库区小江流域消落带不同坡地类型土壤磷分布特征初探[J].安徽农业科学,39(1):163-165.
    张晟,李崇明,王毓丹,等.2003.乌江水污染调查[J].中国环境监测,19(1):23-26.
    张晟,李崇明,郑坚,等.2009.三峡水库支流回水区营养状态季节变化[J].环境科学,30(1):64-69.
    张晟,刘景红,张全宁,等.2005.三峡水库成库初期水体中氮、磷分布特征[J].水土保持学报,19(4):123-126.
    张永泽,刘玉生,郑丙辉.1997.Exergy在湖泊生态系统建模中的应用[J].湖泊科学,9(3):75-81.
    张运生.2003.GIS和遥感辅助下的江西涟水河流域化学径流计算机模拟探讨[D].南京:南京大学硕士学位论文,5-6.
    张智,曾晓岚,王利利,等.2007.泥沙沉降对水库富营养化指标的影响[J].中国环境科学27(2):213-216.
    赵宁,潘明强,李静.2010.小江调水调蓄水库方案研究[J].华北水利水电学院学报,31(2):9-11.
    赵士清.1985.长江口三位潮流数值模拟[J].水利水运研究,1:18-20.
    赵颖,张永春.2008.流速与温度的交互作用对铜绿微囊藻生长的影响[J].江苏环境科技,21(1):23-26.
    郑丙辉,许秋瑾,朱延忠.2009.湖泊营养盐控制标准制定方法的初步研究[J].环境科学,30(9):2497-2501.
    郑丙辉,张远,富国,等.2006.三峡水库营养状态评价标准研究[J].环境科学学报,26(6):1022-1030.
    郑孝宇,褚君达,朱维斌.1997.河网非稳态水环境容量研究[J].水科学进展,8(1):25-31.
    钟成华,2004.三峡库区富营养化研究[D].四川:四川大学,80-90.
    周广杰,况琪军,胡征宇,等.2006.香溪河库湾浮游藻类种类演替及水华发生趋势分析[J].水生生物学报,30(1):42-46.
    周广杰,况琪军,胡征宇.2007.大宁河春季浮游藻类“水华”及其营养限制[J].长江流域资源与环境,16(5),628-633.
    周广杰,况琪军,胡征宇,等.2006.三峡库区四条支流藻类多样性评价及“水华”防治[J].中国环境科学,26(3):337-341.
    周广杰,况琪军,刘国祥,等.2006.三峡库区藻类“水华”调查及其毒理学研究[J].水生生物学报,30(1):37-41.
    周孝德,郭瑾珑,程文,等.1999.水环境容量计算方法研究[J].西安理工大学学报,15(3):1-6.
    朱永春,蔡启铭.1998.太湖环境生态研究[M].北京:气象出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700