几类带泊松跳随机微分方程数值方法的收敛性与稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带有泊松跳的随机微分方程在金融、电子工程、生物等领域具有广泛的应用.由于绝大部分带泊松跳的随机微分方程真解的显式表达式难以获得,所以研究用数值方法求解这类方程具有重要的理论和实际意义.近几年来,关于带泊松跳的随机微分方程,国内外文献仅限于显式或半隐式方法的研究.全隐式方法比显式或半隐式的数值方法具有更好的稳定性.针对几类带泊松跳的随机微分方程,本文研究了全隐式方法的收敛性和稳定性.而且关于带泊松跳的随机微分方程,本文还讨论了1阶强收敛的Milstein方法的收敛性和稳定性.
     全文由七章构成.
     第一章综述随机微分方程及带泊松跳随机微分方程的理论分析及数值分析的研究概况.
     第二章介绍本文需要用到的基础知识,包括概率论、随机过程及随机微分方程等.
     第三章研究数值求解带泊松跳随机微分方程的平衡隐式方法的收敛性和均方稳定性.证明了强平衡隐式方法是1/2-阶均方收敛的,并证明了强平衡隐式方法和弱平衡隐式方法当步长充分小时均能保持系统的均方稳定性.
     第四章研究数值求解带泊松跳线性随机微分方程的平衡隐式方法的渐近稳定性.证明了在步长充分小的条件下,强平衡隐式方法和弱平衡隐式方法都可以保持系统的渐近稳定性.
     第五章建立了关于带泊松跳随机比例微分方程的平衡隐式方法,研究了该方法的均方收敛性与均方稳定性.证明了该方法的强收敛阶为1/2,同时还证明了,对于线性标量方程,当步长充分小时,强平衡隐式方法和弱平衡隐式方法都是均方稳定的.
     第六章构造了数值求解带泊松跳中立型随机延迟微分方程的一类隐式单步方法,建立了相容阶和收敛阶之间的关系,获得了一般隐式单步方法的均方收敛阶,并将此结论应用到半隐式方法——随机θ-方法和全隐式方法——平衡隐式方法,获得了这两类方法的收敛阶.
     第七章研究数值求解带泊松跳线性随机微分方程的Milstein方法,研究了该方法的均方稳定性和渐近稳定性.证明了强Milstein方法与弱Milstein方法在步长充分小的条件下能保持均方稳定性和渐近稳定性.
     数值试验进一步验证了文中所获理论的正确性.
Stochastic differential equations with Poisson-driven jumps arise widely in finance, electrical engineering, biology and so on. In general, it is difficult to obtain the explicit solutions of general stochastic differential equations (SDEs) with jumps. Therefore, solving the SDEs with jumps by the efficient numerical methods is very meaningful in theory and application. In recent years, the researches at home and abroad are only focused on explicit or semi-implicit methods for the SDEs with jumps. Full implicit methods admit better stability property than explicit or semi-implicit methods. This thesis investigates the convergence and the stability of full implicit methods for several classes of SDEs with jumps. Furthermore for the SDEs with jumps, it discusses the convergence and the stability of the Milstein method which has strong convergence rate of one.
     This thesis consists of seven parts.
     In Chapter1, a survey of modern developments including analytical analysis and numerical analysis for the SDEs and the SDEs with jumps are introduced.
     In Chapter2, some elementary concepts including probability theory, stochastic processes, stochastic differential equations et al are presented.
     Chapter3studies the convergence and the mean-square stability of the balanced implicit methods for the SDEs with jumps. It is shown that the balanced implicit methods give strong convergence rate of at least1/2. For the linear system, the strong balanced implicit methods and the weak ba-lanced implicit methods are shown to preserve the mean-square stability with the sufficiently small stepsize.
     Chapter4investigates the ability of the balanced implicit methods to reproduce the asymptotic stability of the linear SDEs with jumps. It is shown that the asymptotic stability of stochastic jump-diffusion differen-tial equations is inherited by the strong balanced implicit methods and the weak balanced implicit methods with sufficiently small stepsizes.
     Chapter5deals with the balanced implicit methods for the stochastic pantograph equations with jumps. The mean-square convergence and the mean-square stability are investigated. It is shown that the balanced imp-licit methods give strong convergence rate of at least1/2. For a linear sca-lar test equation, the strong balanced implicit methods and the weak balan-ced implicit methods are shown to capture the mean-square stability for all sufficiently small time-steps.
     In Chapter6, a class of implicit one-step schemes are proposed for the neutral stochastic differential delay equations(NSDDEs) driven by Poisson processes. The relationship between the consistent order and the conver-gence order is established. A general framework for mean-square conver-gence of the methods is provided. The convergence orders of the semi-im plicit schemes——the stochastic θ-methods and the full implicit schemes——the balanced implicit methods are given to illustrate the theoretical results.
     In Chapter7, the Milstein method is proposed to approximate the solu-tion of a linear SDEs with jumps. The mean-square stability and the stoch-astically asymptotic stability of the Milstein method are investigated. The strong Milstein method and the weak Milstein method are shown to capture the mean square stability and the asymptotic stability of the system for all sufficiently small time-steps.
     The numerical experiments are given to illustrate the theoretical results in the paper.
引文
[1]Black F., Scholes M. The Pricing of options and corporate liabilities. J.Politic. Econ.,1973,81:637-654.
    [2]Heston S. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies,1993, 6:327-343.
    [3]Swishchuk A.V., Kazmerchuk Y.I. Stability of stochastic differential delay Ito's equations with Poisson jumps and with Markovian switchings. Application to finacial models. Teor. Imovir. Mat. Stat.,2001,63(63).
    [4]Buckwar E. Introduction to the numerical analysis of stochastic delay differential equations. J. Comput. Appl. Math.,2000,125:297-307.
    [5]Kolmanovskii V.B., Nosov V.R. Stability of Functional Differential Equations. Academic Press, New York,1986.
    [6]Kolmanovskii V.B., Myshkis A. Applied Theory of Functional Differential Equations. Kluwer Academic Publishers,1992.
    [7]Arnold L. Stochastic Differential Equations. Theory and Applications, Wiley, New York,1974.
    [8]Gikhman I.I., Skorokhod A.V. Stochastic Differential Equations. Springer, New York,1972.
    [9]Mao X.R. Stochastic Differential Equations and their Applications. Horwood, Chichester,1997.
    [10]Gard T.C. A general uniqueness theorem for stochastic differential equations. SIAM J. Cont. Opt.,1976,14:445-457.
    [11]Gard T.C. Pathwise uniqueness for solutions of systems of stochastic differential equations. Stoc. Proc. Appl.,1978,6:253-260.
    [12]Has'minskii R.Z. Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theor. Prob. Appl.,1967,12:144-147.
    [13]Arnold L., Oeljeklaus E., Pardoux E. Almost sure and moment stability for linear Ito equations. Lecture Note in Math.,1984,1186:129-159.
    [14]Has'minskii R.Z. Stochsatic stability of differential equations. Sijthoff and Noordholf, Alphen a/d Rijn,1980.
    [15]Friedman A., Pinsky M. Asymptotic behavior of solutions of linear stochastic differential systems. Trans. Amer. Math. Soc.,1973,181:1-22.
    [16]Friedman A., Pinsky M. Asymptotic behavior and spiraling properties of stochastic equations. Trans. Amer. Math. Soc.,1973,186:331-358.
    [17]0 ksendal B.K. Stochastic Differential Equation:an Introduction with Applications.4-th Ed. Springer, Berlin,1995.
    [18]Chow P. Stability of nonlinear stochastic evolution equations. J. Math. Anal. Appl.,1982,89:400-419.
    [19]Mao X.R. Almost sure polynomial stability for a class of stochastic differential equations. Quarterly J. Math.,1992,43(2):339-348.
    [20]Mao X.R. Almost sure exponential stability for a class of stochastic differential equations with applications to stochastic stochastic flows. Sto. Anal. Appl.,1993, 11(1):77-95.
    [21]Bellen A., Zennaro M. Numerical methods for delay differential equations. Oxford University Press, New York,2003.
    [22]Kushner H. On the stability of processes defined by stochastic difference-differential equations. J. Differ. Equations.,1968,4:424-443.
    [23]Mohammed S.E.A. Stochastic Functional Differential Equations. Pitman (Advanced Publishing Program), Boston, MA,1984.
    [24]Mohammed S.E.A. The Lyapunov spectrum and stable manifolds for stochastic linear delay equations. Stochastics and Stochastics Reports,1990,29:89-131.
    [25]Mao X.R. Almost sure exponential stability for delay stochastic differential equations with repesct to semimartingales. Stoch. Anal. Appl.,1991, 9(2):177-194.
    [26]Mao X.R. Razumikhin-type theorems on exponential stability of stochastic functional differential equations. Stoch. Proc. Appl.,1996,65:233-250.
    [27]Kolmanovskii V.B. On stability of some hereditary systems. Automatika i Telemekhanika,1993,11:45-59.
    [28]Kolmanovskii V.B., Shaikhet L.E. New results in stablity theory for stochastic functional-differential equations (SFDEs) and their applications. In Proceeding of Dynamic Systems and Applications. Dynamic Publisher,1994,1:167-171.
    [29]Shaikhet L.E. Modern state and development perspectives of Lyapunov functional method in the stability theory of hereditary systems. Theory of Stochastic Processes,1996,2:248-259.
    [30]Mao X.R. Exponential Stability of Stochastic Differential Equations. Marcel Dekker, New York,1994.
    [31]Mao X.R., Koroleva N., Rodkina A. Robust stability of uncertain stochastic differential delay equations. Syst. Control. Lett.,1998,35:325-336.
    [32]Baker C.T.H., Buckwar E. Continuous θ-methods for the stochastic pantograph equation. Electron T. Numer. Ana.,2000,11:131-151.
    [33]Appleby J.A.D., Buckwar E. Sufficient condition for polynomial asymptotic behavior of the stochastic pantograph equation. Available at www.dcu.ie/maths/research/preprint.shtml.
    [34]Fan Z.C., Liu M.Z., Cao W.R.. Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations. J. Math. Anal. Appl.,2007,325:1142-1159.
    [35]Fan Z.C., Song M.H., Liu M.Z. The ath moment stability for the stochastic pantograph equation. J. Comput. Appl. Math.,2009,233:109-120.
    [36]Kolmanovskii V.B., Shaikhet L.E. A method for constructing Lyapunov Functionals for stochastic differential equations of neutral type. Diff. Equat.,1996, 31(11):1819-1825.
    [37]Liu K., Xia X.W. On the exponential stability in mean square of neutral stochastic functional differential equations. Syst. Control. Lett.,1999, 37:207-215.
    [38]Luo Q., Mao X.R., Shen Y. New criteriaon exponential stability of neutral stochastic differential delay equations. Syst. Control. Lett.,2006,55:826-834.
    [39]Luo J.W. Fixed points and stability of neutral stochastic delay differential equations. J. Math. Anal. Appl.,2007,334:431-440.
    [40]Balasubramaniama P., Parkb J.Y., VincentAntonyKumar A. Existence of solutions for semilinear neutral stochastic functional differential equations with nonlocal conditions. J. Nonlinear. Anal.,2009,71:1049-1058.
    [41]Jankovic S., Randjelovic J., Jovanovic M. Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations. J. Math. Anal. Appl.,2009,355:811-820.
    [42]Mao X.R. Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations. SIAM J. Math. Anal.,1997, 28(2):389-401.
    [43]Kolmanovskii V.B., Nosov V.R. Stability of Functional Differential Equations. Academic Press,1986.
    [44]Hu Y.Z., Wu F.K., Huang C.M. Robustness of exponential stability of a class of stochastic functional differential equations with infinite delay. Automatica,2009, 45:2577-2584.
    [45]Zhou S.B., Wang Z.Y., Feng D. Stochastic functional differential equations with infinite delay. J. Math. Anal. Appl.,2009,357:416-426.
    [46]Ren Y. and Xia N.M. A note on the existence and uniqueness of the solution to neutral stochastic functional differential equations with infinite delay. J. Appl. Math. Comput.,2009,214:457-461.
    [47]Jovanovi'c M., Jankovi'c S. Neutral stochastic functional differential equations with additive perturbations. J. Appl. Math. Comput.,2009,213:370-379.
    [48]Maruyama G. Continuous markov proeesses and stochastic equations. Rend.Circolo.Math.Palermo.1955,4:48-90.
    [49]Milstein.GN. Approximate integration of stochastic differential equations. Theor.Prob.Appl.,1974,19:557-562.
    [50]Rumelin W. Numerical treatment of stochastic differential equations. SIAM J.Numer.Anal.,1982,19:604-613.
    [51]Burrage K., Burrage P.M. High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Appl.Numer. Math.,1996,22:81-101.
    [52]Burrage K., Burrage P.M. Order conditions of stochastic Runge-Kutta methods by B-series. SIAM J.Numer.Anal.,2000,38(5):1626-1646.
    [53]Gan S.Q., Schurz H., Zhang H.M. Mean square convergence of stochastic θ-methods for nonlinear neutral stochastic differential delay equations. Int.J.Numer.Anal.Mod.,2011,8(2):201-213.
    [54]Zhang H.M., Gan S.Q. Mean square convergence of one-step methods for neutral stochastic differential delay equations. J. Appl. Math. Comput.,2008, 204:884-890.
    [55]Saito Y, Mitsui T. Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal.,1996,33:2254-2267.
    [56]Halidias N., Kloeden P.E. A note on the Euler-Maruyama scheme for stochastic differential equations with a discontinuous monotone drift coefficient. BIT. Numer. Math.,2008,48:51-59.
    [57]UweKuchler U., Platen E. Strong discrete time approximation of stochastic differential equations with time delay. J. Math. Comput. Simul.,2000, 54:189-205.
    [58]Mao X.R., Sabanis S. Numerical solutions of stochastic differential delay equations under local Lipschitz condition. J. Comput. Appl. Math.,2003, 151:215-227.
    [59]Xiao Y., Zhang H.Y A note on convergence of semi-implicit Euler methods for stochastic pantograph equations. J. Comput. Math. Appl.,2010,59:1419-1424.
    [60]Wu F.K., Mao X.R. Numerical solutions of neutral stochastic functional differential equations. SIAM J. Numer. Anal.,2008,46:1821-1841.
    [61]Talay.D. Efficient numerical schemes for the approximation of expectations of functions the solution of a S.D.E., and applications. Springer Lecture Notes in Control and Inform.1984,61:294-313.
    [62]Milstein G.N. A method of second-order accuracy integration of stochastic differential equations. Theor.Prob.Appl.,1978,23:369-401.
    [63]Platen E. Zur zeitdiskreten approximation von itoprozessen. Diss B., I.Math.Akad.Der Wiss.Der DDR., Berlin,1984.
    [64]Mackevicius V., Navikas J. Second order weak Runge-Kutta type methods for ito equations. Math. Comput. Simu.,2001,57:29-34.
    [65]Tocino A., Vigo-Aguiar J. Weak second order conditions for stochastic Runge-Kutta methods. SIAM J.Sci.Comput.,2002,24:507-523.
    [66]Tocino A., Ardanuy R. Runge-Kutta methods for numerical solution of stochastic differential equations. J.Comput.Appl.Math.,2002,138:219-241.
    [67]Kloeden P.E., Platen E. Numerical Solution of Stochastic Differential Equations. Springer, Berlin,1992.
    [68]Saito Y., Mitsui T. T-stability of numerical schemes for stochastic differential equations, J. World. Sci. Ser. Appl. Anal.,1993,2:333-344.
    [69]Burrage K., Tian T. The composite Euler Method for stiff stochastic differential equations. J. Comput.Appl.Math.2001,131:407-426.
    [70]Burrage K., Mitsui T. Numerical solutions of stochastic differential equations-implementation and stability issues. J. Comput. Appl. Math.,2000, 125:171-182.
    [71]Higham D.J. Mean-square and asymptotical stability of numerical methods for stochastic ordinary differential equations. SIAM J. Appl. Math.,2000, 38:753-769.
    [72]Higham D.J. A-stability and stochastic mean-square stability. BIT,2000, 40:404-409.
    [73]Higham D.J., Mao X.R., Stuart A.M. Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal.,2002, 40:1041-1063.
    [74]Higham D.J., Mao.X.R., Stuart A.M. Exponential mean-square stability of numerical solution stostochastic differential equations. LMS J. Comput. Math., 2003,6:297-313.
    [75]Higham D.J., Mao X.R. Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal., 2007,45(2):592-609.
    [76]Cao W.R., Liu M.Z., Fan Z.C. Stability of the Euler-Maruyama method for stochastic differential delay equations. Appl. Math. Comput.,2004,159:127-135.
    [77]Liu M.Z., Cao W.R., Fan Z.C. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math.,2004,170:255-268.
    [78]曹婉容,刘明珠.随机延迟微分方程半隐式Milstein数值方法的稳定性.哈尔滨工业大学学报,2005,37:446-448.
    [79]曹婉容,刘明珠.随机延迟微分方程Euler-Maruyama数值方法的T-稳定性.哈尔滨工业大学学报,2005,3:303-306.
    [80]Baker C.T.H., Buckwar E. Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations. J. Comput. Appl. Math.,2005,184:404-427.
    [81]Wang Z. Y, Zhang C. J. An analysis of stability of Milstein method for stochastic differential equations with delay. J. Comput. Math. Appl.,2006, 51:1445-1452.
    [82]Mao X.R. Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations. J. Comput. Appl. Math.,2007, 200:297-316.
    [83]王文强.几类非线性随机延迟微分方程数值方法的收敛性和稳定性:[博士学位论文].湘潭:湘潭大学,2007.
    [84]范振成.几类随机延迟微分方程解析解及数值方法的收敛性和稳定性:[博士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [85]Fan Z.C., Song M.H., Liu M.Z. The ath moment stability for the stochastic pantograph equation. J. Comput. Appl. Math.,2009,233:109-120.
    [86]王志勇.随机泛函微分方程的稳态数值解研究:[博士学位论文].武汉:华中科技大学,2008.
    [87]Zhang H.M., Gan S.Q., Hu L. The split-step backward Euler method for linear stochastic delay differential equations. J. Comput. Appl. Math.,2005, 225:558-568.
    [88]张浩敏,甘四清,胡琳.随机比例方程带线性插值的半隐Euler方法的均方收敛性.计算数学,2009,31:379-392.
    [89]肖飞雁,张诚坚.非线性随机Pantograph微分方程及其θ-方法的均方渐近稳定性.应用数学,2009,22:199-203.
    [90]Wang X.J., Gan S.Q. The improved split-step backward Euler method for stochastic differential delay equations. Int. J. Comput. Math.,2011,88(11): 2359-2378.
    [91]王文强,陈艳萍.线性中立型随机延迟微分方程Euler方法的均方稳定性.计算数学,2010,32:206-212.
    [92]王文强,陈艳萍.中立型随机延迟微分方程Milstein方法的均方稳定性.应用数学,2010,23(3):548-553.
    [93]Wang W.Q., Chen Y.P. Mean-square stability of semi-implicit Euler method for nonlinear neutral stochastic delay differential equations Appl. Numer. Math.,2011, 61(5):696-701.
    [94]屈小妹.几类随机微分方程数值方法的稳定性分析:[博士学位论文].武汉:华中科技大学,2011.
    [95]Yu Z.H., Liu M.Z. Almost surely asymptotic stability of numerical solutions for neutral stochastic delay differential equations. Discrete Dyn. Nat.Soc.,2011.
    [96]Milstein G.H., Platen E., Schurz H. Balanced implicit methods for stiff stochastic systems. SIAM J. Appl. Math.,1998,35:1010-1019.
    [97]Tian T., Burrage K. Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math.,2001,38:167-185.
    [98]Burrage K., Tian T. The composite Euler method for stiff stochastic differential equations. J. Comput. Appl. Math.,2001,131:407-426.
    [99]Schurz H. Convergence and stability of balanced implicit methods for systems of SDEs. Int. J. Numer. Anal. Mod.,2005,2:197-220.
    [100]Alcock J., Burrage K. A note on the balanced method. BIT. Numer. Math., 2006,46:689-710.
    [101]Kahl C, Schurz H. Balanced Milstein Methods for SDE s. Monte Carlo Methods and Applications,2006,12:143-170.
    [102]Wang P., Liu Z.X. Split-step backward balanced Milstein methods for stiff stochastic systems. J. Appl. Numer. Math.,2009,59:1198-1213.
    [103]Grigoriu M. Response of dynamic systems to Poisson white noise. J.Sound Vib.,1996,195(3):375-389.
    [104]Grigoriu M. Dynamic systems with Poisson white noise. Nonlinear Dynam., 2004,36:255-266.
    [105]Kou S.G., A jump diffusion model for option pricing, Manage. Sci.2002, 48:1086-1101.
    [106]Sobczyk K. Stochastic differential equations with applications to physics and engineering. Kluwer Academic, Dordrecht,1991.
    [107]Situ R. Theory of stochastic differential equations with jumps and applications. Springer-Verlag New York, LLC,2010.
    [108]Luo J.W. Comparison principle and stability of Ito stochastic differential delay equations with Poisson jump and Markovian switching. Nonlinear Anal-Theor.,2006,64:253-262.
    [109]Yin J.L., Mao X.R. The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications. J. Math. Anal. Appl.,2008,346:345-358.
    [110]Liu D.Z., Yang Y. F. Doubly perturbed neutral diffusion processes with Markovian switching and Poisson jumps. Appl. Math. Lett.,2010, 23(10):1141-1146.
    [111]Liu D.Z., Yang.G.Y., Zhang W. The stability of neutral stochastic delay differential equations with Poisson jumps by fixed points. J. Comput. Appl. Math., 2011,235(10):3115-3120.
    [112]Luo J.W. Doubly perturbed jump-diffusion processes. J. Math. Anal. Appl., 2009,351:147-151.
    [113]Xi F.B. Asymptotic properties of jump-diffusion processes with state-dependent switching. Stoc. Proc. Appl.,2009,119:2198-2221.
    [114]Higham D.J., Kloeden P.E. Numerical methods for nonlinear stochastic differential equations with jumps. Numer. Math.,2005,101:101-119.
    [115]Higham D.J., Kloeden P.E. Convergence and stability of implicit methods for jump-diffusion systems. Int. J. Numer. Anal. Mod.,2006,3:125-140.
    [116]Higham D.J., Kloeden P.E. Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems. J. Comput. Appl. Math.,2007, 205:949-956.
    [117]Li R.H., Meng H.B., Dai Y.H. Convergence of numerical solutions to stochastic delay differential equations with jumps. Appl. Math. Comput.,2006, 172:584-602.
    [118]Wang L.S., Mei C.L., Xue H. The semi-implicit Euler methods for stochastic delay differential equations with jumps. Appl. Math. Comput.,2007, 192:567-578.
    [119]Chalmers G.D., Higham D.J. Asymptotic stability of a jump-diffusion equation and its numerical approximation. SIAM J. Sci. Comput.,2008,31:1141-1155.
    [120]Wei M. Convergence of numerical solutions for variable delay differential equations driven by Poisson random jump measure. Appl. Math. Comput.,2009, 212:409-417.
    [121]赵贵华.几类带跳随机微分方程数值解的收敛性和稳定性:[博士学位论文].哈尔滨:哈尔滨工业大学,2009.
    [122]Wang X.J., Gan S.Q. Compensated stochastic theta methods for stochastic differential equations with jumps. Appl. Numer. Math.,2010,60:877-887.
    [123]Li Q.Y., Gan S.Q. Almost sure exponential stability of numerical solutions for stochastic delay differential equations with jumps. J Appl. Math. Comput.,2011, 37:541-557.
    [124]黄志远.随机分析学基础(第二版).北京:科学出版社,2001.
    [125]Lamberton D., Lapeyre B. Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall, London,1996.
    [126]Milstein G.N. Numerical Integration of Stochastic Differential Equations. Dordrecht, Kluwer,1995.
    [127]Szpruch L., Mao X.R. Strong convergence of numerical methods for nonlinear stochastic differential equations under monotone conditions. Available at www.mathstat.strath.ac.uk/downloads/publications/31ukas_szpruch.pdf.
    [128]Appleby J.A.D., Berkolaiko G., Rodkina A. Non-exponential stability and decay rates in non-linear stochastic difference equation with unbounded noises. Stochastics An International Journal of Probability and Stochastic Processes: formerly Stochastics and Stochastics Reports.2009,81:99-127.
    [129]Higham D.J. Mean-square and asymptotic stability of the stochastic theta methods. SIAM J. Numer. Anal.,2000,38:753-769.
    [130]Fan Z.C., Liu M.Z. The asymptotically mean square stability of the linear stochastic pantograph equation, Mathematica Applicata,2007,20:519-523.
    [131]Buckwar E. One-step approximations for stochastic functional differential equations. Appl. Numer. Math.,2006,56:667-681.
    [132]Maghsoodi Y. Mean square efficient numerical solution of jump-diffusion stochastic differential equations. Indian J. Statist.,1996,58:25-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700