离散与分布式延迟微分方程数值方法稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士论文主要考虑几类离散和分布式延迟微分方程的数值稳定性,诸如非线性中立型延迟微分方程,非线性中立型延迟积分微分方程,随机延迟积分微分方程以及随机Volterra积分微分方程。主要考虑的数值格式是线性多步方法和随机θ-方法。我们分别研究了线性多步方法在求解非线性中立型延迟微分方程和非线性中立型延迟积分微分方程时的渐近稳定性,以及随机θ-方法求解随机延迟积分微分方程和随机Volterra积分微分方程时的均方渐近稳定性。整个论文如下包括6个部分:
     第一章,我们简要介绍确定性和随机延迟微分方程的一些应用背景,以及延迟微分方程数仇方法稳定性分析的研究现状。同时,我们给出本文的工作概要。
     第二章研究A-稳定的线性多步方法在求解非线性中立型延迟微分方程时的渐近稳定性,证明了带有线性插值的任何A-稳定的线性多步方法是GAS-稳定的。
     第三章研究非线性中立型变延迟积分微分方程解析解和数值解的稳定性,给出了方程解析解稳定的充分条件;接着考虑A-稳定的线性多步方法求解此类方程时的渐近稳定性,证明了在非约束网格下,线性多步方法能够保持解析解的渐近稳定性。
     第四章研究随机θ-方法求解线性随机延迟积分微分方程时的均方渐近稳定性,证明了在适当条件下,随机θ-方法能够保持方程真解的均方渐近稳定性。
     第五章进一步研究随机θ-方法求解非线性随机延迟积分微分方程的均方渐近稳定性,证明了在约束网格条件下,当θ∈[1/2,1]时,随机θ-方法是无条件均方渐近稳定的。当θ∈[0,1/2)时,在适当步长限制条件-下,方法是均方渐近稳定的。
     第六章,我们将随机θ-方法扩展应用到求解非线性随机Volterra积分微分方程。首先,我们证明随机θ-方法在求解此类方程时具有1/2阶均方收敛性。接着,我们给出了非线性随机Volterra积分微分方程真解均方指数稳定的充分条件。在此条件-下,我们证明了随机θ-方法当1/2≤θ≤1时对任意步长是均方渐近稳定的;当0≤θ<1/2时,随机θ-方法对适当小的步长是均方渐近稳定的。
This doctoral dissertation is concerned with numerical stability of several classes of discrete and distributed delay differential equations, such as nonlinear neutral delay dif-ferential equations (NNDDEs), nonlinear neutral delay integro-differential equations (NN-DIDEs), stochastic delay integro-differential equations (SDIDEs) and stochastic Volterra integro-differential equations (SVIDEs). The main numerical schemes we consider include linear multistep methods and stochasticθ-methods. The asymptotic stability of linear multi-step methods for NNDEs and NNDIDEs, and the mean-square asymptotic stability of stochas-ticθ-methods for SDIDEs and SVIDEs are investigated respectively. The whole dissertation contains the following six parts:
     In Chapter 1, some application background of deterministic and stochastic delay differ-ential equations and the present state of the research of stability analysis of numerical methods for delay differential equations are briefly introduced. Also, the main works of this dissertation are listed.
     In Chapter 2, the asymptotic stability of A-stable linear multistep methods for nonlinear neutral delay differential equations is investigated. It is shown that any A-stale linear multistep methods with linear interpolation are GAS-stable.
     In Chapter 3, the analytical and numerical stability of nonlinear neutral delay integro-differential equations with variable delay are studied. First, some sufficient conditions for the analytical stability are derived. And then the asymptotic stability of A-stable linear multi-step methods for such equations is considered. It is shown that any A-stable linear multistep methods can preserve the asymptotic stability of the analytical solution with non-constrained meshes.
     In Chapter 4, the mean-square asymptotic stability of the stochasticθ-method for linear stochastic delay integro-differential equations is investigated. It is shown that the stochasticθ-methods can reproduce the mean square stability of the exact solution under appropriate conditions.
     In Chapter 5, we further investigate the mean-square asymptotic stability of the stochasticθ-method for nonlinear stochastic delay integro-differential equations. It is shown that under non-restrictive meshes, the stochasticθ-method is unconditional mean-square asymptotically stable ifθ[1/2,1]. Whenθ∈[0,]), the method is mean-square asymptotically stable with some mesh limitation.
     In Chapter 6, the stochasticθ-method is extended to solve nonlinear stochastic Volterra integro-differential equations. The mean-square convergence and asymptotic stability of the method are studied. First, we prove that the stochasticθ-method is convergent of order 1/2 in mean-square sense for such equations. Then, a sufficient condition for mean-square exponential stability of the true solution is given. Under this condition, it is shown that the stochasticθ-method is mean-square asymptotically stable for every stepsize if 1/2≤θ≤1, and when 0≤θ≤1/2, the stochastic 0-method is mean-square asymptotically stable for some small stepsizes.
引文
[1]J. Hale, Theory of Functional Differential Equations, Springer-Verlag,1977.
    [2]郑祖庥,泛函微分方程理论,安徽教育出版社,1992.
    [3]G. E. Hutchinson, Circular causal systems in ecology, Ann. N.Y. Acad. Sci.50 (1948),221-246.
    [4]N. MacDonald, Time Lags in Biological Modeb, Lecture Notes in Biomath.27(1978), Springer, Berlin.
    [5]G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equa-tions, J. Comput. Appl. Math.,125(2000),183-199.
    [6]Y. Kuang, Delay differential equations with applications in population dynamics, Academic Press, Inc., (1993).
    [7]M. Shakourifar and M. Dehghan, On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments, Computing,82(2008),241-260.
    [8]S. Gakkhar and S. Sahani, A delay model for the effects of environmental toxicant on biological species, Journal of Biological Systems,15(2007),525-537.
    [9]S. Gakkhar and S. Sahani, A time delay model for bacteria bacteriophage interaction, Journal of Biological Systems,16(2008),445-461.
    [10]A. Bellen, N. Guglielmi and A. E. Ruehli, Methods for Linear Systems of Circuit Delay Differential Equations of Neutral Type, IEEE Transactions on circuits and systems I:Fundamental theory and applications,46(1999),212-216.
    [11]A. Ruehli, U. Miekkal, A. Bellen and H Heeb, Stable Time Domain Solutions for EMC Problems using PEEC Circuit Models, Proc. of Inter. Symp. on Elmag. Comp., Chicago, Aug. (1994),371-376.
    [12]J. H. Wu and H. Xia, Self-Sustained Oscillations in a Ring Array of Coupled Lossless Transmission Lines, Journal of differential equations,124(1996),247-278.
    [13]J. H. Wu and H. Xia, Rotating Waves in Neutral Partial Functional Differential Equations, Journal of Dynamics and Differential Equations,11(1999),209-238.
    [14]胡适耕,黄乘明,吴付科,随机微分力程,科学出版社,北京 2008.
    [15]C. T. H. Baker, G. A. Bocharov and F. A. Rihan, A report on the use of delay differential equations in numerical modelling in the biosciences, Numerical Analysis Report,1999.
    [16]X. R. Mao, Stochastic differential equations and applications, Second Edition, Horwood Publishing Limited, Chichester, UK,2007.
    [17]G. T. Chen and T. C. Li, Stability of stochastic delayed SIR model, Stochastics and Dynamics, 9(2009),231-252.
    [18]Y. Kyrychko and B. Blyuss, Global properties of a delay SIR model with temporary immunity and nonlinear incidence rate, Nonlinear Anal:Real World Appl.,6 (2005),495-507.
    [19]B. S. Lian and S. G. Hu, Stochastic delay Gilpin-Ayala competition model, Stochastics and Dy-namics,6(2006),561-576.
    [20]M.K. Lee, J.H. Kim and J. Kim, A delay financial model with stochastic volatility; martingale method, Physica A,390(2011),2909-2919.
    [21]李寿佛,刚性常微分方程及刚性泛函微分方程数仇分析,湘潭大学出版社,2010.
    [22]C. W. Gear, Numerical initial value problem in ordinary differential equations, Prentice-Hall, Inc, 1971.
    [23]J. C. Butcher, The numerical analysis of ordinary differential equations:Runge-Kutta and General linear methods, Wiley,1987.
    [24]J. C. Butcher, Numerical methods for ordinary differential equations, Wiley,2003.
    [25]E. Hairer, S. P. Nφrsett and G.Wanner, Solving Ordinary Differential Equations Ⅰ:Nonstiff Problems, Springer-Verlag Berlin Heidelberg,1993.
    [26]E. Hairer and G. Wanner, Solving Ordinary Differential Equations Ⅱ:Stiff and Differential-Algebraic Problems, Springer-Verlag Berlin Heidelberg,1996.
    [27]N. Guglielmi, On the asymptotic stability properties of Runge-Kutta methods for delay difdifferential equations, Numer. Math,77 (1997),467-485.
    [28]N. Guglielmi, Delay dependent stability regions of Θ-methods for delay differential equations, IMA J. Numer. Anal.,18 (1998),399-418.
    [29]N. Guglielmi, Asymptotic stability barriers for natural Runge-Kutta processes for delay equations, SIAM J Numer. Anal.,39 (2001),763-783.
    [30]N. Guglielmi and E. Hairer, Order stars and stability for delay differential equations, Numer. Math., 83(1999),371-383.
    [31]黄乘明,一类两步方法的延迟依赖稳定性,系统仿真学报,17(2007),3919-3921.
    [32]黄乘明,李文皓,一类二阶延迟微分方程梯形方法的延迟依赖稳定性分析,计算数学,2(2007),155-162.
    [33]C.M. Huang, Delay-dependent stability of high order Runge-Kutta methods, Numer. Math., 111(2009),377-387.
    [34]C. M. Huang, Y. Z. Hu and H.J. Tian, Delay-dependent stability analysis of multistep methods for delay differential equations, Acta Mathematicae Applicatae Sinica (English Series),25(2009),607-616.
    [35]C. M. Huang and S. Vandewalle, An Analysis of Delay-Dependent Stability for Ordinary and Partial Differential Equations with Fixed and Distributed Delays, SIAM J. Sci. Comput.,25(2004),1608-1632.
    [36]C. M. Huang and S. Vandewalle, Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays, Frontiers of Mathematics in China,4(2009),63-87.
    [37]V. K. Barwell, Special stability problems for functional differential equations, BIT,15(1975), 130-135.
    [38]T. Koto, A criterion for P-stability of Runge-Kutta methods, BIT,38(1998),737-750.
    [39]M.Z. Liu and M.N. Spijker, The stability of the 0-methods in the numerical solution of delay differ-ential equations, IMA J. Numer. Anal.,10(1990),31-48.
    [40]D.S. Watanabe and M.G. Roth, The stability of difference formulas for delay differential equations, SIAM J. Numer. Anal.,22(1985),132-145.
    [41]M. Zennaro, On the P-stability of one-step collocation for delay differential equations, in Delay equations, Approximation and Applications, ISNM 74(1985),334-343.
    [42]M. Zennaro, P-stability properties of Runge-Kutta methods for delay differential equations, Numer. Math.,49(1986),305-318.
    [43]Y.H. Cong, J.N. Cai and J.X. Xiang, GP-stability of Rosenbrock for system of delay differential equations, Applied Mathematics and Mechanics,25(2004),1405-1411.
    [44]K.J. in't Hout, The stability of θ-methods for systems of delay differential equations, Ann. Numer. Math.,1(1994),323-334.
    [45]K.J. in't Hout, Stability of Runge-Kutta methods for systems of delay differential equations, IMA J. Numer. Anal.,17(1997),17-27.
    [46]T. Koto, A stbaility properties of A-stable natural Runge-Kutta methods for systems of delay differ-ential equations, BIT,34(1994),262-267.
    [47]H.J.Tian and J.X. Kuang, The stability analysis of the 0-methods for systems of delay differential equations, Numer. Math. A Journal of Chinese Univ.,4(1995),10-16.
    [48]H.J.Tian and J.X. Kuang, The stability of 0-methods in numerical solution of differential equations with several delay terms, J. Comput. Appl. Math.,56(1995),171-181.
    [49]H.J.Tian and J.X. Kuang, The stability of linear multistep methods for differential equations with many delays, SIAM J. Numer. Anal.,33(1996),883-889.
    [50]L. Torelli, Stability of numerical methods for delay differential equations, J. Comput. Appl. Math., 25(1989),15-26.
    [51]A. Bellen and M. Zennaro, Strong contractivity properties of numerical methods for ordinary and delay differential equations, Appl. Numer. Math.,9(1992),321-346.
    [52]M. Zennaro, Contractivity of Runge-Kutta methods with respect to forcing term, Appl. Numer. Math., 11(1993),321-345.
    [53]A. Bellen, Contractivity of continuous Runge-Kutta methods for delay differential equations, Appl. Numer. Math.,24(1997),219-232.
    [54]M. Zennaro, Asymptotic stability analysis of Runge-Kutta methods for nonlinear systems of delay differential equations, Numer. Math.,77(1997),549-563.
    [55]C. M. Huang, H. Y. Fu, S. F. Li, and G. N. Chen, Stability analysis of Runge-Kutta methods for non-linear delay differential equations, BIT,39(1999),270-280.
    [56]C. M. Huang, Asymptotic stability of multistep methods for nonlinear delay differential equations, Appl. Math. Comput.,203(2008),908-912.
    [57]C. M. Huang, S. F. Li, H. Y. Fu and G. N. Chen, Stability and error analysis of one-leg methods for nonlinear delay differential equations, J. Comput. Appl. Math.,103(1999),263-279.
    [58]C. M. Huang, S. F. Li, H. Y. Fu and G. N. Chen, Nonlinear stability of General linear methods for delay differential equations, BIT,42(2002),380-392.
    [59]C. J. Zhang and S. Vandewalle, Stability analysis of Volterra delay-integro-differential equations and their backward differentation time discretization, J. Comput. Appl. Math.,164-165(2004),797-814.
    [60]C. J. Zhang and S. Vandewalle, Stability analysis of Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations, IMA J. Numer. Anal.,24(2004),193-214.
    [61]C. J. Zhang and S. Vandewalle, General linear methods for Volterra integro-differential equations with memory, SIAM J. Sci. Comput.,27(2006),2010-2031.
    [62]A. Bellen, N. Guglielmi and M. Zennaro, On the contractivity and asymptotic stability of systems of delay differential equations of neutral type, BIT,39 (1999),1-24.
    [63]A. Bellen, N. Guglielmi and M. Zennaro, Numerical stability of nonlinear delay differential equations of neutral type, J. Comput. Appl. Math.,125(2000),251-263.
    [64]W. S. Wang and S. F. Li, Stability analysis of nonlinear delay differential equations of neutral type, Math. Numer. Sinica (Chinese),26(2004),303-314.
    [65]W. S. Wang, Y. Zhang and S. F. Li, Nonlinear stability of one-leg methods for delay differential equations of neutral type, Appl. Numer. Math.,58(2008),122-130.
    [66]W. S. Wang, S. F. Li and K. Su, Nonlinear stability of Runge-Kutta methods for neutral delay differ-ential equations, J. Comput. Appl. Math.,214(2008),175-185.
    [67]W. S. Wang, Y. Zhang and S. F. Li, Stability of Continuous Runge-Kutta-type Methods for Nonlinear Neutral Delay Differential Equations, Appl. Math. Modelling.,33(2009),3319-3329.
    [68]覃婷婷,几类随机与延迟动力学系统的单步离散方法,博士论文,华中科技大学,2010.
    [69]S. F. Li, High Order Contractive Runge-Kutta Methods for Volterra Functional Differential Equa-tions, SIAM J. Numer. Anal.,47(2010),4290-4325.
    [70]W. S. Wang, Numerical analysis of nonlinear neutral functional differential equations. Ph. D thesis, Xiangtan University,2008.
    [71]W. S. Wang and S. F. Li, Stability analysis of 0-methods for nonlinear neutral functional differential equations, SIAM J.Sci. Comput.,30(2008),2181-2205.
    [72]W. S. Wang and C. J. Zhang, Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space, Numer. Math.,115(2010),451-474.
    [73]W. S. Wang, C. J. Zhang and D. F. Li, Asymptotic stability of exact and discrete solutions for neutral multidelay-integro-differential equations, Appl. Math. Model.,35(2011),4490-4506.
    [74]Y. X. Yu, Stability analysis of numerical methods for several classes of Volterra functional differential equations. Ph. D thesis, Xiangtan University,2006.
    [75]C. J. Zhang and Y. Y. He, The extended one-leg methods for nonlinear neutral delay-integro-differential equations, Applied Numerical Mathematics,59(2009),1409-1418.
    [76]C. J. Zhang, T. T. Qin and J. Jin, The extended Pouzet-Runge-Kutta methods for nonlinear neutral delay-integro-differential equations, Computing,90(2010),57-91.
    [77]A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,Clarendon Press, Oxford,2003.
    [78]H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press (2004).
    [79]匡蛟勋,泛函微分方程的数值处理,科学出版社,北京,1999.
    [80]P. E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer-Verlag, Berlin (1992).
    [81]P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Springer-Verlag, Berlin (1994).
    [82]P. Burrage, Runge-Kutta methods for stochastic differential equations, Ph.D. thesis, University of Queensland, Brisbane, Australia,1999.
    [83]K.Burrage and P. Burrage, Order Conditions of Stochastic Runge-Kutta Methods by B-Series, SIAM J. Numer. Anal.,38(2000),1626-1646.
    [84]T. H. Tian and K. Burrage,Two-stage stochastic Runge-Kutta methods for stochastic differential equa-tions, BIT,42(2002),625-643.
    [85]A. Rossler, Second order Runge-Kutta methods for Stratonovich stochastic differential equation, BIT,47(2007),657-680.
    [86]P. Wang, Three-stage stochastic Runge-Kutta methods for stochastic differential equations, Journal of Computational and Applied Mathematics,222(2008),324-332.
    [87]A. Tocino and J. Vigo-Aguiar, Weak Second Order Conditions for Stochastic Runge-Kutta Methods, SIAM J. Sci. Comput.,24(2002),507-523.
    [88]A. Rossler, Runge-Kutta methods for Ito stochastic differential equations with scalar noise, BIT, 46(2006),96-110.
    [89]K. Debrabant and A. Rossler, Families of efficient second order Runge-Kutta methods for the weak approximation of Ito stochastic differential equations, Applied Numerical Mathematics,59(2009), 582-594.
    [90]G. Denk and S. Schaaffler, Adams methods for the efficient solution of stochastic differential equa-tions with additive noise, Computing,59 (1997),153-161.
    [91]L.Brugnano, K.Burrage and P.Burrage, Adams-Type Methods for the Numerical Solution of Stochas-tic Ordinary Differential Equations, BIT,40(2000),451-470.
    [92]E. Buckwar and R. Winkler, Multistep methods for SDEs and their application to problems with small noise, SIAM Journal on Numerical Analysis,44 (2006),779-803.
    [93]E. Buchwar, R. Horvath-Bokor and R. Winkler, Asymptotic mean-square stability of two-step meth-ods for stochastic ordinary differential equations, BIT,46 (2006),261-282.
    [94]E. Buckwar and R. Winkler, Improved linear multi-step methods for stochastic ordinary differential equations, Journal of Computational and Applied Mathematics,205 (2007),912-922.
    [95]T. Sickenberger, Mean-square convergence of stochastic multi-step methods with variable step-size, Journal of Computational and Applied Mathematics,212(2008),300-319.
    [96]G. N. Milstein, E. Platen and H. Schurz, Balanced implicit methods for stiff stochastic systems, SIAM J. Numer. Anal.,35 (1998),1010-1019.
    [97]H. Schurz, Convergence and stability of balanced implicit methods for systems of SDEs, International Journal of Numerical Analysis and Modeling,2(2005),197-220.
    [98]J. Alcock and K. Burrage, A note on the balanced method, BIT,46,689-710 (2006).
    [99]L. Hu and S. Q. Gan, Convergence and stability of the balanced methods for stochastic differential equations with jumps, International Journal of Computer Mathematics,88(2011),2089-2108.
    [100]X. H. Ding, Q. Ma and L. Zhang, Convergence and stability of the split-step 0-method for stochastic differential equations, Computers and Mathematics with Applications,60 (2010),1310-1321.
    [101]D. J. Higham, X. R. Mao and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J Numer. Anal.,40 (2002),1041-1063.
    [102]P. Wang and Y. Li, Split-step forward methods for stochastic differential equations, Journal of Com-putational and Applied Mathematics,233(2010),2641-2651.
    [103]P. Wang and Z. X. Liu, Split-step backward balanced Milstein methods for stiff stochastic systems, Applied Numerical Mathematics,59(2009),1198-1213.
    [104]K.Burrage and T.H.Tian, The composite Euler method for stiff stochastic differential equations, Jour-nal of Computational and Applied Mathematics,131(2001),407-426.
    [105]M.A. Omar, A. Aboul-Hassan and S.I. Rabia, The composite Milstein methods for the numerical solution of Stratonovich stochastic differential equations, Applied Mathematics and Computation, 215(2009),727-745.
    [106]M.A. Omar, A. Aboul-Hassan and S.I. Rabia, The composite Milstein methods for the numerical solution of Ito stochastic differential equations, Journal of Computational and Applied Mathematics, 235(2011),2277-2299.
    [107]Y. Saito and T. Mitsui, T-stability of numerical scheme for stochastic differential equations, World Scientific Series in Applicable Analysis,2 (1993),333-344.
    [108]Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal.,33(1996),2254-2267.
    [109]D. J. Higham, A-stability and stochastic mean-square stability, BIT,40 (2000),404-409.
    [110]D. J. Higham, Mean-square and asymptotic stability of the stochastic theta method, SIAM Journal on Numerical Analysis,38 (2000),753-769.
    [111]D. J. Higham, X. R. Mao and A. M. Stuart, Exponential Mean-Square Stability of Numerical Solu-tions to Stochastic Differential Equations, LMS J. Comput. Math.,6(2003),297-313.
    [112]D. J. Higham, X. R. Mao and C. G. Yuan, Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations, SIAM J. Numer. Anal.,45 (2007),592-609.
    [113]D. J. Higham, X. R. Mao and C. G. Yuan, Preserving exponential mean-square stability in the simu-lation of hybrid stochastic differential equations, Numer. Math.,108(2007),295-325.
    [114]S. L. Pang, F. Q. Deng and X. R. Mao, Almost sure and moment exponential stability of Euler-Maruyama discretizations for hybrid stochastic differential equations,Journal of Computational and Applied Mathematics,213(2008),127-141.
    [115]K.Ito and M.Nisio, On stationary solutions of a stochastic differential equations, J.Math.Kyoto.Univ., 4(1964),1-75.
    [116]C. T. H. Baker and E. Buckwar, Numerical Analysis of Explicit One-Step Methods for Stochastic Delay Differential Equations, LMS J. Comput. Math..3(2000),315-335.
    [117]E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, Journal of Computational and Applied Mathematics,125 (2000),297-307.
    [118]U. Kiichler and E. Platen, Strong discrete time approximation of stochastic differential equations with time delay, Mathematics and Computers in Simulation,54(2000),189-205.
    [119]U. Kiichler and E. Platen, Weak discrete time approximation of stochastic differential equations with time delay, Mathematics and Computers in Simulation,59(2002),497-507.
    [120]E.Buckwar and T.Shardlow, Weak approximation of stochastic differential delay equations, IMA Journal of Numerical Analysis,25(2005),57-86.
    [121]E.Buckwar, R. Kuske, S, Mohammed and T.Shardlow, Weak Convergence of the Euler Scheme for Stochastic Differential Delay Equations, LMS J. Comput. Math.,11(2008),60-99.
    [122]X. R. Mao, Numerical Solutions of Stochastic Functional Differential Equations, LMS J. Comput. Math.,6(2003),141-161.
    [123]X. R. Mao and S. Sabanis, Numerical solutions of stochastic differential delay equations under local Lipschitz condition, J. Comput. Appl. Math.,151(2003),215-227.
    [124]Y. Z. Hu, S. A. Mohammed and F. Yan, Discrete-Time Approximations of Stochastic Delay Equations The Milstein Scheme, The Annals of Probability 32(2004),265-314.
    [125]N. Hofmann and T. Miiller-Gronbach, A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag, J. Comput. Appl. Math.,197(2006),89-121.
    [126]M. Z. Liu, W. R. Cao and Z. C. Fan, Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation, J. Comput. Appl. Math.,170(2004),255-268.
    [127]H. M. Zhang, S. Q. Gan and L. Hu, The split-step backward Euler method for linear stochastic delay differential equations, J. Comput. Appl. Math.,225(2009),558-568.
    [128]E. Buckwar and R. Winkler, Multi-Step Maruyama Methods for Stochastic Delay Differential Equa-tions, Stochastic Analysis and Applications,25(2007),933-959.
    [129]X. J. Wang and S. Q. Gan, The improved split-step backward Euler method for stochastic differential delay equations, International Journal of Computer Mathematics,88(2011),2359-2378.
    [130]肖飞燕,几类随机延迟微分代数系统的数仇分析,博士论文,华中科技大学,2008.
    [131]N. Jacob, Y. T. Wang and C. G. Yuan, Numerical Solutions of Stochastic Differential Delay Equations with Jumps, Stochastic Analysis and Applications,27(2009),825-853.
    [132]X. M. Qu, C. M. Huang and C. Liu, Convergence and stability of numerical solutions to a class of index 1 stochastic differential algebraic equations with time delay, Appl. Math. Comput.,215(2010), 4008-4021.
    [133]L. S. Wang, C. L. Mei and H. Xue, The semi-implicit Euler method for stochastic differential delay equation with jumps, Applied Mathematics and Computation,192(2007),567-578.
    [134]F. K. Wu and X. R. Mao, Numerical Solutions of Neutral Stochastic Functional Differential Equa-tions, SIAM J. Numer. Anal.,46(2008),1821-1841.
    1135] H. M. Zhang and S. Q. Gan, Mean square convergence of one-step methods for neutral stochastic differential delay equations, Applied Mathematics and Computation,204(2008),884-890.
    [136]W. R. Cao, M. Z. Liu and Z. C. Fan, MS-stability of the Euler-Maruyama method for stochastic differential delay equations, Appl. Math. Comput.,159(2004),127-135.
    [137]Z. Y. Wang and C. J. Zhang, An analysis of stability of milstein method for stochastic differential equations with delay, Comput. Math. Appl.,51 (2006),1445-1452.
    [138]A. Rathinasamy and K. Balachandran, Mean square stability of semi-implicit Euler method for linear stochastic differential equations with multiple delays and Markovian switching, Appl. Math. Com-put.,206(2008),968-979.
    [139]A. Rathinasamy and K. Balachandran, Mean-square stability of Milstein method for linear hybrid stochastic delay integro-differential equations, Nolinear Analysis:Hybrid Systems,2(2008),1256-1263.
    [140]F. Jiang, Y.Shen and J.H. Hu, Stability of the split-step backward Euler scheme for stochastic delay integro-differential equations with Markovian switching, Communications in Nonlinear Science and Numerical Simulation,16(2011),814-821.
    [141]C. M. Huang, S. Q. Gan and D. S. Wang, Delay-dependent stability analysis of numerical methods for stochastic delay differential equations, J. Comput. Appl. Math.,2012, in press.
    [142]王文强,几类非线性随机延迟微分方程数值方法的收敛性与稳定性,博士论文,湘潭大学,湖南湘潭,2007.
    [143]王文强,非线性随机延迟微分方程Milstein方法的均方稳定性,系统仿真学报,21(2009),5656-5658.
    [144]王志勇,随机泛函微分方程的稳态数值解研究,博士论文,华中科技大学,2008.
    [145]王志勇,张诚坚,随机延迟微分方程的Milstein方法的非线性均方稳定性,21(2008),201-206.
    [146]F. K. Wu, X. R. Mao and L. Szpruch, Almost sure exponential stability of numerical solutions for stochastic delay differential equations, Numer. Math.,115(2010),689-697.
    [147]屈小妹,几类随机微分方程数值方法的稳定性分析,博士论文,华中科技大学,2011.
    [148]X. M. Qu and C. M. Huang Delay-dependent exponential stability of the backward Euler method for nonlinear stochastic delay differential equations, International Journal of Computer Mathematics, 2012, in press.
    [149]W. Q. Wang and Y. P. Chen, Mean-square stability of semi-implicit Euler method for nonlinear neutral stochastic delay differential equations, Applied Numerical Mathematics,61(2011),696-701.
    [150]G. Dahlquist, G-stability is equivalent to A-stability, BIT 18(1978),384-401.
    [151]G. Dahlquist, Error analysis for a class of methods for stiff nonlinear initial value problems, Num. Anal. Dundee,1975, Lect. Notes in Math.5.6, Springer-verlag, Berlin,1976,60-74.
    [152]J. J. Zhao, Y. Xu and M. Z. Liu, Stability analysis of numerical methods for linear neutral Volterra delay-integro-differential system, Appl. Math. Comput.,167(2005),1062-1079.
    [153]Y. Xu and J. J. Zhao, Stability of Runge-Kutta methods for neutral delay-integro-differential-algebraic system, Math. Comput. Simul.79(2008),571-583.
    [154]C. J. Zhang and S. Vandewalle, Stability criteria for exact and discrete solutions of neutral multidelay-integro-differential equations, Adv. Comput. Math.,28(2008),383-399.
    [155]S. F. Wu and S. Q. Gan, Analytical and numerical stability of neutral delay integro-differential equa-tions and neutral delay partial differential equations, Computers and Mathematics with Applications, 55(2008),2426-2443.
    [156]Y. X. Yu, L. P. Wen and S. F. Li, Nolinear stability of Runge-Kutta methods for neutral delay integro-differential equations, Appl. Math. Comput.,187(2007),1389-1398.
    [157]C. J. Zhang, T. T. Qin and J. Jin, An improvement of the numerical stability results for nonlinear neutral delay-integro-differential equations, Appl. Math. Comput.,215(2009),548-556.
    [158]X. R. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stoch. Process. Appl,65(1996),233-250.
    [159]X. H. Ding, K. N. Wu and M. Z. Liu, Convergence and stability of the semi-implicit Euler method for linear stochastic delay integro-differential equations, International Journal of Computer Mathematics, 83(2006),753-763.
    [160]C. T. H. Baker and E. Buckwar, Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations, J. Comput. Appl. Math.,184(2005), 404-427.
    [161]R. Ash, Probability and measure theory, Posts & Telecom Press, Beijing, (2007).
    [162]T. Koto, Stability of 0-methods for delay integro-differential equations, J. Comput. Appl. Math., 161(2003),393-404.
    [163]Q. Y. Li and S. Q. Gan, Mean-square exponential stability of stochastic theta methods for nonlinear stochastic delay integro-differential equations, Journal of Applied Mathematics and Computing, In press,2011.
    [164]T. Burton, Volterra integral and differential equations, Elsevier (2005).
    [165]A. Feldstein and J. R. Sopka, Numerical methods for nonlinear Volterra integro-differential equations, SIAM Journal on Numerical Analysis,11 (1974),826-846.
    [166]P. Linz, Linear multistep methods for Volterra integro-differential equations, Journal of the Associa-tion for Computing Machinery,16(1969),295-301.
    [167]J. Golec and S. Sathananthan, Sample path approximation for stochastic integro-differential equa-tions, Stochastic Analysis and Applications,17 (1999),579-588.
    [168]J. Golec and S. Sathananthan, Strong approximations of stochastic integro-differential equations, Dynamics of Continuous, Discrete and Implusive systems. Series B. Applications and Algorithms 8 (2001),139-151.
    [169]X. R. Mao, Stability of stochastic integro differential equations, Stochastic Analysis and Applica-tions,18(2000),1005-1017.
    [170]X. R. Mao and M. Riedle, Mean square stability of stochastic Volterra integro-differential equations, Systems & Control Letters,55(2006),459-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700