模块化AC-DC-AC高频电力变换系统控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力变换技术融合了电力电子学和控制理论,通过有效控制电能转换过程,改变电能形式,为利用新能源和提高供电质量奠定基础。在电力变换技术中,电力变换过程控制是提高电力变换性能的关键,因此电力变换过程控制一直是研究的热点。本文在分析电力变换结构特征的基础上,对电力变换过程中系统运行规律进行研究,论述了针对交流-直流-交流电力变换过程的控制方法。
     主要工作如下:
     1、针对交流-直流电力变换过程,借鉴系统能量决定系统行为的观点,提出了基于能量平衡的功率控制方法。该方法以三相整流结构在dq两相同步旋转坐标系中的数学模型和电力变换过程中交直流两侧功率关系为基础,分别控制瞬时有功功率跟踪动态参考有功功率和控制瞬时无功功率收敛于零,实现输出电压稳定和高功率因数的目标。同时该方法通过设计负载电流补偿,消除了直接功率控制中构造参考有功功率方法所引入的稳态误差。
     2、针对交流-直流电力变换过程中负载不确定的特点,提出了针对三相PWM整流结构的自适应控制方法。该方法通过对负载参数的自适应评估和系统能量关系,求取三相电流的动态基准,并控制三相电流和电流动态基准共同收敛,实现了输出电压的无差控制和高功率因数。在负载评估设计中,该方法突破了负载为正值的限制,拓展了系统的应用范围。
     3、针对直流-交流电力变换过程,采用四桥臂逆变结构,提出了通过第四桥臂对负载产生的不平衡因素进行全补偿的控制方法。该方法遵循第四桥臂电流跟踪三相负载电流负和的原则,分解四个桥臂的控制功能,揭示了四桥臂结构控制的本质,并充分利用四桥臂结构特征,完全发挥出第四桥臂调节三相输出平衡的作用。
     4、针对四桥臂逆变过程中负载不确定条件下三相电感电压的补偿问题,.提出了综合补偿控制方法。该控制方法以第四桥臂补偿负载不平衡因素为基础,采用三相桥臂平衡补偿控制模式。在闭环控制的设计中,通过对控制结构的巧妙构造,以积分算法代替微分算法,使控制器的设计更具实用性。
     5、针对直流-交流电力变换过程,采用单相全桥逆变结构,提出了基于空间矢量调制的闭环控制方法。该方法突破传统的一维控制模式,构造出二维矢量工作平面,并以二维矢量工作平面上桥臂电压、系统输出电压、电感电流的几何关系为基础,设计闭环控制,充分发挥了空间矢量调制方法在减少开关损耗和缓解输出高次谐波方面的优势。
     6、针对单相全桥逆变过程中负载的不确定性,提出了基于状态反馈和前馈补偿的控制方法,消除了负载不确定对系统输出波形所产生的影响,同时基于使系统稳定的实际控制能力,设计控制参数。
     7、指出交流-直流-交流电力变换过程控制研究中存在的问题,并对下一步研究工作进行了展望。
Power conversion technology, which combines power electronics and control theory, can change electric power from one form to another by controlling power conversion processes, and therefore power conversion technology is the foundation of utilizing new energy sources and improving the quality of power supply. In power conversion technology, the control of power conversion processes is the key of improving the performance of power conversions, so the control of power conversion processes is a hot research topic. Based on analyzing the topological structure of power conversions, we focus on studying the rules of the system operation in power conversion processes and discuss control methods for AC-DC-AC power conversion process.
     The main research work is as follows:
     1. Referring to the idea that the energy decides system behavior, a power control method based on power balance theory is proposed for AC-DC power conversion process in this dissertation. According to the mathematical model of three-phase rectifiers in the synchronous dq coordinates system and the power relation of AC and DC sides in power conversion process, the proposed control scheme controls the instantaneous active power on the track of referenced dynamical active power and the instantaneous reactive power to zero, and therefore steady output voltage and high power factor is realized. In addition, the compensator for the load current is designed and the output error which is introduced from constructed referenced active power in direct power control strategy is avoided in the proposed scheme.
     2. Concerning with the uncertain load condition in AC-DC power conversion process, an adaptive control scheme is proposed for three-phase PWM rectifiers in this dissertation. According to the adaptive estimate of the load parameter and the relation of the system energy, the proposed scheme constructs dynamic reference curve for three-phase current. Then the proposed scheme makes three-phase current and dynamic reference current convergent together, and therefore zero output error and high power factor are realized. The restriction that loads should be positive is broken in the adaptive parameter estimator, so the proposed scheme extends the extent of application.
     3. A control method based on compensating unbalanced effect completely by the fourth leg is proposed for DC-AC power conversion process using four-leg topology. The proposed control method follows the rule that the sum of four legs current is zero and discovers the essence of the control law for four-leg inverters by analyzing the functions of four legs. In addition, the proposed control method exerts the function of the fourth leg to compensating unbalanced effect according to four-leg topology.
     4. To compensate voltages of three-phase inductors under uncertain load conditions, a unique integrated control strategy is proposed in this dissertation. Based on compensating unbalanced effect by the fourth leg, the proposed control strategy compensates symmetrically three-phase output voltages. In addition, the proposed control method uses the integral current instead of the differential current as the control variable in order to make controller practical.
     5. A closed loop control scheme based on SVM is proposed for DC-AC power conversion process using single-phase full-bridge topology. In the proposed scheme, traditional control mode on 1-DOF space is breaken and a 2-DOF vectors plane is structured. Based on the geometrical relation of leg voltage, output voltage and the inductance current on the 2-DOF vectors plane, a closed loop controller is designed. The proposed scheme makes full use of the ability of SVM to lessen switching losses and mitigate harmonic.
     6. Concerning with the uncertain load condition in power inversion process using single-phase full-bridge topology, the control schemes based on state-feedback and feedforward compensation is proposed. The proposed schemes eliminate bad effect on output waveform under uncertain load conditions. In addition, the control parameters are designed based on the stabilization and the control capability of the system.
     7. Some unsolved problems in the research and the application are indicated, and the prospects are presented.
引文
1. Choi H et al. Novel zero-voltage and zero-current switching (ZVZCS) full-bridge PWM converter using coupled output inductor[C]. IEEE APEC,2001, pp.967-973.
    2. D.D.C.Lu et al. A single-stage high power factor voltage regulator with reduced imtermediate bus voltage stress[C]. IEEE PESC,2003, pp.663-668.
    3. O.Garcia et al. Universal line voltage single-stage AC/DC converter[C]. IEEE APEC,2002, Vol.1, pp.237-241.
    4. 陈坚.电力电子学[M].高等教育出版社,2002.
    5. 赵良炳.现代电力电子技术基础[M].清华大学出版社,1995.
    6. Daolian Chen, Lei Li. Novel Static Inverters with high frequency pulse DC link[J]. IEEE Trans. on Power Electronics,2004, Vol.19, No.4.
    7. 吴洪洋,何湘宁等.级联型多电平变换器PWM控制方法的研究[J].中国电机工程学报,2001,Vol.21,No.8,pp.42-46.
    8. 李磊,陈道炼等.双极性移相控制高频脉冲交流环节逆变器研究[J].电工技术学报,2002,Vol.17,No.6,pp.33-37.
    9. Lee Min-Kwang et al. New zero-current-transition PWM DC/DC converters without current stress[C]. IEEE PESC,2001, pp.1069-1074.
    10. Jinghai Zhou et al. A novel current-tripler DC/DC converter[C]. IEEE PESC,2003, pp.1373-1378.
    11. R. Datta, V. T. Ranganathan. Direct power control of grid-connected wound rotor induction machine without rotor position sensors[J]. IEEE Trans. Power electronics,2001,16(3):390-399.
    12. M. Cichowlas, M. Malinowski, M. P. Kazmierkowski, et al. Active filtering function of three-phase PWM boost rectifier under different line voltage conditions[J]. IEEE Trans. Industrial electronics,2005,52(2): 410-419.
    13. Lie Xu, Phillip Cartwright. Direct active and reactive power control of DFIG for wind energy generation[J]. IEEE Trans. Energy conversion,2006,21 (3):750-758.
    14. J.W. Kolar, U. Drofenik, F.C. Zach. VIENNA rectifier Ⅱ—a novel single-stage high-frequency isolated three-phase PWM rectifier system[J]. IEEE Trans. Industrial electronics,1999,46(4):674-691.
    15. A. Veltmanl, J.L. Duartel. Fish method based on-line optimal control for PWM rectifiers[C].26th IEEE. PESC.1995, vol.1:549-555.
    16.吴洪洋,何湘宁.一种新颖的三电平软开关功率因数校正电路[J].中国电机工程学报,2002,22(10):22-27.
    17.曲小慧,阮新波.单相功率因数校止变换器输入电流过零畸变的改善方法[J].中国电机工程学报,2006,26(24):65-71.
    18.潘飞蹊,陈星弼.高功率因数Boost变换器电流滞环控制的一种简单实现方案[J].电子学报,2004,32(8):1330-1333.
    19.马皓,郎芸萍.一种关于单相Boost功率因数校正器数字控制的改进算法[J].电工技术学报,2006,21(2):83-87.
    20. T. Shimizu, T. Fujita, G. Kimura, et al. A unity power factor PWM rectifier with DC ripple compensation[J]. IEEE Trans. Industrial electronics,1997,44(4):447-455.
    21. J.C. Crebier, J.P. Ferrieux. PFC full bridge rectifiers EMI modeling and analysis—common mode disturbance reduction[J]. IEEE Trans. Power electronics,2004,19(2):378-387.
    22. G. Escobar, D. Chevreau, R. Ortega, et al. An adaptive passivity-based controller for a unity power factor rectifier[J]. IEEE Trans. Control systems technology,2001,9(4):637-644.
    23. C.Gaviria, E.Fossas, R.Grino. Robust controller for a full-bridge rectifier using the IDA approach and GSSA modeling[J]. IEEE Trans. Circuits and systems—Ⅰ,2005,52(3):609-616.
    24. Dimitrios Karagiannis, Eduardo Mendes, Alessandro Astolfi, et al. An experimental comparison of several PWM controllers for a single-phase AC-DC converter[J]. IEEE Trans. Control systems technology,2003, 11(6):940-947.
    25. H. Yoo, J. H. Kim, S. K. Sul. Sensorless Operation of a PWM Rectifier for a Distributed Generation[J]. IEEE Trans. Power electronics,2007,22(3):1014-1018.
    26. B. Yin, R. Oruganti, S. K. Panda. Et al. Experimental verification of a dual single-Input single-output Model of a three-phase Boost-type PWM rectifier[C]. IEEE.31st annual conference of industrial electronics society,2005, pp:1030-1035.
    27. Ralph Kennel, Pawel Szczupak. Sensorless control of 3-phase PWM rectifier[C].36th IEEE PESC,2005, pp: 2019-2022.
    28. M. Salo. A three-switch current-source PWM rectifier with active filter function[C].36th IEEE PESC,2005, pp:2230-2236.
    29. H.F. Bilgin, K.N. Kose, G. Zenginobuz, et al. A unity-power-factor buck-type PWM rectifier for medium/high-power DC motor drive applications[J]. IEEE Trans. Industry applications,2002,38(5): 1412-1425.
    30. Pascal Rioual, Herve Pouliquen, Jeanpaul Louis. Regulation of a PWM rectifier in unbalanced network state using a generalized model[J]. IEEE Trans. Power electronics,1996,11(3):495-502.
    31. M. P. Kazmierkowski, M. A. Dzieniakowski, W. Sulkowski. The three phase current controlled transistor DC link PWM converter for bi-directional power flow[C]. PEMC, Budapest, Hungary,1990, pp:465-469.
    32.彭咏龙,肖淼,李亚斌.基于改进空间矢量的新型电流型PWM整流器的研究[J].电工电能新技术,2006,25(2):67-71.
    33. M. Perez, R. Ortega, J.R. Espinoza. Passivity-based PI control of switched power converters[J]. IEEE Trans. Control systems technology,2004,12(6):881-890.
    34. Wang Jiuhe, Yin Hongren, Zhang Jinlong, et al. Study on power decoupling control of three phase voltage source PWM rectifiers[C]. IEEE. IPEMC,2006, vol.1:1-5.
    35. Yu Fang, Yong Xie, Yan Xing. Modeling and Simulation of Three Phase High Power Factor PWM Rectifier[C].5th international conference on IPEMC,2006, vol.2:1-6.
    36. R. Rocha, L.D.S.M. Filho. A discrete current control for PWM rectifier[C]. IEEE ISIE, Dubrovnik, Croatia, 2005, vol.2:681-686.
    37. Yaojun Chen, Yanping Zhong, Shengfa Zhang. A novel nonlinear control method for the output voltage of three-phase voltage-source PWM rectifier[C]. The eighth international conference on ICEMS,2005, vol.2: 1290-1294.
    38. Bo Yin, Ramesh Oruganti, S. K. Panda. High-performance control of a Boost type PWM Rectifier under unbalanced operating conditions with integral variable structure control[C].36th IEEE PESC,2005, pp: 1992-1997.
    39. G. Escobar, A. M. Stankovic, J. M. Carrasco, et al. Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces [J]. IEEE Trans. Power electronics,2003, 18(3):823-830.
    40. A.N. Tiwari, P. Agawal, S.P. Srivastava. Modified hysteresis controlled PWM rectifier[J]. IEE. Proceedings. Electric power applications,2003, vol.150:389-396.
    41. M. Malinowski, M. P. Kazmierkowski, S. Hansen, et al. Virtual-flux-based direct power control of three-phase PWM rectifiers[J]. IEEE Trans. Industry applications,2001,37(4):1019-1027.
    42. T. Kataoka, Y. Fuse, D. Nakajima, et al. A three-phase voltage-type PWM rectifier with the function of an active power filter[C]. Eighth International conference on Power electronics and variable speed drives,2000, pp:386-391.
    43. Daewoong Chung, Seungki Sul. Minimum-loss strategy for three-phase PWM rectifier[J]. IEEE Trans. Industrial electronics,1999,46(3):517-526.
    44. Xiong Jian, Kang Yong, Duan Shanxu, et al. Simplified control circuit of three phase PWM rectifier[C]. Fourteenth annual APEC,1999, vol.1:229-233.
    45. P. Barrass, M. Cade. PWM rectifier using indirect voltage sensing[J]. IEE. Proceedings. Electric power applications,1999, vol.146:539-544.
    46. M. P. Kazmierkowski, L. Malesani. Current control techniques for three-phase voltage-source PWM converters:A survey [J]. IEEE Trans. Industrial electronics,1998,45:691-703.
    47. S. Fukuda. LQ control of sinusoidal current PWM rectifiers[J]. IEE. Proceedings. Electric power applications,1997, vol.144:95-100.
    48. Yan Guo, Xiao Wang, H.C. Lee, et al. Pole-placement control of voltage-regulated PWM rectifiers throught real-time multiprocessing[J]. IEEE Trans. Industrial engineering,1994,41(2):224-230.
    49. P. Rioual, H. Pouliquen, J.P. Louis. Control of a PWM rectifier in the unbalanced state by robust voltage regulation[C]. Fifth European conference on power electronics and applications,1993, vol.4:8-14.
    50. A. Draou, Y. Sato, K. Suzuki, et al. A voltage type PWM rectifier with instantaneous current control capability[C].15th international telecommunications energy conference,1993, vol.1:387-392.
    51. R. Wu, S. B. Dewan, G. R. Slemon. Analysis of a PWM ac to dc voltage source converter under the predicted current control with a fixed switching frequency[J]. IEEE Trans. Industry applications,1991, 27(4):756-764.
    52.陈海荣,徐政.基于同步坐标变换的VSC-HVDC暂态模型及其控制器[J].电工技术学报,2007,22(2):121-126.
    53.王久和,李华德,王立明. 电压型PWM整流器直接功率控制系统[J].中国电机工程学报,2006,26(18):54-60.
    54.张纯江,郭忠南,王芹,等.基于新型相位幅值控制的三相PWM整流器双向工作状态分析[J].中国电机工程学报,2006,26(11):167-171.
    55.马皓,郎芸萍.空间矢量简化算法在三相PWM电压型整流器中的应用[J].浙江大学学报(工学版),2006,40(1):176-180.
    56.接峰,黄进.三相PWM整流器直接功率控制的新调制方法[J].电力电子技术,2006,40(4):9-11.
    57.马小珍,徐金榜,万淑芸.一种改进的PWM整流器空间矢量控制算法[J].华中科技大学学报(自然科学版),2005,33(2):50-53.
    58.张纯江,王宝诚,朱艳萍等.基于新型相位幅值控制的三相PWM整流器数学模型[J].中国电机工程学报,2003,23(7):28-31.
    59.毛鸿,吴兆麟.基于三相PWM整流器的无死区空间矢量调制策略[J].中国电机工程学报,2001,21(11):100-104.
    60.佟纯厚.近代交流调速(第2版)[M].冶金工业出版社,2004.
    61.陈伯时,陈敏逊.交流调速系统[M].机械工业出版社,1998.
    62.李崇坚.交流同步电机调速系统[M].科学出版社,2006.
    63. M. Malinowski, M.P. Kazmierkowski, A.M. Trzynadlowski. A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives[J]. IEEE Trans. Power electronics,2003,18(6):1390-1396.
    64.伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-12.
    65.熊健,张凯,裴雪军等.一种改进的PWM整流器间接电流控制方案仿真[J].电工技术学报,2003,18(1):57-63.
    66. Mariusz Malinowski, Marek Jasinski, Marian P. Kazmierkowski. Simple direct power control of three-phase PWM rectifier using space-vector modulation[J]. IEEE Trans. Industrial electronics,2004, 51(2):447-454.
    67. Toshihiko Noguchi, Hiroaki Tomiki, Seiji Kondo, et al. Direct power control of PWM converter without power-source voltage sensors[J]. IEEE Trans. Industry applications,1998,34(3):473-479.
    68.孙丽芹,廖晓钟.PWM整流器的定频直接功率控制[J].电气传动,2006,36(7):39-42.
    69.王久和,李华德,李正熙.电压型PWM整流器直接功率控制技术[J].电工电能新技术,2004,23(3):64-67.
    70.胡照文,黄生祥,赵薇等.基于直接电流控制的PWM整流器功率控制[J].中南大学学报(自然科学版),2006,37(6):1166-1170.
    71. M. Malinowski, M. P. Kazmierkowski. Simulation study of virtual flux based direct power control for three-phase PWM rectifiers[C].26th Annual conference of the IEEE on industrial electronics society,2000, vol.4:2620-2625.
    72. Hongseok Song, Inwon Joo, Kwanghee Nam. Source voltage sensorless estimation scheme for PWM rectifiers under unbalanced conditions[J]. IEEE Trans. Industrial electronics,2003,50(6):1238-1245.
    73. Woocheol Lee, Dongseok Hyum, Taeckkie Lee. A novel control method for three-phase PWM rectifiers using a single current sensor[J]. IEEE Trans. Power electronics,2000,15(5):861-870.
    74.邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    75. R. Ortega, A. Schaft, L Mareels, et al. Putting energy back in control[J]. IEEE Control systems magazine, 2001,21(2):18-33.
    76. R. Ortega, A. Schaft, B. Maschke, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian system[J]. Automatica,2002,38:585-596.
    77. H. Akagi, Y. Kanazawa, A. Nabae. Generalized theory of the instantaneous reactive power in three-phase circuits[C]. IPEC, Tokyo, Japan,1983, pp.1375-1386.
    78. I. Takahashi, Y. Ohmori. High performance direct torque control of an induction motor[J]. IEEE Trans. Industry applications,1989,25:257-264.
    79. D. Telford, M. W. Dunnigan, B. W. Williams. A comparison of vector control and direct torque control of induction machine[C]. IEEE. APEC,2000,vol.1:421-426.
    80. Dongchoon Lee, Daesik Lim. AC voltage and current sensorless control of three-phase PWM rectifiers[J]. IEEE Trans. Power electronics,2002,17(6):883-890.
    81. S. Hansen, M. Malinowski, F. Blaabjerg, et al. Sensorless control strategies for PWM rectifier[C].15th Annual IEEE. APEC,2000, vol.2:832-838.
    82. A. Insleay, N.R. Zargari, G. Joos. A neural network controlled unity power factor three phase PWM rectifier[C].25th Annual IEEE. PESC,1994, vol.1:577-582.
    83. H. Pinheiro, G. Jobs, K. Khorasani. Neural network-based controller for voltage PWM rectifier[C].27th Annual IEEE. PESC,1996, vol.2:1582-1587.
    84. M. Jasinski, M. Liserre, F. Blaabjerg, et al. Fuzzy logic current controller for PWM rectifier[C].28th Annual IEEE. Industrial electronics society,2002, vol.2:1300-1305.
    85. P. Tenti, A. Zuccato, L. Rossetto, et al. Optimum digital control of PWM rectifier[C].20th International Conference on Industrial Electronics,1994, vol.1:382-387.
    86.张占松蔡宣三,开关电源的原理与设计[M],北京:电子工业出版社,1998.
    87.黄俊王兆安,电力电子变流技术[M],北京:机械工业出版社,1995.
    88.张立赵永键,现代电力电子技术[M],北京:科学出版社,1992.
    89.张力,电力电子技术[M],北京:机械工业出版社,1993.
    90. Jang Do-Hyun. PWM methods for two-phase inverters[J]. IEEE Trans. Industrial applications magazine, 2007,13(2):50-61.
    91. H. Abe, H. Fujimoto. Multirate perfect tracking control of single-phase inverter with inter sampling for arbitrary waveform[C]. Power conversion conference, Nagoya, Japan,2007, pp:810-815.
    92. Zhang Kai, Zhou Yunbin, Zhang Yonggao, et al. A Modified Equivalent Circuit for Common-Mode Current of Single-Phase Full-Bridge Inverters[C].32nd Annual IEEE. IECON,2006, pp:2867-2872.
    93. Gu Herong, Yang Zilong, Wang Deyu, et al. Research on control method of double-mode inverter with grid-connection and stand-alone[C].5th Annual IEEE. IPEMC,2006, vol.1:1-5.
    94. M.C. Trigg, H. Dehbonei, C.V. Nayar. Digital sinusoidal PWM generation using a low-cost micro-controller based single-phase inverter[C].10th Annual IEEE. ETFA,2005, vol.1:393-396.
    95. Shyu Kuo-Kai, Yang Ming-Ji, Hong Jing-Heng, et al. Automatic voltage regulator using a novel phase-shifted PWM single-phase inverter[C].30th Annual IEEE. IECON,2004, vol.2:1851-1855.
    96. Xue Yaosuo, Chang Liuchen, S.B. Kjaer, et al. Topologies of single-phase inverters for small distributed power generators:an overview[J]. IEEE Trans. Power electronics,2004,19(5):1305-1313.
    97.王碧芳,官金武,胡伟.级联型多电平逆变器的改进PWM控制方法[J].电力系统自动化,2006,30(7):73-75.
    98.武小梅,严干贵.基于级联式电压源逆变器的静止同步补偿器直流电压控制策略[J].电网技术,2006,30(18):49-53.
    99.成荣仓,刘正之.大容量单相逆变装置并联技术的分析[J].中国电机工程学报,2004,24(7):112-116.
    100.程路,陈乔夫,张宇,等.基于变压器可控负载原理的新型消弧线圈[J].电力系统自动化,2006,30(21):77-81.
    101.李磊,胡文斌,陈劲操,等.两种移相控制全桥式高频环节逆变器比较研究[J].中国电机工程学报,2006,26(6):100-104.
    102.乔崇明,蔡荣芳,成本茂.一种非线性控制的正弦波逆变器的研究[J].浙江大学学报(自然科学版),1999,33(3):283-288.
    103. D.R. Seidl, D.A. Kaiser, R.D. Lorenz. One-step optimal space vector PWM current regulation using a neural network[C]. IEEE. Industry applications society annual meeting,1994, vol.2:867-874.
    104. C. Liu, J. Lai, F.C. Lee, et al. Common-mode components comparison for different SVM schemes in three-phase four-legged converter[C]. IEEE. IPEMC,2000, vol.2:633-638.
    105. L.J. Alexander, O. Giovanna, A.L. Thomas. Elimination of common-mode voltage in three-phase sinusoidal power converters[J]. IEEE Trans. Power electronics,1999,14(5):982-989.
    106. S.M. Ali, M.P. Kazmierkowski. PWM voltage and current control of four-leg VSI[C]. IEEE. ISIE,1998, vol.1:196-201.
    107. R. Zhang, V.H. Prasad, D. Boroyevich, et al. A three-phase inverter with a neutral leg with space vector modulation[C].12th Annual IEEE. APEC,1997, vol.2:857-863.
    108. C.A. Quinn, N. Mohan, H. Mehta. A four-wire current-controlled converter provides harmonic neutralization in three-phase four-wire systems[C].8th Annual IEEE. APEC,1993, pp:841-846.
    109. M. J. Thomas, Rik W. A. A. De Doncker, V. R. Arthur, et al. System design considerations for a high-power aerospace resonant link converter[J]. IEEE Trans. Power electronics,1993,8(4):663-672.
    110. Giri Venkataramanan, M.D. Deepakraj, M.J. Thomas. Discrete pulse modulation strategies for high-frequency inverter systems[J]. IEEE Trans. Power electronics,1993,8(3):279-287.
    111. C.A. Quinn, N. Mohan. Active filtering of harmonic currents in three-phase four-wire systems with three-phase and single-phase nonlinear loads[C].7th Annual IEEE. APEC,1992, pp:829-836.
    112. P. Enjeti, S. Kim. A new DC-side active filter for inverter power supplies compensates for unbalanced and nonlinear loads[C]. IEEE. Industry applications society annual meeting,1991, vol.1:1023-1031.
    113. G. Yao, S. Phillips, L. Norum. Three-phase inverter-analysis of ability to maintain symmetrical output voltages[C]. IEEE. IECON,1993, pp:1057-1062.
    114. P. Hsc, M. Behnke. A three-phase synchronous trame controler for unbalanced load[C]. IEEE. Power electronics specialists conference,1998, vol.2:1369-1374.
    115. Yao Wei, Chen Min, Chen Jingjing, et al. An Improved Multiple-loop Controller for Parallel Operation of Single-phase Inverters with No Control Interconnections[C]. IEEE. PESC,2007, pp:448-452.
    116. A. Roshan, R. Burgos, A.C. Baisden, ea al. A D-Q frame controller for a full-bridge single phase inverter used in small distributed power generation systems[C].22nd Annual IEEE. APEC,2007, pp:641-647.
    117. B. Saritha, P.A. Jankiraman. Observer based current control of single-phase inverter in DQ rotating frame[C]. IEEE. PEDES,2006, pp:1-5
    118. Shi Feng, Zha Xiaoming, Chen Yunping, et al. Lagrange Modeling and a Novel Passivity-Based Control of a Single-phase inverter Applied in Neutral-Line Active Power Filter[C]. International Conference on Power System Technology,2006, pp:1-7.
    119. Marco Liserre, Alberto Pigazo, Antonio Dell'Aquila, et al. An anti-islanding method for single-phase inverters based on a grid voltage sensorless control[J]. IEEE Trans. Power electronics,2006,53(5): 1418-1426.
    120. W.T. Su, K.Y. Wu, G.T. Guo, et al. On the development of single-phase inverter its robust waveform control[C]. IEEE. ISIE,2005, vol.2:701-706.
    121. Zhang Li, Qiu Shuisheng. Analysis and implementation of sliding mode control for full bridge inverter[C]. International Conference on Communications, Circuits and Systems,2005, vol.2:1380-1384.
    122. E.P. De Paiva, J.B. Vieira, L.C. De Freitas, et al. Small signal analysis applied to a single phase inverter connected to stiff AC system using a novel improved power controller[C].20th Annual IEEE APEC,2005, vol.2:1099-1104.
    123. M. Feki, B. Robert, H.H.C. Iu. A proportional plus extended time-delayed feedback controller for a PWM inverter[C].35th Annual IEEE. PESC,2004, vol.5:3317-3320.
    124. Y. Karabag, T. Erfidan, S. Urgun, et al. Artificial neural network based hysteresis current controller for single-phase inverter[C].12th IEEE. Electrotechnical Conference,2004, vol.1:339-341.
    125. Deng Hang, R. Oruganti, D. Srinivasan. A multi-layer neural network controller for single-phase inverters[C].5th Power electronics and drive systems,2003, vol.1:370-375.
    126. H. Deng, R. Oruganti, D. Srinivasan. A neural network-based adaptive controller of single-phase inverters for critical applications[C].5th Power electronics and drive systems,2003, vol.2:915-920.
    127. R. Zhang, M. Cardinal, P. Szczesny, et al. A grid simulator with control of single-phase power converters in D-Q rotating frame[C].33rd Annual IEEE. PESC,2002, vol.3:1431-1436.
    128. L. Mihalache. DSP control method of single-phase inverters for UPS applications[C].17th Annual IEEE. APEC,2002, vol.1:590-596.
    129. P.A. Dahono, I. Krisbiantoro. A hysteresis current controller for single-phase full-bridge inverters[C].4th IEEE. Power Electronics and Drive Systems,2001, vol.1:415-419.
    130. V. Cardenas, C. Nunez, M. Oliver, et al. UPS inverter controlled by a non-linear passive control with inductor current feedback[C].7th IEEE. Power electronics congress,2000, pp:201-205.
    131. S. Premrudeepreechacharn, T. Poapornsawan. Fuzzy logic control of predictive current control for grid-connected single phase inverter[C].28th IEEE. Photovoltaic specialists conference,2000, pp: 1715-1718.
    132. KaySoon Low. A DSP-based variable AC power source[J]. IEEE Trans. Instrumentation and measurement, 1998,47(4):992-996.
    133.谢孟,蔡昆.胜晓松.等.400Hz中频(?)相电压源逆变器的输出控制及其并联运行控制[J].中国电机工程学报,2006,26(6):78-82.
    134.蔡小勇,王东兴,亓迎川,等.高通滤波反馈型工弦脉宽调制逆变器研究[J].中国电机工程学报,2006,26(13):79-83.
    135.张凯,彭力,熊健,等.基于状态反馈与重复控制的逆变器控制技术[J].中国电机工程学报,2006,26(10):56-62.
    136.段善旭,孙朝晖,张凯,等.基于重复控制的SPWM逆变电源死区效应补偿技术[J].电工技术学报,2004,19(2):52-63.
    137.许爱国,谢少军.电容电流瞬时值反馈控制逆变器的数字控制技术研究[J].中国电机工程学报,2005,25(1):49-53.
    138.郭卫农,陈坚.基于状态观测器的逆变器数字双闭环控制技术[J].中国电机工程学报,2002,22(9):64-68.
    139. Kyu Min Cho, Won Seok Oh, Young Tae Kim, et al. A new switching strategy for pulse width modulation (PWM) power converters[J]. IEEE Trans. Industrial electronics,2007,54(1):330-337.
    140. Shao Riming, Guo Zhenhong, Chang Liuchen. A PWM strategy for acoustic noise reduction for grid-connected single-phase inverters[C].22nd Annual IEEE. APEC,2007, pp:301-305.
    141. J.J. Shieh, C.T. Pan. A novel control strategy for high-performance single-phase inverters[C].1st IEEE. Industrial electronics and applications,2006, pp:1-6.
    142. N.M. Lokhande, V.S. Jape, P.R. Khatri. A centroid based PWM switching technique for harmonic reduction of full bridge inverter[C].7th IPEC,2005, vol.2:831-835.
    143. J.R. Wells, B.M. Nee, P.L. Chapman, et aL. Optimal harmonic elimination control[C].35th Annual IEEE. PESC,2004, vol.6:421-4219.
    144. S. Santi, R. Rovatti, G. Setti. Generation of optimal switching pattern for single-phase inverter[C].47th Midwest Symposium on Circuits and Systems,2004, vol.2:625-628.
    145. C. Dariusz, V.C. David, V.C. Gregory, et al. Solving the optimal PWM problem for single-phase inverters[J]. IEEE Trans. Circuits and systems-1,2002,49(4):465-475.
    146. Ai Tsuhua, Chen Jiannfuh, Liang Tsorngjuu. A random switching method for HPWM full-bridge inverter[J]. IEEE Trans. Industrial electronics,2002,49(3):595-597.
    147. Ai Tsuhua, Liang Tsorngjuu, Chen Jiannfuh. A hybrid switching method for thermal management in full-bridge inverter[C].4th IEEE. Power electronics and drive systems,2001, vol.2:633-637.
    148. H. Dehbonei, L. Borle, C.V. Nayar. A review and a proposal for optimal harmonic mitigation in single-phase pulse width modulation[C].4th IEEE. Power electronics and drive systems,2001, vol.1: 408-414.
    149. MJ. Ryan, R.D. Lorenz, R.W. De Doncker. Modeling of sinewave inverters: a geometric approach[C]. 24th Annual IEEE. IECON,1998, vol.1:396-401.
    150. Y.V. Ali, P. Sarath, F.C. Joe. A centroid-based PWM switching technique for full-bridge inverter applications[J]. IEEE Trans. Power electronics,1998,13(1):115-124.
    151. Lai Rayshyang, D.T.N. Khai. A PWM method for reduction of switching loss in a full-bridge inverter[J]. IEEE Trans. Power electronics,1995,10(3):326-332.
    152.易龙强,戴瑜兴SVPWM技术在单相逆变电源中的应用[J].电工技术学报,2007,22(9):112-117.
    153.王树文,纪延超,马文川.新型单相逆变电源及其调制方式的研究[J].中国电机工程学报,2006,26(17):62-66.
    154.王建元,纪延超,赵般多.一种新的单相逆变电源及其调制方式的研究[J].中国电机工程学报,2003,23(7):62-66.
    155. Zhang Kai, Kang Yong, Xiong Jian, et al. Direct repetitive control of SPWM inverter for UPS purpose[J]. IEEE Trans. Power electronics,2003,18(3):784-792.
    156.孙雪娟,王荆江,彭力,等.基于内模原理的三相电压源逆变电源的波形控制技术[J].中国电机工程学报,2003,23(7):67-70.
    157.李剑,康勇,陈坚.400Hz恒压恒频逆变器的一种模糊-重复混合控制方案[J].中国电机工程学报,2005,25(9):54-61.
    158.刘飞,邹云屏,李辉.基于重复控制的电压源型逆变器输出电流波形控制方法[J].中国电机工程学报,2005,25(19):48-63.
    159. V.H. Prasad, D. Borojevic, R. Zhang. Analysis and comparison of space vector modulation schemes for a four-leg voltage source inverter[C].12th Annual IEEE. APEC,1997, vol.2:864-871.
    160. R. Zhang, V. Himamshu Prasad, Dushan Boroyevich, et al. Three-dimensional space vector modulation for four-leg voltage-source converters[J]. IEEE Trans. Power electronics,2002,17(3):314-326.
    161. Changrong Liu, Dengming Peng, J. Lai, et al. Four-legged converter 3-D SVM scheme over-modulation study[C].15th Annual IEEE. APEC,2000, vol.1:562-568.
    162.蔡忠见,林吉海.基于四桥臂变流器的三维空间矢量调制算法[J].电力系统及其自动化学报,2003,15(6):49-52.
    163.龚春英,熊宇,郦鸣,等.四桥臂三相逆变电源的三维空间矢量控制技术研究[J].电工技术学报,2004,19(12):29-36.
    164.陈新,龚春英,郦鸣,等.应用于三相变换器的三维空间矢量调制[J].南京航空航天大学学报,2002,34(2):148-153.
    165.杨宏,阮新波,严仰光.采用SVM控制的四桥臂三相逆变器[J].电气传动,2003,2:32-34.
    166. Michael J. Ryan, Rik W. De Doncker, Robert D. Lorenz. Decoupled control of a four-leg inverter via a new 4×4 transformation matrix[J]. IEEE Trans. Power electronics,2001,16(5):694-701.
    167. Hou Zhenyi, Sun Jin. Study on control strategy for three-phase four-leg inverter power supply[C].30th Annual IEEE. IECON, Busen, Korea,2004, vol.1:805-809.
    168. Olorunfemi Ojo, Parag M. Kshirsagar. Concise modulation strategies for four-leg voltage source inverters[J]. IEEE Trans. Power electronics,2004,19(1):46-53.
    169.杨晓波,邬伟扬.三相四桥臂逆变器输出电压负序分量抑制研究[J].电力电子技术,2007,41(5):22-23.
    170.林金燕,王正仕,陈辉明,等.一种高性能三相四桥臂逆变器控制器的设计[J].中国电机工程学报,2007,27(22):101-105.
    171. MA Perales, M.M. Prats, R. Portillo, et al. Three dimensional space vector modulation for four-leg inverters using natural coordinates[C]. IEEE International Symposium on industrial electronics,2004, vol.2: 1129-1134
    172. Wu Rui, Xie Shaojun. Research of the four-leg voltage source inverters based on space vector modulation in abc coordinates[C].8th IEEE. ICEMS,2005, vol.2:1442-1446.
    173.吴睿,谢少军.基于abc坐标系空间矢量控制的三相四桥臂电压源型叫逆变器研究[J].电工技术学报,2005,20(12):47-52.
    174.阮新波,严仰光.四桥臂三相逆变器的控制策略[J].电工技术学报,2000,15(1):61-64.
    175.杨宏,阮新波,严仰光.采用最大误差电流调节的四桥臂三相逆变器[J].电力电子技术,2003,37(1):32-33.
    176.孙驰,张国安,魏光辉.一种新颖的三相四桥臂逆变器电流调节方案研究[J].电机与控制学报,2004,8(2):165-169.
    177.孙驰,毕增军,魏光辉.一种新颖的三相四桥臂逆变器解耦控制的建模与仿真[J].中国电机工程学报,2004,24(1):124-130.
    178.孙驰,毕增军,魏光辉.基于空间久量电流调节器的三相四桥臂逆变器的解耦控制研究[J].电工电能新技术,2003,22(3):37-40.
    179. Jang-Hwan Kim, Seung-Ki Sul, Hyosung Kim, et al. A PWM strategy for four-leg voltage source converters and applications to a novel line interactive UPS in a three-phase four-wire system[C].39th Annual IEEE. IAS,2004, vol.4:2202-2209.
    180. Jang-Hwan Kim, Seung-Ki Sul. A carrier-based PWM method for three-phase four-leg voltage source converters[J]. IEEE Trans. Power electronics,2004,19(1):66-75.
    181.张方华,丁勇,王慧贞,等.四桥臂三相逆变器的特定谐波消除控制[J].中国电机工程学报,2007,27(7):82-87.
    182.官二勇,宋平岗,叶满园.基于三次谐波注入法的三相四桥臂逆变电源[J].电工技术学报,2005,20(12):43-46.
    183.杨宏,阮新波,严仰光.四桥臂三相逆变器的PWM控制[J].南京航空航天大学学报,2002,34(6):575-579.
    184.孙驰,鲁军勇,马伟明.一种新的三相四桥臂逆变器控制方法[J].电工技术学报,2007,27(19):57-63.
    185. Stefanovic V. Power factor improvement with a modified phase-controlled converter[J]. IEEE Trans. Industry applications,1979,15(2):193-201.
    186.刘秀翀,张化光,褚恩辉等.三相电压型PWM整流器功率控制方法,电机与控制学报.(录用待发表)
    187.刘秀种,张化光,陈宏志.四桥臂逆变器中第四桥臂的控制策略,中国电机[程学报,2007,27(33),87-92.
    188. Liu Xiuchong, Zhang Huaguang, Chu Enhui, et al. A control concept of SVM for two legs inverters. Conference on ICEE, Okinawa, Japan,2008, P791-794.
    189.陈宏志,刘秀翀,钱晓龙等.一种高性能单相正弦逆变电源的多环控制策略,东北大学学报,2007,28(12):1685-1688.
    190.陈宏志,刘秀翀.四桥臂三相逆变器的解耦控制,中国电机工程学报,2007,27(19):74-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700