数字自动增益控制与灵敏度时间控制的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代战场中,雷达接收机面临的战场电磁环境日益恶劣。进入雷达接收机的信号既包括目标信号,又包括杂波和敌方干扰信号,各种信号相互叠加使得接收机发生饱和,难以正常工作,有时甚至损坏接收机。因此,研制能够适应复杂电磁环境条件的接收机已成为现代雷达系统的研究重点之一。作为有效地解决手段之一,自动增益控制(Automatic Gain Control, AGC)技术已成为研究的热点。
     针对这一问题,本文对数字AGC系统进行了定量研究。给出了系统的设计指标,确定了系统各模块的算法。研究了基于级联梳状滤波器的数字检波技术,对级联梳状滤波器进行了仿真,分析了级联梳状滤波器检波性能;研究了坐标旋转数字计算机算法,分析了圆周坐标系统下的不同工作模式,推导了坐标旋转数字计算机算法的系统公式,得到了基于坐标旋转数字计算机算法的正交通道数据处理方法;对数字AGC系统使用的增量式PID算法进行了研究,分析了算法中各系数对增量式PID算法结果的影响,仿真结果表明该算法对信号的波动能产生快速的响应;对固定增益跟踪滤波算法在数字AGC系统中的应用进行了研究,通过理论分析和仿真,得到了αβ滤波器具有良好的滤波效果的结论。本文还对数字灵敏度时间控制(Sensitivity Time Control,STC)技术进行了研究,得到了数字STC技术的距离-衰减量和距离-控制电压曲线。
     基于理论分析和仿真结果,设计并制作了数字AGC系统的硬件实验平台,在平台上对数字AGC系统进行了系统级半实物仿真调试。利用VHDL语言和流水线技术完成了级联梳状滤波器、坐标旋转数字计算机算法、增量式PID算法,实验结果验证了理论分析结论。
     通过理论分析和系统测试,结果表明基于级联梳状滤波器、坐标旋转数字计算机算法、增量式PID算法的数字AGC系统具有资源占用少、输出稳定等优点,能够有效保护接收机,这对于接收机分辨和跟踪目标有重要意义。研究成果可广泛应用于各种体制雷达系统中,具有较广的应用前景。
In the modern battlefield, the radar receiver facing increasingly harsh electromagnetic environment. The signals which come into the radar receiver are not only target signal, but also the clutter and jamming signals, the signals superimposed on each other makes the receiver blocking, there may even damage the receiver. Therefore, the development of modern radar system to adapt to complex electromagnetic environment is research priorities.As an effective solution, Automatic Gain Control(AGC) technology has become a research hotspot.
     For this problem, the digital AGC system is quantitatively researched.In the study of digital AGC system, the algorithms of each module of system are designed based on identified indicators. Digital detector technology is researched based on Cascaded Integrator-Comb filter (CIC), the CIC filter is simulated and the performance of CIC filter is analyzed; the coordinate rotation digital computer (CORDIC) algorithm is studied, different modes of the circular coordinate system are analyzed, the CORDIC algorithm system formula is derived and orthogonal channels data processing mehtod based on CORDIC algorithm is gotted; the incremental PID algorithm is analyzed, the affect of the factors on results of PID algorithm is studied and simulation results show that the algorithm can produce rapid fluctuations in the signal response and fully filled with system design requirements; the fixed-gain tracking filter was discussed, theαβfilter method and the advantages and disadvantages are given in this paper, the conclusion that the filter has goog filter effect is gotted. The digital STC technology is also studied and Distance-Attenuation and Distance-Control voltage curves are obtained.
     Based on the theoretical analysis and simulation results, the digital AGC system hardware test platform is designed and production, and the digital AGC system is debugged in the platform. The CIC filter, CORDIC algorithm and incremental PID algorithm are completed with VHDL language and pipeline technology, and the theoretical analysis of the results are verified by experimentation data.
     Experimental results show that digital AGC syste based on CIC filter, CORDIC algorithm and incremental PID algorithm has mang admvantages, such as fewer resources are needed, outputs are stable. It can effectively protect the receiver, which is important for the receiver to identify or track targets. The research results can be widely used in mang radar systems, and it has a widely application.
引文
[1]司锡才,李告广.电子侦察接收机快速自动增益控制与瞬时自动增益控制新方法的研究[J].现代雷达. 1995,4(17):83-95.
    [2]弋稳.雷达接收机技术[M].北京:电子工业出版社,2005:77-118.
    [3]桑炜森,顾耀平.电子战的新技术与新方法[M].北京:国防工业出版社,1996:1-10.
    [4]袁孝康.自动增益控制与对数放大器[M].北京:国防工业出版社. 1987:1-18.
    [5]张志刚. 90dB大动态范围可控AGC系统及其在雷达远程测量平台中的应用[D].上海:上海交通大学硕士学位论文. 2009:1-3.
    [6] Morgan D R. A/D Conversion Using Geometric Feedback AGC. IEEE Trans. On Computer[J]. 1975,24(11):1074-1078.
    [7] Shan T J, Kailath T. Adaptive Algorithms with an Automatic Gain Control Feature[J]. IEEE Trans. on Circuit and system. 1988,35(1):122-127
    [8] Tacconi E J, Christiansen C F. A Wide Range and High Speed Automatic Gain Control[C]. IEEE Particle Accelerator Conference. 1993:2139-2141.
    [9] Hwang-Cherng Chow, I-Hsin Wang. High Performance Automatic Gain Control Using an S/H Peak-Detector for ASK Receiver[C]. IEEE Electronic Circuit and Systems 9th International Conference. 2002:429-432.
    [10] Khoury J M. On the Design of Constant Settling Time AGC Circuits[J]. IEEE Transactions on Circuits and Systems. 1998,45(3):283-294.
    [11] Utter A, Chen H, Ouchi S. Adaptive Two-Channel Automatic Gain Control System[J]. IEEE Trans. On Circuit and system. 2006:1113-1121.
    [12] Noneaker D. L, Raghavan A R, Baum C W. The Effect of Automatic Gain Control on Serial, Matched-Filter Acquisition in Direct-Sequence Packet Radio Communications[J]. IEEE Transactions on Vehicular Technology. 2001,50(4):1140-1150.
    [13] Hughes R S. Automatic Gain Control: A Practical Approach to Its Analysis and Design with Applications to Radar[M]. Wexford Press. 2007:117-118
    [14] Bakken B H, Grande O S. Automatic Generation Control in a deregulatedpower system[J]. IEEE Trans. Power Syst. 1998,13:1401-1406.
    [15] Tsay T S. Automatic Gain Control for Unity Feedback Control Systems with Large Parameters Variations[J]. WSEAS Transactions on Systems and Control. 2007,12(2):537-545.
    [16]马定坤,张效民,罗建.基于PID算法数字AGC控制技术[J].测控技术. 2009,28(3):45-51.
    [17]马晓虹.一种自动增益控制电路的实现[J].大众科技. 2009,9:24-25.
    [18]金俊坤,吴嗣亮,孙武.某型伪码测距雷达的数字AGC设计[J].现代雷达. 2005,27(10):75-78.
    [19]蒋勇,龙晓波.数字接收机自动增益控制工程实现方法[J].信息与电子工程. 2009,7(3):173-176.
    [20]彭晓霜,杨志敏,李式巨.对数自动增益控制环路全数字实现[J].浙江大学学报(工学版). 2009,43(11):1965-1969.
    [21] Tacconi E J, Christiansen C F. A Wide Range and High Speed Automatic Gain Control[C]. Particle Accelerator Conference. 1993:2139-2141.
    [22]喻斌,陈军波,李清侠.数字AGC的分析和设计[J].桂林电子工业学院学报. 2003,5(23):35-37.
    [23] Garcia J, Viveros G, Cumplido R. FPGA based Architecture for Radar’s STC, FTC and Gain modules[C]. 2004 International Conforence on Reconfigurable Computing and FPGAs. 2004, 9:126-132.
    [24] Meena D, Prakasam L. FPGA based Real Time Solution for Sensitivity Time Control[C]. 4th IEEE International Symposium on Electronic Design, Test & Applications. 2008: 244-248.
    [25] Foreman T L. A Model to Quantify the Effects of Sensitivity Time Control on Radar-to-Radar Interference[J]. IEEE Transactions on Electromagnetic Compatibility. 1995, 37(2):299-301
    [26]张鹏.灵敏度时间控制研究[J].电子技术. 1997,4:47-51.
    [27]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社. 2002:69-73.
    [28]江颖,王勤,邓凯华,等.带STC控制系统的RF-IF放大器组件的研制[J].低温与超导. 2007,35(4):359-363.
    [29]郑立岗,向敬成,吕幼新.用于中频数字AGC环路的高效检波方法[J].系统工程与电子技术. 2004,26(3):396-415.
    [30] Hogenauer E B. An Economical Class of Digital Filters for Decimation and Interpolation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1981, 29(2): 155-162.
    [31]李悦丽,薛国义.雷达数字AGC技术的工程实现[J].测控技术. 2004,30(12):15-17.
    [32] Volder J E. The CORDIC Trigonometric Computing Technique[J]. IRE Transactions on Electronic Computers. 1959, 8(3): 330-334.
    [33] Walther J S. A Unified Algorithm for Elementary Functions[C]. Spring Joint Computer Conference. 1971: 379-385.
    [34] Bennett S. The Past of PID Controller[J]. Annual Reviews in Control. 2011, 25: 43-53.
    [35]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].北京:机械工业出版社. 1998:1-45.
    [36]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社. 2004:1-15
    [37] Welander P. The“D”in the PID Control System[J]. Control Engineering. 2010, 7:16-19.
    [38]黄友锐,曲立国. PID控制器参数与实现[M].北京:科学出版社. 2010:4-87.
    [39] Mahafza B R, Elsherbeni A Z. MATLAB Simulations for Radar Systems Design[M]. Chapman & Hall/CRC CRC Press LLC. 2004: 422-428.
    [40] Benedict T R, Bordner G W. Synthesis of an Optimal Set of Radar Track-While-Scan Smoothing Equations[J]. IRE Transaction on Automatic Control. 1962, 7:27-32.
    [41] Foreman T L. A Model to Quantify the Effects of Sensitivity Time Control on Radar-to-Radar Interference[J]. IEEE Transactions on Electromagnetic Compatibility. 1995, 37(2):299-301.
    [42] Analog Device, Inc. ADL5330 10MHz to 3GHz VGA with 60dB Gain Control Range[OL]. (2005)[2011-5-25]. http:// www.analog.com.
    [43]葛福兰.一种精准数控STC设计方法[J].雷达与对抗. 2006,4:45-55.
    [44] Vun N, Premkumar A B. ADC systems for SDR digital front-end[J]. Consumer Electronics. 2005, 6: 359~363.
    [45] Texas Instruments, Inc. ADS62P45 Dual Channel, 14-Bits, 125/105/80/65MSPS ADC with DDR LVDS/CMOS Outputs[OL]. (2007)[2011-5-25]. http:// www.ti.com.
    [46]郑晓红,王艳芬,武学强.宽带数字上下变频转换器GC5016及其应用[J].通信及网络元器件. 2004,4:69~71.
    [47]马媛,张彦仲. GC5016及其在TD-SCDMA基站中的应用[J].专题技术与工程应用. 2007,37(4):54~56.
    [48]吕幼新,雷霆,郑立岗.一种基于软件无线电技术的中频数字接收机的实现[J].信号处理. 2001,12:494~497.
    [49]李悦丽,周智敏,薛国义.一种基于DSP和FPGA的雷达信号处理机设计[J].现代雷达. 2004,26(10):32~37.
    [50]唐丽萍,牛大胜,韩晓东.基于DSP和FPGA的数字化中频处理平台[J].信息技术与信息化. 2006,(1):95~96.
    [51] Altera Corporation. Stratix II Device Handbook[OL]. (2007)[2011-5-26]. http:// www.altera.com.
    [52] Analog Device, Inc. ADSP-TS101 TigerSHARC Processor Hardware Reference. (2001)[2011-5-25]. http:// www.analog.com.
    [53] Analog Device, Inc. ADSP-TS101 TigerSHARC Processor Hardware Reference. (2001)[2011-5-25]. http:// www.analog.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700