神经干细胞移植延缓失神经肌萎过程中突触形成及其功能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分神经干细胞体外培养扩增,体内移植后延缓失神经肌萎的作用
     目的验证胚胎脊髓神经干细胞的提取、体外培养和增殖方法,研究神经干细胞移植到损伤的外周神经后,延缓失神经肌萎的效果。
     方法取孕10—12天的SD大鼠,通过机械吹打法提取脊髓神经干细胞、以无血清限定性培养基进行培养,扩增及纯化得到大量增生的神经干细胞,以神经干细胞特异性抗体Nestin进行鉴定,将神经干细胞进行体外分化,通过特异性抗体染色检验其分化为神经终末细胞的能力。传2—3代后,将扩增的神经干细胞球分散成单细胞悬液并调整密度为10~6/ul,备用。制作胫神经切断,小腿三头肌失神经支配模型,以微量注射器移植10~6/ul×5ul干细胞悬液至切断的胫神经远端;设立对照组,仅移植5ul神经干细胞培养液,每组各24只。分别于术后3月,5月和7月取材,每次8只,分别观察移植神经干细胞在体内存活及分化成为神经元的情况;测量三头肌湿重及肌纤维横截面积维持率,验证神经干细胞移植能否延缓失神经支配骨骼肌的萎缩及其程度。
     结果利用机械吹打和无血清限定性培养基可以得到大量的脊髓神经干细胞,得到的神经干细胞可以在体外大量扩增并分化为多种神经终末细胞,证明取得的神经干细胞活性良好;神经干细胞移植后3、5、7月取材及免疫组化染色显示,移植段胫神经内有大量存活的神经干细胞及其分化而来的神经元,神经元可以合成大量的突触素,随着时间延长,分化而来的神经元明显增加;随着时间延长,移植和对照组三头肌湿重,肌纤维横截面积均进行性下降,但对照组下降更明显(P〈0.05)。
     结论1、机械吹打及无血清限定性培养基适用于脊髓神经干细胞的提取及培养;2、神经干细胞在损伤的外周神经系统中可以长期存活并分化为神经元;3、神经干细胞移植到外周神经系统内可以延缓失神经肌萎的程度。
     第二部分移植神经干细胞与靶肌肉形成新突触过程的实验研究
     目的将体外培养、扩增得到的神经干细胞移植到胫神经切断模型中,观察神经干细胞能否与失神经支配三头肌重新形成突触,以及新形成突触的功能。
     方法采用机械吹打和无血清限定性培养基得到大量活性良好的神经干细胞,建立三头肌失神经支配模型,按第一部分方法分成移植组和对照组,每组30只。于移植术后3,5,7月进行检测,通过三头肌内突触(神经肌肉接头)免疫组化染色,神经电生理传导,示踪剂顺向和逆向传导实验,比较神经干细胞移植后对突触后膜的影响,研究神经干细胞能否与靶肌肉形成新的突触,以及新形成的突触是否具有电传导和物质传递功能。
     结果3月时:移植组中突触前膜消失,突触后膜萎缩退变,未能检测到电传导,对照组中,突触前膜消失,突触后膜萎缩退变更加明显,同时数量减少,无电传导能力;5月时:移植组中检测到少量不完整的新生突触前膜,突触后膜趋向正常,能检测到电传导,对照组中突触前膜消失,后膜碎裂明显,无电传导能力;7月时:移植组中发现形态上呈各个发育阶段突触前膜,但数量少于突触后膜,而突触后膜形态基本正常,能检测到明显的电传导现象,同时顺向和逆向示踪均为阳性结果,对照组中,突触前后膜均完全消失,电生理检测和顺向逆向示踪均为阴性结果。
     结论1、神经干细胞移植到损伤的外周神经后,可以延缓突触后膜萎缩退变和数量减少的发生;2、移植神经干细胞能够与失神经支配靶肌肉形成新的突触联系;3、新形成的突触具有物质传递和电传导功能。
     第三部分宿主再生神经轴突与移植神经干细胞形成突触的实验研究
     目的研究神经干细胞移植到外周神经系统后,宿主再生神经轴突与移植神经干细胞及其分化而来细胞之间的关系。
     方法取孕10—12天F344大鼠,提取、培养并纯化脊髓神经干细胞;移植3cm长的F344神经干至GFP转基因大鼠的远端胫神经,同时移植10~6/ul×5ul F344神经干细胞悬液至移植段F344神经干中;2周后吻合宿主胫神经近端及移植段F344神经.术后2周取材,并进行免疫荧光染色和共聚焦观察,研究宿主再生神经轴突能否与移植并分化而来的神经元形成突触联系。
     结果在干细胞移植后4周(神经吻合后2周),神经干细胞可存活并分化为神经元;近端再生的神经轴突能与移植并分化而来的神经元形成突触联系。
     结论宿主再生神经轴突能与移植分化而来的神经元形成突触联系。
PartⅠThe study of Culture,Increase and Transplant Neural StemCells in Delaying Denervated Muscle Atrophy.
     Objective To Verify the Process validity in obtain,culture and increase Neural StemCells.Study the effect of Neural Stem Cells in delaying the denervated muscleatrophy when it was transplanted into peripheral nerveous system.
     Methods Spinal Neural Stem Cells (NSCs) were obtained from Pregnant 10-12th dayembryo spinal cords of SD rats mechanically.The NSCs were cultured in no serumculture medium,after 2-3 generations,the neural stem cells were blew into singlecells,suspensioned and transplanted into the distal part of tibial nerve.Cell culturemedium was injected into the distal tibial nerve in contral group.3,5 and 7 monthspost-transplantation,the distal part of the tibial nerve and muscles were harvested andidentified with specific markers,by means of indirect immunofluorescent stainingrespectively.To evaluate the survival and differentiation of neural stem cells inperipheral nerve,The gastrocnemius muscles were excised and immediately weighedand the muscle fibers' area was measured and compaired to see whether thetransplanted NSCs can delay the denervated muscle atrophy.
     Results The process of Spinal NSCs obtain and culture can get enough NSCs,andthese NSCs are active enough for transplantation.3,5 and 7 months after NSCstransplanted into tibial nerves,the immunofluorescent staining showed that NSCscould survive and differentiate into neurons.As the time go on,there were moreneurons apaired.What's more,these neurons can synthesis and secrete considerablesynaptophysin.Both of the humid weight and muscle fibers' cross section area oftriceps surae showed that the muscle atrophy was more serious in the control groupthan in the NSCs transplanted group.
     Conclusions 1.The process of Spinal NSCs obtain and culture was suitable for theexperiment.2.Embryonic spinal stem cells can differentiate into different neural cells in vivo after transplantation; 3.NSCs' transplantate into PNS can delay thedenervated muscle atrophy.
     PartⅡThe Experiment of New Formed Neuromuscular Junctionbetween Transplanted Neurol Stem Cells and Denervated Muscle
     Objective Obtain enough neural stem cells and make the same animal models basedon experiment methods verified in PartⅠ,then study the new neuromuscularformation and detect its function.
     Methods Based on the verified methods in partⅠ,we obtained enough activityseperated neural stem cells,made the same NSCs transplanted models and controlgroups.3,5,7 months after transplantation,we perform the different detect.Four andtwo weeks before the nerve and gastrocnemius muscle excision,the distal part of thetibial nerve was dissociated respectively to prevent potential nerve regeneration fromother nerves or tissues.Then the gastrocnemius muscle adjacent to the nerve entryplace were exsected and were carried out immunohistochemistry,to detect the changeof the neuromuscular Junction and the new formed Junction.We also usedElectrophysiology and Direct and Retrograde Tracing to detect the function of thenew formed neuromuscular Junction.
     Results 3 months after fetal NSCs transplantation,the pre-menbrane dispersed,thepost-menbrane atrophy and cataplasia,no electrophysiology conductive ability; thesimilar results in the control models.5 months later,in 5 of 8 fetal NSCs transplanted rats,the transplant-derived colocalization of premenbrane reappeared and the host-derivedpostmenbrane became more mature than ever.While some of the premenbrane were lesscontinuous and in dot profile,the morphology of these new NMJs were simpler than thenormal NMJs.The CMAP waves were detected and the latent period was 12.5 ms,waveamplitude was 0.9 mv; In the same time,the pre-membrane disappeared and thepost-membrane fell into pieces in control rats,no CMAP can be detected.7 monthsposttransplantation,in 5 of 8 rats,the pre- and post-membrane were detected and moremature than ever,in some specimens,we detected the mature NMJs and thepostmembrane without the pre-menbrane (denervated muscle fiber) simultaneity,suggesting that the muscle reinnervation was incomplete.The latent period of CMAPwas 5 ms and wave amplitude was 1.5 mv.In the control group,we cannot see the shapeof NMJs,nigher pre-menbrane nor the post-menbrane,no CMAP can be detected.Inanterograde and retrograde tracing,the NSC transplant can transfer the true blue chloride while the control group cannot.
     Conclusion 1,The transplanted NSCs can protect and delay the atrophy and cataplasia ofthe post-membrane; 2,new neuromuscular Junction can be formed between thetransplanted NSCs and the denervated muscle; 3,new formed NMJs are biologicallyactive.
     PartⅢThe Formation of Synapse between Transplanted NSCs andHost's Regenerate Neural Axons
     Objective To study the relationship between transplanted NSCs and host's regenerateneural axons after the NSCs transplanted into the impaired PNS.
     Methods NSCs were separated from pregnancy 10-12th day spinal cord of F344 ratsmechanically and cultured in no serum culture medium.Transplante 1.Scm F344nerve segment to the distal part of the GFP gene transferred rats' tibial nerve.Meanwhile,inject 10~6/ul×5ul F344 NSCs into the transplanted F344 nerve segment.2 weeks later,suture the proximal tibial nerve stump with the transplanted F344 nervesegment.Another 2 weeks later,the tibial nerve and transplanted nerve segment wereharvested and identified with specific markers,by means of indirectimmunofluorescent staining respectively.To evaluate the survival and differentiationof neural stem cells and to see the relationship between transplanted NSCs and host'sregenerate neural axons.
     Results 4 weeks after NSCs transplantation,NSCs survived and differentiated intoneurons.The regenerate axons can form synapse with neurons differentiated from thestem cells.
     Conclusions In PNS,the host's regenerate axons can form synapse with the neuronsdifferentiated from the stem cells.
引文
1.Ross JJ,Duxson M J,Harriss E.Neural determination of muscle fiber number in embryonic rat lumbric muscles.Development,1987,100:395-409.
    2.Vovard FE,Mouly V,Barbet JP.The four populations of myoblasts involved in human limb muscle formation are present from the onset of primary myotube formation.J Cell Sci,1998,12:191-199.
    3.顾玉东,臂丛神经损伤与疾病的诊治.上海医科大学出版社,1992年.
    4.Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science(New York,NY 1992;255:1707-1710.
    5.Davis AA,Temple S.A self-renewing multipotential stem cell in embryonic rat cerebral cortex[J].Nature.1994;372:263-266.
    6.Yasuhara T,Matsukawa N,Hara K,et al.Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease[J].J Neurosci.2006;26(48):12497-12511.
    7. Xu L, Yan J, Chen D, et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats[J]. Transplantation. 2006; 82(7): 865-75.
    8. Erb DE, Mora RJ, Bunge RP. Reinnervation of adult rat gastrocnemius muscle by embryonic motoneurons transplanted into the axotomized tibial nerve.Experimental neurology 1993;124:372-376.
    9. Thomas CK, Erb DE, Grumbles RM, et al. Embryonic cord transplants in peripheral nerve restore skeletal muscle function. Journal of neurophysiology 2000;84:591-595.
    10. Gao J, Coggeshall RE, Tarasenko YI, et al. Human neural stem cell-derived cholinergic neurons innervate muscle in motoneuron deficient adult rats.Neuroscience 2005;131:257-262.
    11. Deshpande DM, Kim YS, Martinez T, et al. Recovery from paralysis in adult rats using embryonic stem cells. Annals of neurology 2006;60:32-44.
    12. Lee JP, Jeyakumar M, Gonzalez R, et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nature medicine 2007;13:439-447.
    13. Kornblum HI. Introduction to neural stem cells. Stroke; a journal of cerebral circulation 2007;38:810-816.
    14. Panzer JA, Song Y, Balice-Gordon RJ. In vivo imaging of preferential motor axonoutgrowth to and synaptogenesis at prepattemed acetylcholine receptor clusters in embryonic zebrafish skeletal muscle[J]. J Neurosci. 2006; 26: 934-947.
    15. Lin W, Burgess RW, Dominguez B,et al. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse[J]. Nature. 2001;410(6832): 1057-64.
    16. Kasthuri N, Lichtman JW. The role of neuronal identity in synaptic competition[J]. Nature. 2003; 424: 426-430.
    17. Sanes JR,lichtman JW. Development of the vertebrate neuromuscular junction[J]. Annu Rev Neurosci. 1999; 22: 389-442.
    18. Love FM, Son YJ, Thompson WJ. Activity alters muscle reinnervation and terminal sprouting by reducing the number of schwann cell pathways that grow to link synaptic sites[J]. J Neurobiol. 2003; 54(4): 566-576.
    19. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, et al. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury[J]. J Neurosci. 2006; 26(13): 3377-3389.
    20.Card DJ.Denervation:sequenceo of neuromuscular degenerative changes in rats and the effects of stirmulation.Exp Neurol.1997;54:251-265
    21.王德华,徐建光,姜浩等.神经干细胞再支配失神经骨骼肌的实验研究.中华手外科杂志.2004,20:96-99.
    22.沈云东,徐建光,徐文东等.神经干细胞移植延缓失神经肌肉萎缩的实验研究.中国修复重建外科杂志.2008,22:1051-1055.
    1.Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science(New York,NY 1992;255:1707-1710.
    2.Davis AA,Temple S.A self-renewing multipotential stem cell in embryonic rat cerebral cortex[J].Nature.1994;372:263-266.
    3.Yasuhara T,Matsukawa N,Hara K,et al.Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease[J].J Neurosci,2006,26(48):12497-12511.
    4.Roy NS,Cleren C,Singh SK,et al.Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes[J].Nat Med,2006,12(11):1237-1238.
    5.Xu L,Yan J,Chen D,et al.Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats[J].Transplantation,2006,82(7):865-875.
    6.Erb DE,Mora R J,Bunge RP.Reinnervation of adult rat gastrocnemius muscle by embryonic motoneurons transplanted into the axotomized tibial nerve.Experimental neurology 1993;124:372-376.
    7.Thomas CK,Erb DE,Grumbles RM,et al.Embryonic cord transplants in peripheral nerve restore skeletal muscle function.Journal of neurophysiology 2000;84:591-595.
    8. Gao J, Coggeshall RE, Tarasenko YI, et al. Human neural stem cell-derived cholinergic neurons innervate muscle in motoneuron deficient adult rats. Neuroscience 2005;131:257-262.
    9. Lee JP, Jeyakumar M, Gonzalez R, et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nature medicine 2007;13:439-447.
    10. Thomas CK, Sesodia S, Erb DE,et al. Properties of medial gastrocnemius motor units and muscle fibers reinnervated by embryonic ventral spinal cord cells.Exp Neurol. 2003;180(1):25-31
    11. Baez JC, Gajavelli S, Thomas CK, et al. Embryonic cerebral cortex cells retain CNS phenotypes after transplantation into peripheral nerve. Exp Neurol.2004;189(2):422-5.
    12. Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL,Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA.Recovery from paralysis in adult rats using embryonic stem cells. Annals of neurology 2006;60:32-44.
    13. Kornblum HI. Introduction to neural stem cells. Stroke; a journal of cerebral circulation 2007;38:810-816.
    14. Xu H, Fan X, Wu X, et al. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson's disease. Biovhem Biophys Res Commun. 2005;326(l):115-122.
    15. Mcleod M, Hong M, Sen A, et al. Transplantation of bioreactor-produced neural stem cells into the rodent brain. Cell Transplant. 2006;15(8-9):689-697.
    16. Pallini R, Vitiani LR, Bez A, et al. Homologous transplantation of neural stem cells to the injured spinal cord of mice. Neurosurgery. 2005; 57(5): 1014-1025.
    17. Yang M, Donaldson AE, Jiang Y, et al. Factors influencing the differentiation of dopaminergic traits in transplanted neural stem cells. Cell Mol Neurobiol.2003;23(4-5):851-864.
    18. Marie C, Robort M, Cassidy, et al. Functional integration of adult-born neurons. Current Biology, 2002, 12(2): 606-608.
    19. Hong-jun Song, Charles F, Stevens and Fred H, Gage. Neurol stem cells from adult hippocampus develop essential properties of functional CNS neurons,Nature neuroscience 2002, 5: 438-445.
    20.Pagani F,Lauro C,Fucile S,et al.Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo.J Neurosci Res.2006;83(8):1494-1501.
    21.Card DJ.Denervation:sequenceo of neuromuscular degenerative changes in rats and the effects of stirmulation.Exp Neurol.1997;54:251-265.
    22.Uchida K,Momiyama T,Okano H,et al.Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin.Neurosci Res.2005;52(3):276-286.
    23.Moe MC,Westerlund U,Varghese M,et al.Development of neuronal networks from single sem cells harvested from the adult human brain.Neurosurgery.2005;56(6):1182-1188.
    24.Auerbach JM,Eiden MV,Mckay RD.Transplanted CNS stem cells form functional synapses in vivo.Eur J Neurosci.2000,165:66-76.
    25.Zhou C,Wen ZX,Wang ZP,et al.Green fluorescent protein-labeled mapping of neural stem cells migrating towards damaged areas in the adult central nervous system.Cell Biol Int.2003;27(11):943-945.
    26.Andsberg G,Kokaia Z,Bjorklund A,et al.Amellioration of ischaemia-induced neuronal death in the rat striatum by NGF-secreting neural stem cells.European Journal of Neuroscience.1998,10(6):2026-2036.
    27.Rosahl TW,Gappert M,Spillane,et al.Short-term synaptic plasticity is lacking in mice lacking synapsen I.Cell,1993;75:661-670.
    28.Thiele C,Hannah M J,Fahrenholz F,et al.Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles.Nat Cess Biol.2000;2(1):42-49.
    29.Tarsa L,Goda Y.Synaptophysin regulates activeity-dependent synapse formation in cultured hippocampal neurons.Proc Natl Sci.2002;99(2):1012-1016.
    30.Plateroti M,Vignoli AL,Biagioni S,et al.Synapsin I expression in spinal cord neurons during chick embryo development.J Neurosci Res.1994;39(5):535-544.
    31.Wang T,Xie K,Lu B.Neurotrophins promote maturation of developing neuromuscular synapse.J Neurosci.1995;15(7):4796-4805.
    32.徐建广,顾玉东,李继峰。大鼠失神经支配骨骼肌退变的实验研究。上海医科大学学报,1999,26(4):265—267。
    33.Wei P,Liu J,Zhou HL,et al.Effects of engrafted neural stem cells derived from GFP transgenic mice in Parkinsons diseases rats.Neurosci Lett.2007;25(epub ahead of print).
    34.Dijkhuizen PA,Hermens WT,Teunis MA,et al.Adenoviral vector-directed expression of neurotrophin-3 in rat dorsal root ganglion explants results in a robust neurite outgrowth response.Newrobiol.1997,33(2):172-184.
    35.Siegel SG,Patton B,English AW.Ciliary neurontrophic factor is required for motoneuron sprouting.Exp Neurol.2000;166(2):205-212.
    36.Simon M,Terenghi G,Green CJ,et al.Differential effects of NT-3 on reinnervation of the fast extensor digitorum longus(EDL) and the slow soleus muscle of rat.Eur J Neurosci.2000;12(3):863-871.
    37.Simon M,Porter R,Brown R,et al.Effect of NT-4 and BDNF delivery to damaged sciatic nerves on phenoltypic recovery of fast and slow muscles fibres.Eur J Neurosci.2003;18(9):2460-2466.
    38.沈云东,徐建光,徐文东等.神经干细胞移植延缓失神经肌肉萎缩的实验研究.中国修复重建外科杂志.2008,22:1051-1055.
    1. Thomas CK, Erb DE, Grumbles RM, Bunge RP. Embryonic cord transplants in peripheral nerve restore skeletal muscle function. Journal of neurophysiology 2000;84: 591-595.
    2. Gao J, Coggeshall RE, Tarasenko YI, Wu P. Human neural stem cell-derived cholinergic neurons innervate muscle in motoneuron deficient adult rats.Neuroscience 2005;131:257-262.
    3. Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL,Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA.Recovery from paralysis in adult rats using embryonic stem cells. Annals of neurology 2006;60:32-44.
    4. Lee JP, Jeyakumar M, Gonzalez R, et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nature medicine 2007; 13: 439-447.
    5. Kornblum HI. Introduction to neural stem cells. Stroke; a journal of cerebral circulation 2007; 38: 810-816.
    6. Card DJ. Denervation: sequenceo of neuromuscular degenerative changes in rats and the effects of stirmulation. Exp Neurol. 1997; 54: 251-265.
    7. Yishi J. Synaptogenesis: insights from worm and fly. Curr Opin Neurobiol.2002;12(1):71-79.
    8. Craig CG, Grace RZ, Eckart DG, et al. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 2002, 25(5):243-250.
    9. Werner H. Molecular dissection of neuronmuscular junction formation. Trends Neurosci. 2003; 26(2): 335-337.
    10. Kasthuri N, Lichtman JW. The role of neuronal identity in synaptic competition. Nature. 2003;424:426-430.
    11. Tsujihata M, Satoh A, Yoshimura T, et al. Effect of myastheniac immuneoglobulin G on motor end-plate morphology. J Neurol. 2003; 250(1):75-82.
    12. Marques MJ, Mendes ZT, Minatel E, et al. Acetylcholine receptors and nerve terminal distribution at the neuromuscular junction of long-term regenerated muscle fibers. J Neurocytol. 2005; 34(6): 387-396.
    13. Xu H, Fan X, Wu X, et al. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson's disease. Biovhem Biophys Res Commun. 2005; 326(1): 115-122.
    14. Mcleod M, Hong M, Sen A, et al. Transplantation of bioreactor-produced neural stem cells into the rodent brain. Cell Transplant. 2006; 15(8-9): 689-697.
    15. Pallini R, Vitiani LR, Bez A, et al. Homologous transplantation of neural stem cells to the injured spinal cord of mice. Neurosurgery. 2005; 57(5): 1014-1025.
    16. Yang M, Donaldson AE, Jiang Y, et al. Factors influencing the differentiation of dopaminergic traits in transplanted neural stem cells. Cell Mol Neurobiol. 2003;23(4-5): 851-864.
    17. Marie C, Robort M, Cassidy, et al. Functional integration of adult-born neurons. Current Biology, 2002, 12(2): 606-608.
    18. Hong-jun Song, Charles F, Stevens and Fred H, Gage. Neurol stem cells from adult hippocampus develop essential properties of functional CNS neurons,Nature neuroscience 2002, 5: 438-445.
    19. Pagani F, Lauro C, Fucile S, et al. Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo. J Neurosci Res. 2006;83(8):1494-1501.
    20. Uchida K, Momiyama T, Okano H, et al. Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin. Neurosci Res.2005;52(3): 276-286.
    21. Moe MC, Westerlund U, Varghese M, et al. Development of neuronal networks from single sem cells harvested from the adult human brain. Neurosurgery.2005; 56(6): 1182-1188.
    22. Auerbach JM, Eiden MV, Mckay RD. Transplanted CNS stem cells form functional synapses in vivo. Eur J Neurosci. 2000,165:66-76.
    23. Zhou C, Wen ZX, Wang ZP, et al. Green fluorescent protein-labeled mapping of neural stem cells migrating towards damaged areas in the adult central nervous system. Cell Biol Int.2003; 27(11): 943-945.
    24. Kristensson K, Olsson Y. Uptake and retrograde axonal transport of peroxidase in hypoglossal neurons. Electron microscopical localization in the neuronal perikaryon. Acta Neuropathol (Bed). 1971; 19(l):l-9.
    25. La Vail JH, LaVail MM. Retrograde axonal transport in the central nervous system. Science. 1972 Jun 30; 176(42): 1416-7.
    26. Anderson PN, Mitchell JM, Mayor D. An in vivo method for studying the retrograde intra-axonal transport of horseradish peroxidase in sympatheic neurons.Brain Res, 1978, 152:151-156.
    27.Gordon T,Sulaiman O,Boyd JG.Experimental strategies to promote functional recovery after peripheral nerve injuries.J Peripher Nerv Syst.2003 Dec;8(4):236-50.
    28.Dennis RG,Dow DE,Faulkner JA.An implantable device for stimulation of denervated muscles in rats.Med Eng Phys.2003 Apt;25(3):239-53.
    29.Marie C,Robort M,Cassidy,et al.Functional integration of adult-born neurons.Current Biology,2002,12(4):606-608.
    30.Dennis C,John MD.Stem cells:Rat spinal cord function partially restored.Science 1999 Dec 3;286(5446):1826-7.
    31.王德华,徐建光,姜浩 等.神经干细胞再支配失神经骨骼肌的实验研究.中华手外科杂志.2004,20:96-99.
    1.Kern H,Hofer C,Modlin M,et al.Denervated muscles in humans:limitations and problems of currently used functional electrical stimulation training protocols[J].Artif Org,2002,26(3):216-218.
    2.Salmons S,Ashley Z,Sutherland H,et al.Functional electrical stimulation of denervated muscles:Basic issues[J].Artif Org,2005,29(3):199-202.
    3.Deschenes MR,Maresh CM,Kraemer WJ.Exercise training of moderate intensity does not abate the effects of denervation on muscle morphology[J].Int J Sports Med,1997,18(6):426-430.
    4.Reynolds BA,Tetzlaff W,Weiss S.A multipotent EGF-responsive atriatal embryonic progenitor cell produces neurons and astrocytes.J Neurosci.1992;12:4565-4574.
    5. Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 1994, 372: 263-266.
    6. Xu H, Fan X, Wu X, et al. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson's disease. Biovhem Biophys Res Commun. 2005; 326(1): 115-122.
    7. Mcleod M, Hong M, Sen A, et al. Transplantation of bioreactor-produced neural stem cells into the rodent brain. Cell Transplant. 2006; 15(8-9):689-697.
    8. Pallini R, Vitiani LR, Bez A, et al. Homologous transplantation of neural stem cells to the injured spinal cord of mice. Neurosurgery. 2005; 57(5): 1014-1025.
    9. Yang M, Donaldson AE, Jiang Y, et al. Factors influencing the differentiation of dopaminergic traits in transplanted neural stem cells. Cell Mol Neurobiol.2003;23(4-5):851-864.
    10. Marie C, Robort M, Cassidy, et al. Functional integration of adult-born neurons. Current Biology, 2002,12(2): 606-608.
    11. Hong-jun Song, Charles F, Stevens and Fred H, Gage. Neurol stem cells from adult hippocampus develop essential properties of functional CNS neurons, Nature neuroscience 2002, 5: 438-445.
    12. Pagani F, Lauro C, Fucile S, et al. Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo. J Neurosci Res. 2006;83(8):1494-1501.
    13. Yasuhara T, Matsukawa N, Hara K, et al. Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson's disease[J]. J Neurosci,2006,26(48):12497-12511.
    14. Roy NS, Cleren C, Singh SK, et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes[J]. Nat Med, 2006,12(11): 1237-1238.
    15. Xu L, Yan J, Chen D, et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats[J]. Transplantation, 2006, 82(7): 865-875.
    16. Uchida K, Momiyama T, Okano H, et al. Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin. Neurosci Res.2005;52(3): 276-286.
    17. Moe MC, Westerlund U, Varghese M, et al. Development of neuronal networks from single sem cells harvested from the adult human brain. Neurosurgery.2005;56(6):1182-1188.
    18.Auerbach JM,Eiden MV,Mckay RD.Transplanted CNS stem cells form functional synapses in vivo.Eur J Neurosci.2000,165:66-76.
    19.Zhou C,Wen ZX,Wang ZP,et al.Green fluorescent protein-labeled mapping of neural stem cells migrating towards damaged areas in the adult central nervous system.Cell Biol Int.2003;27(11):943-945.
    20.Rosahl TW,Gappert M,Spillane,et al.Short-term synaptic plasticity is lacking in mice lacking synapsen I.Cell,1993;75:661-670.
    21.Thiele C,Hannah M J,Fahrenholz F,et al.Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles.Nat Cess Biol.2000;2(1):42-49.
    22.Tarsa L,Goda Y.Synaptophysin regulates activeity-dependent synapse formation in cultured hippocampal neurons.Proc Natl Sci.2002;99(2):1012-1016.
    23.Plateroti M,Vignoli AL,Biagioni S,et al.Synapsin I expression in spinal cord neurons during chick embryo development.J Neurosci Res.1994;39(5):535-544.
    24.Wang T,Xie K,Lu B.Neurotrophins promote maturation of developing neuromuscular synapse.J Neurosci.1995;15(7):4796-4805.
    25.沈云东,徐建光,徐文东等.神经干细胞移植延缓失神经肌肉萎缩的实验研究.中国修复重建外科杂志.2008,22:1051-1055.
    1.Hall ZW,Sanes JR.Synaptic structure and development:the neuromuscular junction.Cell,1993;72(suppl):99-121.
    2.Son Y J,Thompson WJ.Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells.Neuron,1995;14:133-141.
    3.Craig CG,R Grace Z,Eckart DG,et al.Molecular mechanisms of CNS synaptogenesis[J].Trends Neurosci,2002,25(5):243-250.
    4.Tito S.Finding a partner in a crowd:neuronal diversity and synaptogenesis[J].Cell,1999,98(2):133-136.
    5.NaguibM,Flood P,McArdle JJ,et al.Advandes in neurobiology of the neuromuscular junction.Anesthesiology,2002;96:202-231.
    6.Mirsky R,Stewart HJ,Tabernero A,et al.Development and differentiation of Schwann cells.RevNeurol(Paris),1996;152:308-313.
    7.Sanes JR,Johnson YR,Kotzbauer PT,et al.Selective expression of an acetylcholine recep tor-lacZ transgene in synaptic nuclei of adult muscle fibers.Development,1991;113:1181-1191.
    8.Yishi J.Synaptogenesis:insights from worm and fly[J].Curr Opin Neurobiol,2002,12(1):71-79.
    9.徐建广,顾玉东,李继峰,等.大鼠失神经支配骨骼肌及其运动终板退变观察[J].中华显微外科杂志,1999,22(3):510-512.
    10.殷琦,陆裕朴,胡蕴玉,等.肌肉失神经后运动终板早期退变实验研究[J].中国修复重建外科杂志,1995,9:35-37.
    11.王树森,黄耀添,褚晓明,等.大鼠坐骨神经损伤后降钙素基因相关肽与运动终板的关系[J].中国显微外科杂志,1997,20(4):270-272.
    12.徐建广,顾玉东.失神经支配骨骼肌退变组织形态学及电生理实验研究[J].中国修复重建外科杂志,1999,13(4):202.
    13.Allen K M,Walsh C A.Genes that regulate neuronal migration in the cereral cortex.Epilepsy Research,1999,36:143.
    14.Glass D J,DeChiara TM,Stitt TN,et al.The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo.Cold Spring Harb Symp Quant Biol,1996;61:435-444.
    15.McMahan UJ.The Agrin hypothesis.Cold Spring Farbor SympQuant Biol,1990;55:407-418.
    16.Wallace BG.Agrin-induced specializations contain cytoplasmic,membrane,and extracellular matrix-associated components of the postsynaptic apparatus.J Neurosci,1989;9:1294-1302.
    17.Gautam M,Noakes PG.Defective neuromuscular synaptogenesis in Agrin-deficient mutant mice.Cell,1996;85:525-535.
    18.Jones G,Meier T,Lichtsteiner M,et al.Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle.Proc Natl Acad Sci USA,1997;94:2654-2569.
    19.Campagna JA,RueggMA,Bixby JL.Agrin is a differentiation inducing stop signal formotoneurons in vitro.Neuron,1995;15:1365-1374.
    20.Valenzuela DM,Stitt TN,Distefano PS,et al.Receptor tyrosine kinase specific for the skeletal muscle lineage:expression in embryonic muscle,at the neuromuscular junction,and after injury.Neuron,1995;15:573-584.
    21. Jones G, Moore C, Hashemolhosseini S, et al. Constitutively active MuSK is clustered in the absence of Agrin and induces ectopic postsynaptic -like membranes in skeletal muscle fibers. J Neurosci, 1999; 19: 3376- 3383.
    22. Dechiara TM, Bowen DC, Valenzuela DM. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell, 1996; 85:501-512.
    23. Luo Z, Wang Q, Dobbins GC, et al. Signaling complexes for postsynaptic differentiation. J Neurocytol, 2003; 32: 697-708.
    24. Duclert A, Changeux JP. Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol Rev, 1995; 75: 339-368.
    25. Goodman CS, Shatz CJ. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell, 1993; 72SIPPL: 77- 98.
    26. Misgeld T, Burgess RW, Lewis RM, et al. Roles of neurontransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron, 2002; 36: 635-648.
    27. Sanes JR, Johnson YR, Kotzbauer PT, et al. Selective expression of an acetylcholine receptor-lacZ transgene in synaptic nuclei of adult muscle fibers.Development, 1991; 113:1181-1191.
    28. Loeb JA, Fischbach GD. Neurotrophic factors increase neuregulin expression in embryonic ventral spinal cord neurons. J Neurosci, 1997; 17:1416-1424.
    29. Braun S, Croizat B, Lagrange M, et al. Neurotrophins increase motoneurons' ability to innervate skeletalmuscle fibers in rat spinal cord-human muscle cocultures.J Neurol Sci, 1996; 136:17-23.
    30. Zhan WZ, Mantilla CB, Sieck GC. Regulation of neuromuscular transmission by neurotrophins. Sheng li xue bao, 2003; 55: 617 -624.
    31. Trachtenberg JT, Thompson WJ. Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature. 1996; 379 (6561):174-177.
    32. Ziv E, Garner CC. Principles of glutamatergic syanpse formation: seeing the forest for the trees[J]. Curr Opin Neurobiol, 2002,12(2): 536-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700