带泊松测度随机微分方程数值解的收敛性和稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在物理、化学、生物、医学、地质、天文、金融等领域带泊松测度随机微分方程作为数学模型具有重要的理论价值和实际应用意义。该类方程常被用作对一类轨道可以间断的Markov过程建立模型,特别是在金融危机背景下更实际地描述了金融市场的运行行为。由于很难得到带泊松测度随机微分方程精确解的表达式,研究数值解及其性质具有重要的理论和实际意义。本文主要研究了带泊松测度随机微分方程数值解的收敛性和稳定性。
     本文首先叙述了带泊松测度随机微分方程的应用背景和研究历史,回顾了其精确解的基本性质,几乎必然稳定性和p (p>2)阶矩稳定性的发展状况。叙述了带泊松测度随机微分方程数值解的研究现状。给出了常用的符号和基本知识。
     针对d维带泊松测度随机微分方程,利用泊松测度的补偿测度构造了隐式补偿Euler方法。研究了在全局Lipschitz条件和线性增长条件下隐式补偿Euler方法的均方收敛性。在单边Lipschitz条件下讨论了方程精确解均方指数稳定的条件;研究了在保证方程均方指数稳定的前提下,隐式补偿Euler方法都是均方指数稳定性。最后,给出了数值算例并用Matlab绘图验证了收敛性和稳定性的结论。
     针对d维带泊松测度随机微分方程,给出了Euler方法的格式;研究了在非Lipschitz条件下方程的精确解和数值解都以大概率存在于紧集;研究了在非Lipschitz条件下Euler方法的依概率收敛性。给出了数值算例验证得到的收敛性结论。
     针对d维带泊松测度随机延迟微分方程,构造了Euler方法,给出了方程全局解的概念并在广义Khasminskii条件下证明了其存在唯一性;研究了在广义Khasminskii条件下方程的精确解和数值解都以大概率存在于紧集,给出了Euler方法的依概率收敛性。对得到的收敛性结论给出了相应的数值算例。
     最后,针对d维自变量分段连续型带泊松测度随机微分方程,利用泊松测度的补偿测度构造了隐式补偿Euler方法,定义了方程精确解的概念并证明了在全局Lipschitz条件和线性增长条件下其存在唯一性;研究了在全局Lipschitz条件和线性增长条件下隐式补偿Euler方法的收敛性。在单边Lipschitz条件下讨论了方程均方渐近稳定的条件,研究了在此条件下隐式补偿Euler方法的均方渐近稳定性。
As mathematical models, stochastic differential equations with Poisson measurehave important theoretical value and practical application significance in physics, chem-istry, biology, medicine, geology, astronomy, finance and other fields. This kind of e-quations are often used to establish the models for the discontinuous tracks of Markovprocesses, especially to describe the operation of financial markets in the financial cri-sis. Since it’s difficult to obtain the exact solutions of these equations, the study of thenumerical methods and properties is of great importance in theory and application. Thispaper mainly deals with the convergence and stability of numerical solutions for stochas-tic differential equations with Poisson measure.
     This paper first presents the application background and the research history of s-tochastic differential equations with Poisson measure, and then reviews the basic proper-ties of the exact solutions and the development of almost sure stability and p th (p>2)moment stability. The current situation of numerical solutions to stochastic differential e-quations with Poisson measure is also presented, together with commonly used notationsand basic knowledge.
     Implicit compensated Euler method is constructed by using the compensated mea-sure of Poisson measure for the d dimensional stochastic differential equations with Pois-son measure. Mean-square convergence of the implicit compensated Euler method isproved under the global Lipschitz conditions and the linear growth conditions. Mean-square exponential stability of the equations is derived under the one-sided Lipschitz con-ditions. On the premise of ensuring the equations to be exponentially stable in meansquare, for arbitrary selected step size, the implicit compensated Euler method is provedto be exponentially stable in mean square. With the numerical examples, the conclusionsof the convergence and stability are verified by Matlab drawing.
     The Euler method is given for the d dimensional stochastic differential equationswith Poisson measure. It is proved that the exact solutions and numerical solutions of theequations are in a compact set with a large probability under the non-Lipschitz conditions.The convergence in probability of the Euler method is given under the non-Lipschitzconditions and then is verified by a numerical example.
     The Euler method is constructed for the d dimensional stochastic delay differentialequations with Poisson measure. The global solutions for the equations are given andproved to be unique under the generalized Khasminskii-type conditions. It is proved thatthe exact solutions and numerical solutions of the equations are in a compact set with alarge probability under the generalized Khasminskii-type conditions. The convergencein probability of the Euler method is verified. The corresponding numerical example isgiven for the convergence.
     Finally, by using the compensated measure of Poisson measure, implicit compensat-ed Euler method is constructed for the d dimensional equations with piecewise continuousarguments driven by Wiener process and Poisson measure. The concept of the exact solu-tions of the equations is defined. The existence and uniqueness of the exact solutions areproved under the global Lipschitz conditions and the linear growth conditions. The con-vergence of the implicit compensated Euler method is verified under the global Lipschitzconditions and the linear growth conditions. Under the one-sided Lipschitz conditons,the mean-square asymptotical stability is given for the equations and it is proved that theimplicit compensaed Euler method is mean-square asymptotically stable.
引文
1Fama E F. Portfolio Analysis in a Stable Paretian Market[J]. Management Sci.,1965,11:404-419.
    2Bodo B A, Thomoson M E. A Review on Stochastic Differential Equations forApplications in Hydorology[J]. Stochastic Hydrol. Hydraul.,1987,1:81-100.
    3Sobczyk K. Stochastic Differential Equations with Applications to Physics and En-gineering[M]. Dordrecht: Kluwer Academic,1991.
    4Snyder D L, Miller M I. Random Point Processes in Time and Space[M]. Berlin-Heidelberg: Springer,1991.
    5Giraudo M, Sacerdote L. Jump-Diffusion Processes as Models for Neuronal Activ-ity[J]. Biosystems,1997,40:75-82.
    6Turner T, Schnell S, Burrage K. Stochastic Approaches for Modeling in Vivor Rac-tions [J]. Computat. Biol. Chem.,2004,28(3):165-178.
    7Hanson F B. Applied Stochastic Processes and Control for Jump-Diffusions[M].Philadelphia: SIAM,2007.
    8Mandelbrot B. The Variation of Certain Speculative Prices[J]. J. Business,1963,36:394-419.
    9Andersen L, Andreasen J. Jump-Diffusion Processes: Volatility Smile Fitting andNumerical Methods for Options Pricing[J]. Rev. Deriv. Res.,2000,4:231-262.
    10Carr P, Geman H, Madan D B, Yor M. The Fine Structure of Asset Returns: AnEmpirical Investigation[J]. J. Business,2002,75:305-332.
    11Kou S G. A Jump-Diffusion Model for Option Pricing[J]. Manage. Sci.,2002,48:1086–1101.
    12Glasserman P, Merener N. Numerical Solution of Jump-diffusion LIBOR MarketModels [J]. Finance Stoch.,2003,7:1-27.
    13Asmussen S, Avran F, Pistorius M R. Russian and American Put Options underExponential Phase-Type L′evy Models[J]. Stochastic Process. Appl.,2004,109:79-111.
    14Platen E, Bruti-Liberati N. Numerical Solutions of Stochastic Differential Equa-tions with Jumps in Finance[M]. Berlin: Springer,2010.
    15Black F, Scholes M. The Pricing of Options and Corporate Liability[J]. J. Polit.Economy,1973,81:637-659.
    16Merton R C. Option Pricing when Underlying Stock Returns Are Discintinuous[J].J. Financial Econom.,1976,2:125-144.
    17Sch¨onbucher P J. Credit Derivatives Pricing Models: Models, Pricing and Imple-mentation[M]. Chichester: Wiley,2003:86-103.
    18Duffie D, Filipovic D, Schachermayer W. Affine Processes and Applications in Fi-nance[J]. Ann. Appl. Probab.,2003,13:984-1053.
    19Cont R, Tankov P. Financial Modelling with Jump Processes, Financ. Math. Ser[M].London: Chapman&Hall/CRC,2004.
    20Ma Y T. Transportation Inequalities for Stochastic Differential Equations withJumps[J]. Stoch. Proc. Appl.,2010,120(1):2-21.
    21Zhao J. Strong Solutions of a Class of Stochastic Differential Equations with Jump-s[J]. Stoch. Anal. Appl.,2010,28(5):735-746.
    22Belopola S, Ya I, Filimonova S R. Stochastic Ddifferential Equations with Diffu-sion and Jumps Modeling Currency Markets[J]. Vestnik St. Petersburg University:Mathematics,2010,22(4):247-255.
    23Brahim B, Salah H. Successive Approximation of Neutral Functional StochasticDifferential Equations with Jumps[J]. Stat. Probabil. Lett.,2010,80(5):324-332.
    24Bismuta T Atsushi, Elworthya. Li-Type Formula for Stochastic Differential Equa-tions with Jumps[J]. J. Theor. Probab.,2010,23(2):576-604.
    25Slomin′ski L, Wojciechowski T. Stochastic Differential Equations with Jump Re-flection at Time-Dependent Barriers[J]. Stoch. Proc. Appl.,2010,120(9):1701-1721.
    26Fan X L, Ren Y, Zhu D J. A Note on the Doubly Reflected Backward Stochas-tic Differential Equations Driven by a L′evy Process[J]. Stat. Probabil. Lett.,2010,80(7-8):690-696.
    27Boufoussi B, Hajji S. Successive Approximation of Neutral Functional StochasticDifferential Equations with Jumps[J]. Stat. Probabil. Lett.,2010,80(5-6):324-332.
    28Aman A, Owo J M. Generalized Backward Doubly Stochastic Differential Equa-tions Driven by L′evy Processes with Non-Lipschitz Coefficients[J]. Probability andMathematical Statistics,2010,30(2):259-272.
    29Mao W, Han X J. A Note on Convergence Analysis for Implicit Simulations of S-tochastic Differential Equations with Random Jump Magnitudes[J]. Far East Jour-nal of Mathematical Sciences,2010,46(1):1-14.
    30Fu Z F, Li Z H. Stochastic Equations of Non-Negative Processes with Jumps[J].Stoch. Proc. Appl.,2010,120(3):306-330.
    31Bao J H, Yuan C G. Comparison Theorem for Stochastic Differential Delay Equa-tions with Jumps[J]. Math.Sci.,2011,116(2):119-132.
    32Zhou G L, Hou Z T. The Ergodicity of Stochastic Partial Differential Equations withL′evy Jump[J]. Acta. Math. Sin.,2011,27(12):2415-2436.
    33Ogihara T, Yoshida N. Quasi-Likelihood Analysis for the Stochastic DifferentialEquation with Jumps[J]. Stat. Inference Stoch. Process.,2011,14(3):189-229.
    34Shen L, Elliott R J. Backward Stochastic Differential Equations for a Single JumpProcess[J]. Stoch. Anal. Appl.,2011,29(4):654-673.
    35Scheemaekere X D. A Converse Comparison Theorem for Backward StochasticDifferential Equations with Jumps[J]. Stat. Probabil. Lett.,2011,81(2):298-301.
    36Jiang F, Shen Y, Liu L. Taylor Approximation of the Solutions of Stochastic Dif-ferential Delay Equations with Poisson Jump[J]. Commun. Nonlinear Sci.,2011,16(2):798-804.
    37Federico S, ksendal B K. Optimal Stopping of Stochastic Differential Equationswith Delay Driven by L′evy Noise[J]. Potential Anal.,2011,34(2):181-198.
    38Dereich S, Heidenreich F. A Multilevel Monte Carlo Algorithm for L′evy-DrivenStochastic Differential Equations[J]. Stoch. Proc. Appl.,2011,121(7):1565-1587.
    39Bielaczyc T. Hausdorff Dimension of Invariant Measures Related to Poisson DrivenStochastic Differential Equations[J]. Ann. Pol. Math.,2011,101(1):67-74.
    40Liu D Z, Yang G Y, Zhang W. The Stability of Neutral Stochastic Delay DifferentialEquations with Poisson Jumps by Fixed Points[J]. J. Comput. Appl. Math.,2011,235(10):3115-3120.
    41Hu L, Gan S Q. Convergence and Stability of the Balanced Methods for StochasticDifferential Equations with Jumps[J]. Int. J. Comput. Math.,2011,88(10):2089-2108.
    42Hu L Y, Ren Y. A Note on the Reflected Backward Stochastic Differential Equa-tions Driven by a L′evy Process with Stochastic Lipschitz Condition[J]. Appl. Math.Comput.,2011,218(8):4325-4332.
    43Liu D Z. Mean Square Stability of Impulsive Stochastic Delay Differential Equa-tions with Markovian Switching and Poisson Jumps[J]. Proceedings of World A-cademy of Science,2011,(78):24.
    44Tan J G, Wang H L. Mean-square Stability of the Euler–Maruyama Method forStochastic Differential Delay Equations with Jumps[J]. Int. J. Comput. Math.,2011,88(2):421-429.
    45Aman A, Owo J M. Generalized Backward Doubly Stochastic Differential Equa-tions Driven by L′evy Processes with Non-Lipschitz Coefficients[J]. Probability andMathematical Statistics,2011,30(2):259-272.
    46Bodnarchuk S V, Kulik A M. Conditions of Smoothness for the Distribution Densityof a Solution of a Multidimensional Linear Stochastic Differential Equation withL′evy Noise[J]. Ukrainian Mathematical Journal,2011,63(4):501-515.
    47Li Q Y, Gan S Q. Almost Sure Exponential Stability of Numerical Solutions forStochastic Delay Differential Equations with Jumps[J]. J. Appl. Math. Comput.,2011,37(1-2):541-557.
    48Zhu Q F, Shi Y F. Backward Doubly Stochastic Differential Equations with Jumpsand Stochastic Partial Differential-Integral Equations[J]. Chinese Ann. Math. B,2012,33(1):127-142.
    49Lin H N, Wang J. Successful Couplings for a Class of Stochastic Differential Equa-tions Driven by L′evy Processes[J]. Sci. China, Math.,2012,55(8):1735-1748.
    50Wang Y, Liu Z X. Almost Periodic Solutions for Stochastic Differential Equationswith L′evy Noise[J]. Nonlinearity,2012,25(10):2803.
    51Yasinsky V K, Dovgun A Y, Yasinsky E V. Optimal Linear Filtering for Systemsof Stochastic Differential Equations with Poisson Perturbations[J]. Cybernetics andSystems Analysis,2012,48(1):31-38.
    52Yasinsky V K, Malyka I V. Parametric Continuity of Solutions to Stochastic Func-tional Differential Equations with Poisson Perturbations[J]. Cybernetics and Sys-tems Analysis,2012,48(6):846-860.
    53Aman A J, Owo M. Generalized Backward Doubly Stochastic Differential Equa-tions Driven by L′evy Processes with Continuous Coefficients[J]. Acta. Math. Sin.,2012,28(10):2011-2020.
    54Xie B. Uniqueness of Invariant Measures of Infinite Dimensional Stochastic Differ-ential Equations Driven by L′evy Noises[J]. Potential Analysis,2012,36(1):35-66.
    55Shen L, Elliott R J. Backward Stochastic Difference Equations for a Single JumpProcess[J]. Methodol. Comput. Appl.,2012,14(4):955-971.
    56Ren J G, Wu J. The Optimal Control Problem Associated with Multi-Valued S-tochastic Differential Equations with Jumps[J]. Nonlinear Anal.,2013,86:30-51.
    57Bruti-Liberati N, Platen E. On the Strong Approximation of Jump-Diffusion Pro-cesses[J]. Technical Report, Quantitative Finance Research Papers157, Universityof Technology, Sydney,2005.
    58Bruti-Liberati N, Platen E. Approximation of Jump Diffusions in Finance and Eco-nomics[J]. Comput. Econ.,2007,29:283-312.
    59Bruti-Liberati N, Platen E. Strong Approximations of Stochastic Differential Equa-tions with Jumps[J]. J. Comput. Appl. Math.,2007,205:982-1001.
    60Albeverio S, Brze′zniak Z, Wu J L. Existence of Global Solutions and InvariantMeasures for Stochastic Differential Equations Driven by Poisson Type Noise withNon-Lipschitz Coefficients[J]. J. Math. Anal. Appl.,2010,371:309-322.
    61Swishchuk A V, Kazmerchuk Y I. Stability of Stochastic Differential Delay It o’sEquations with Poisson Jumps and with Markovian Switchings. Application to Fi-nancial Models[J]. Teor. Imovir. Mater. Stat.,2001,64:141-151.
    62Li C W, Dong Z, Situ R. Almost Sure Stability of Linear Stochastic DifferentialEquations with Jumps[J]. Probab. Theory Relat. Fields,2002,123:121-155.
    63Ren Y, Zhou Q, Chen L. Existence, Uniqueness and Stability of Mild Solutions forTime-Dependent Stochastic Evolution Equations with Poisson Jumps and InfiniteDelay[J]. J. Optim. Theory Appl.,2011,149:315-331.
    64Mikulevicius R, Platen E. Time Discrete Taylor Approximations for It o Processeswith Jump Component[J]. Math. Nachr.,1988,138:93-104.
    65Liu X Q, Li C W. Weak Approximations and Extrapolations of Stochastic Differen-tial Equations with Jumps[J]. SIAM J. Numer. Anal.,2000,37(6):1747-1767.
    66Kubilis K, Platen E. Rate of Weak Convergence of the Euler Approximation forDiffusion Processes with Jumps[J]. Monte Carlo Methods Appl.,2002,8:83-96.
    67Glasserman P, Merener N. Convergence of a Discretization Scheme for Jump-Diffusion Processes with State-Dependent Intensities[J]. Proc. R. Soc. Lond. A,2004,460:111-127.
    68Bruti-Liberati N, Platen E. On the Weak Approximation of Jump-Diffusion Pro-cesses[J]. Technical Report, University of Technology, Sydney,2006.
    69Shimizu Y. M-Estimation for Discretely Observed Ergodic Diffusion Processeswith Infinitely Many Jumps[J]. Stat. Inference Stoch. Process.,2006,9:179-225.
    70Mordecki E, Szepessy A, Tempone R, Zouraris G E. Adaptive Weak Approximationof Diffusions with Jumps[J]. SIAM J. Numer. Anal.,2008,46(4):1732-1768.
    71Carbonell F, Jimenez J C. Weak Local Linear Discretization for Stochastic Differ-ential Equations with Jumps[J]. J. Appl. Prob.,2008,45(1):201-210.
    72Kashima K, Kawai R. A Weak Approximation of Stochastic Differential Equationswith Jumps through Tempered Polynomial Optimization[J]. Stoch. Models,2011,27(1):26-49.
    73Platen E. An Approximation Method for a Class of It o Processes with Jump Com-ponent[J]. Liet. Mat. Rink.,1982a,22(2):124-136.
    74Maghsoodi Y, Harris C J. In Probability Approximation and Simulation of Non-linear Jump-Diffusion Stochastic Differential Equations[J]. IMA J. Math. Control.Inf.,1987,4:65-92.
    75Li C W. Almost Sure Convergence of Stochastic Differential Equations of Jump-Diffusion Type[J]. Prog. Prob.,1995,36:187-197.
    76Maghsoodi Y. Mean Square Efficient Numerical Solution of Jump-Diffusion S-tochastic Differential Equations[J]. Indian J. Statistics.,1996,58:25-47.
    77Maghsoodi Y. Exact Solutions and Doubly Efficient Approximations and Simu-lation of Jump-Diffusion It o Equations[J]. Stochastic Analysis and Applications,1998,16:1049-1072.
    78Liu X Q, Li C W. Almost Sure Convergence of the Numerical Discretisation ofStochastic Jump Diffusions[J]. Acta Appl. Math.,2000,62:225–244.
    79Gardon′A. The Order of Approximation for Solutions of It o-Type Stochastic Dif-ferential Equations with Jumps[J]. Stoch. Anal. Appl.,2004,22:679-699.
    80Higham D J, Kloeden P E. Numerical Methods for Nonlinear Stochastic DifferentialEquations with Jumps[J]. Numer. Math.,2005,101(1):101-119.
    81Higham D J, Kloeden P E. Convergence and Stability of Implicit Methods for Jump-Diffusion Systems[J]. Int. J. Numer. Anal. Modeling,2006,3:125-140.
    82Gardon′A. The Order1.5Approximation for Solutions of Jump-Diffusion Equa-tions[J]. Stoch. Anal. Appl.,2006,24(6):1147-1168.
    83Higham D J, Kloeden P E. Strong Convergence Rates for Backward Euler on a Classof Nonlinear Jump-Diffusion Problems[J]. J. Comput. Appl. Math.,2007,207:949-956.
    84Li R H, Meng H B, Dai Y H. Convergence of Numerical Solutions to StochasticDelay Differential Equations with Jumps[J]. Appl. Math. Comput.,2006,172:584-602.
    85Mao W. Convergence of Numerical Solutions for Variable Delay Differential Equa-tions Driven by Poisson Random Jump Measure[J]. Appl. Math. Comput.,2009,212:409-417.
    86Buckwar E, Riedler M G. Runge-Kutta Methods for Jump-Diffusion DifferentialEquations[J]. J. Comput. Appl. Math.,2011, doi:10.1016/j.cam.2011.08.001.
    87Mishura Y S, Zubchenko V P. Rate of Convergence in the Euler Scheme for S-tochastic Differential Equations with Non-Lipschitz Diffusion and Poisson Mea-sure[J]. Ukr. Math. J.,2011,63(1):49-73.
    88Huang C, Shi J, Zhang Z M. Two-Stage Stochastic Runge-Kutta Methods forStochastic Differential Equations with Jump-Diffusion[J]. Commun. Math. Sci.,2012,10(4):1317-1329.
    89Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Process-es[M]. North-Holland: Amsterdam,1989.
    90ksendal B, Sulem A. Applied Stochastic Control of Jump Diffusions[M]. Berlin:Springer,2005.
    91Mao X R, Yuan C G. Stochastic Differential Equations with Markovian Switch-ing[M]. London: Imperial College Press,2006:17-200.
    92Higham D J, Mao X, Stuart A M. Exponential Mean Square Stability of NumericalSolutions to Stochastic Differential Equations[J]. London Mathematical Society, J.Comput. and Math.,2003,6:297-313.
    93Liu M Z, Cao W R, Fan Z C. Convergence and Stability of the Semi-Implicit EulerMethod for a Linear Stochastic Differential Delay Equation[J]. J. Comput. Appl.Math.,2004,170:255-268.
    94Higham D J. An Algorithmic Introduction to Numerical Simulation of StochasticDifferential Equations[J]. SIAM Rev.,2001,43(3):525-546.
    95Hairer E, Wanner G. Slolving Ordinary Differential Equations II: Stiff andDifferential-Algebraic Problems[M]. Berlin: Springer-Verlag,1996.
    96Khasminskii R Z. Stochastic Stability of Differential Equations[M]. Alphen a/d Ri-jn: Sijthoff and Noordhoff,1981.
    97Mao X R, Rassias M J. Khasminskii-type Theorems for Stochastic Differential De-lay Equations[J]. J. Sto. Anal. Appl.,2005,23:1045–1069.
    98Wu F. Khasminskii-Type Theorems for Neutral Stochastic Functional DifferentialEquations[J]. Math. Appl. ICATA.,2008,21(4):794–799.
    99Mao X R. Numerical Solutions of Stochastic Differential Delay Equations un-der the Generalized Khasminskii-Type Conditions[J]. Appl. Math. Comput.,2011,217:5512-5524.
    100Wu F, Hu S G. Khasminskii-Type Theorems for Stochastic Functional DifferentialEquations with Infinite Delay[J]. Stat. Probabil. Lett.,2011,81(11):1690-1694.
    101Song M H, Hu L J, Mao X R. Khasminskii-Type Theorems for Stochastic FunctionalDifferential Equations[J]. Discret. Contin. Dyn. S. B,2013,18(6):1697-1714.
    102Shah S M, Wiener J. Advanced Differential Equations with Piecewise ConstantArgument Deviations[J]. Int. J. Math. Math. Sci.,1983,6:671-703.
    103Cooke K L, Wiener J. Retarded Differential Equations with Piecewise ConstantDelays[J]. J. Math. Anal. Appl.,1984,99:265-297.
    104Liu M Z, Song M H, Yang Z W. Stability of Runge-Kutta Methods in the NumericalSolution of Equation du(t)=au(t)dt+a0u([t])dt [J]. J. Comput. Appl. Math.,2004,166:361-370.
    105Song M H, Yang Z W, Liu M Z. Stability of θ-Methods for Advanced DifferentialEquations with Piecewise Continuous Arguments[J]. Comput. Math. Appl.,2005,49:1295-1301.
    106Lv W J, Yang Z W, Liu M Z. Stability of Runge-Kutta Methods for the AlternatelyAdvanced and Retarded Differential Equations with Piecewise Continuous Argu-ments[J]. Comput. Math. Appl.,2007,54:326-335.
    107Yang Z W, Liu M Z, Nieto J J. Runge-Kutta Methods for First-Order PeriodicBoundary Value Differential Equations with Piecewise Constant Arguments[J]. J.Comput. Appl. Math.,2009,233:99-1004.
    108Mao X. Stability of Stochastic Differential Equations with Respect to Semimartin-gales, Longman Scientific and Technical[J]. Pitman Research Notes in MathematicsSeries251,1991.
    109Chalmers G, Higham D. Asymptotic Stability of a Jump-Diffusion Equation and ItsNumerical Approximation[J]. SIAM J. Sci. Comp.,2008,31:1141–1155.
    110Wiener J. Generalized Solutions of Functional Differential Equations[M]. WorldScientific, Singapore,1993:8-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700