板岩隧道围岩变形破坏机制及稳定性控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道施工的安全性与经济性一直以来都是人们最为关注的两大主题。其中安全性取决于隧道围岩与支护结构在施工和运营中的稳定,而经济性则是在保证安全性的前提下减小工程投入,这就需要在隧道的设计与施工中充分认识围岩特点,选择合理的支护参数及施工方法。本文的依托工程贵广铁路板岩隧道为双线铁路隧道群,板岩自身独特的层状结构导致在施工中出现围岩掉块、超挖甚至塌方等工程问题,在这些工程问题中掉块问题影响施工安全性、超挖问题影响施工的经济性、塌方问题则对施工的安全性与经济性均有严重影响。本文以贵广铁路板岩隧道施工安全性与经济性为出发点,详细研究板岩的工程性质从而探究板岩隧道施工中几种工程问题的发生机理,进而对隧道的支护参数及施工方法进行详细优化,主要有如下研究成果:
     (1)通过对板岩隧道的调查研究,总结了板岩隧道施工中常见问题如大变形问题、掉块塌方问题及超挖问题的影响因素;依据贵广铁路板岩隧道群的调查研究将板岩隧道塌方问题归纳为岩层溃曲型、岩层滑落型与破碎板岩失稳型三种类型,将掉块问题归纳为大块掉落、台阶状掉落及剥离式掉落三种类型,将超挖问题归纳为台阶状超挖、锯齿状超挖及裂隙主导型超挖三种类型,并对各种工程问题的发生条件进行详细统计。
     (2)在对板岩隧道常见工程问题影响因素统计的基础上对板岩稳定性的影响因素进行归纳,通过岩石室内试验及层间结合物遇水强度等试验研究对板岩稳定性进行亚分级。
     (3)在理论分析的基础上深入研究岩层溃屈型塌方、岩层滑落型塌方与破碎板岩失稳型塌方的机理,定量或定性分析了板岩隧道几种塌方问题的失稳条件;运用弹性地基梁理论分析了层状岩体的破坏机理,为中厚层板岩的破坏失稳、台阶状掉落及剥离式掉落提供了理论解释。
     (4)针对隧道施工中的围岩稳定控制问题在施工现场进行大量现场试验,通过各类围岩的围岩压力试验得出适用于板岩隧道的围岩压力计算方法,同时分析了板岩隧道竖向与横向围岩压力的分布规律;通过现场试验与数值分析相结合的手段研究了锚杆在板岩隧道支护中的作用效果,结果显示垂直于板岩层理面施作的锚杆作用最大,其余部位锚杆的作用效果不明显;利用现场试验与收敛约束法相结合的方法研究了钢架的作用效果,着重对比分析型钢钢架与格栅刚架的适用性,结果显示型钢刚架虽然具有较大的安全储备,但格栅刚架的受力特点和经济性较好,并最终得到适用于各级围岩的钢架支护形式及参数。
     (5)通过理论计算及现场多次试验观察总结了控制板岩隧道超挖的合理爆破方案及辅助施工方法;利用数值分析及理论分析的方法研究了板岩隧道塌方问题的控制方法,针对三种类型的塌方问题提出了相应的开挖工艺,结果表明对于岩层溃屈型塌方及破碎板岩失稳型塌方应以“减小一次开挖跨度、短进尺、管超前”为主要原则,对于岩层滑落型塌方则主要控制掌子面的稳定为主。
     通过对板岩隧道工程问题的总结分析最终得出了适用于板岩隧道的合理支护参数及施工方法,保证了贵广铁路板岩隧道施工的安全性与经济性。
The safety and economy of tunnel construction have always been the two most concerned problems, of which the safety depends on the stability of tunnel surrounding rock and supporting structure when they are under construction and function, while the economy concerns the reduction of construction investment on the premise of safety guaranteed. To achieve those needs a thorough recognition of features of surrounding rock in the process of tunnel design and construction and selection of reasonable supporting parameters and constructive methods. The Guiguang railroad slate tunnels on which this paper relied are double-track railway tunnels, the particular stratified feature of slate may cause many construction issues such as the surrounding rock spalling, overbreak, even collapse, among which the problem of spalling affects safety, the overbreak affects the economy, and the collapse may seriously influence both safety and the economy. This paper takes the safety and economy of Guiguang railroad slate tunnel construction as a starting point, studies in detail the engineering properties of slate so as to probe mechanism of several engineering problems during construction, and thus the support parameters and construction methods can be further optimized detailedly. The research findings are as followes:
     (1) Through the investigation of the slate tunnels, this paper summarizes the factors causing common problems in the process of construction, such as large deformation、 spallings and tunnel collapses, and overbreaks. According to the investigation and study of Guiguang railroad slate tunnels, the collapses of slate tunnel are categorized into three types of buckling failure of strata、strata slide and instability of broken slate; the spallings are categorized into large-rock spalling, step-shaped spalling and peel-off spalling; the overbreaks are divided into step-shaped over-break, jagged over-break and fracture-leading over-break, and this paper also makes a detailed count on the situations under which kinds of construction problems occur.
     (2) To sum up the affecting factors of slate stability on the basis of the collection of factors that cause slate tunnel's common engineering issues. To conduct sub-level classification of slate stability through rock's laboratory experiment and the experiment of water-weakened degree of cement, and etc.
     (3) To deeply study the mechanism of collapses of buckling failure of Strata, strata slide and instability of broken slate on the basis of theoretical analysis. Analyze quantitatively or qualitatively the instability conditions of some slate tunnel collapses. Analyze the damaging mechanism of stratified rock by the elastic foundation beam theory; which provides the theoretical explanation for the damage and instability of medium thickness slate, step-shaped spalling, and Peel-off spalling.
     (4) Plenty of spot experiments have been conducted during tunnels construction concerning issues of surrounding rock stability control, and the calculation method of surrounding rock pressure suitable for slate tunnel is drawn through surrounding rock pressure experiments of kinds of surrounding rocks, and the distribution patterns of horizontal and vertical surrounding rocks pressure are analyzed. The paper studies the effect of anchor in the slate tunnels' support through a combination of spot experiment and numerical simulation, the result shows that the anchor vertical to the slate bedding plane plays most important role, while the rest of anchor's effect are not so obvious. The paper studies the role and effect of steel frame through a combination of spot experiments and convergence-confinement method, which puts an emphasis on the comparison of applicability between section steel frame and grid steel frame, the result shows that though section steel frame has larger safety stock, the grid steel frame has better mechanical properties and economic efficiency, and finally obtains the steel frame supporting form and parameters suitable for all levels of slate.
     (5) This paper summarizes the reasonable blasting schemes and auxiliary construction approaches for controlling slate tunnels' overbreak through theoretical calculation and several spot experiments, studies the controlling methods of slate tunnel collapses by numerical analysis and theoretical analysis, and proposes specific excavation processing to address the issues of three types of collapses, which proves that it should take " reducing excavation span, short footage、advance reinforcement by small-diameter pipes " as a chief principle regarding to collapse of buckling failure of Strata and Instability of Broken slate; and as to collapse of Strata Slide, the chief principle should be controlling tunnel face.
     Reasonable supporting parameters and constructing methods for slate tunnels are finally drawn from the summarization and analyses of slate tunnels' engineering problems, which guarantees the safety and the economy of the Guiguang railroad slate tunnels' construction.
引文
[1]刘佑荣,唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999
    [2]杨乐,徐年春,谢贵华等.层状岩体地下洞室的Cosserat理论有限元分析[J].岩土力学,2010,31(3):982-985
    [3]王启耀,蒋臻蔚,杨德林.层状岩体隧道弯曲变形的有限元模拟[J].岩土力学,2006,27(7):1101-1104
    [4]Adhikary D P, Dyskin A V and Jewell R J. Numerieal modeling of the flexural deformation of foliated rock slopes[J].International Journal of Rock Mechanics & Mining Sciences, 1996,33(6):595-60
    [5]Adhikary D P, Dyskin A V. Modeling the Deformation of underground Excavations in layered rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,1997,34:714-726
    [6]]Adhikary D P, Guo H. An orthotropic cosserat elastic-plastic model for layered rocks[J]. rock mech.& rock eng.,2002,35(3):161-17
    [7]Provids E and Kattis M A. Finite element method in plane Cosserat elasticity [J]. Computers and structures,2002,(80):2059-206
    [8]李银平,杨春和.层状盐岩体的三维Cosserat介质扩展本构模型[J].岩土力学,2006,27(4):509-514
    [9]杨春和,李银平.互层盐岩体的Cosserat介质扩展本构模型[J].岩石力学与工程学报,2005,24(25):4226-4233
    [10]佘成学,熊文林,陈胜宏.具有弯曲效应的层状结构岩体变形的Cosserat介质分析方法[J],岩土力学,1994,15(4):12-19
    [11]佘成学,熊文林,陈胜宏.层状岩体的弹粘塑性Cosserat介质理论及其工程应用[J].水利学报,1996,(4):10-17
    [12]刘俊,黄铭,葛修润等.层状岩体开挖的空间弹性偶应力理论分析[J].岩石力学与工程学报,2000,19(3):276-280
    [13]刘俊,陈胜宏.节理岩体三维偶应力弹性理论[J].岩土力学,1995,16(4):20-29
    [14]梅松华.层状岩体开挖变形机制及破坏机理研究[D].中国科学院博士学位论文,2008
    [15]张玉军,唐仪兴.层状岩体强度异向性地下洞室的有限元分析[J].地下空间,1999,19(1):30-34
    [16]张玉军,刘谊平.层状岩体的各向异性——弹塑性三维有限元分析[J].焦作大学学报,2003,(2):47-50
    [17]张玉军,刘谊平.正交各向异性岩休中地下洞室稳定的粘弹一粘塑性三维有限元分析[J].岩土力学,2002,23(3):278-283
    [18]贺少辉,李中林.层状岩体弹塑性本构关系及其工程应用研究[J].南方冶金学院学报,1994,15(3):141-145
    [19]刘立,邱贤德,黄木坤.三维复合岩层损伤本构关系与演化方程[J].西安矿业学院学报,1999,19(3):221-224
    [20]余永强.层状复合岩体爆破损伤断裂机理及工程应用研究[D].重庆大学博士学位论文,2003
    [21]赵平劳,姚增.层状结构岩体的复合材料本构模型[J].兰州大学学报(自然科学版),1990,26(2):114-118
    [22]孙建生,永井哲夫,樱井春辅.一个新的节理岩体力学分析模型及其应用[J].岩石力学与工程学报,1994,13(4):194-20
    [23]杨松林,朱焕春,刘祖德.加锚层状岩体的本构模型[J].岩土工程学报,2001,23(4):427430
    [24]杨延毅.加锚层状岩体的变形破坏过程与加固效果分析模型[J].岩石力学与工程学报,1994,13(4):309-317
    [25]孙广忠.岩体力学[M].北京:科学出版社,1988
    [26]倪国荣,叶梅新.“板裂”结构岩体的力学分析法[J].岩工程学报,1987,9(1):99-107
    [27]杨建辉,杨万斌,付跃升.煤巷板裂结构顶板分层稳定跨距分析[J].煤炭科学技术,1999,27(8):1-7
    [28]邓尚平,傅鹤林.板裂介质围岩中的隧道衬砌与围岩相互作用机理[J].采矿技术,2003,3(1):50-51
    [29]颜立新,康红普,苏永华.板裂化地下岩体工程稳定的力学机理及概率分析[J].岩石力学与工程学报,2002,21(z1):1938-1941
    [30]温森.深埋隧洞层状围岩变形分析[J].金属矿山,2009(4):11-15
    [31]韩强,黄小清,宁建国.高等板壳理论[M].北京:科学出版社,2002
    [32]何运林.结构稳定理论[M].北京:中国水利水电出版社,1995
    [33]秦昊.巷道围岩失稳机制及冲击矿压机理研究[D].中国矿业大学博士学位论文,2008
    [34]汪洋.山岭隧道软岩大变形机理及灾害预测和治理研究[D].华中科技大学博士学位论文,2009
    [35]杨建辉、杨万斌、郭延华.煤巷层状顶板压曲破坏现象分析[J].煤炭学报,2001,26(3):240-243
    [36]孙伟、谢飞鸿、郭磊.基于弹性薄板理论的巷道层状顶板破坏的能量法分析[J].石家庄铁道学院学报(自然科学版),2009,22(2):50-53
    [37]李明、茅献彪、王鹏等.巷道围岩层裂板结构稳定性分析[J].矿业安全与环保,2011,38(1):10-12
    [38]苏永华、姚爱军、欧阳光前.沉积岩中深部隧道围岩层状破坏模型[J].中南公路工程,2006,31(2):34-36
    [39]陈先国.隧道结构失稳及判据研究[D].西南交通大学博十学位论文,2002
    [40]刘军、秦四清、张倬元.缓倾角层状岩体失稳的尖点突变模型研究[J].岩士工程学报,2001,23(1):42-44
    [41]李朝红、徐光兴、高召宁.隧道层状围岩失稳的弹性倾斜梁突变模型[J].山西建筑,2007,33(24):325-326
    [42]李锡均,杨绍良,何付明.水利水电工程地下洞室围岩稳定性分析评价方法研究[J].西部探矿工程,2007,(10):164-168
    [43]张继勋,刘秋生.地下工程围岩稳定性分析方法现状与不足[J].水利科技与经济,2005,11(2):71-74
    [44]许传华,任青文,李瑞.地下工程围岩稳定性分析方法研究进展[J].金属矿山,2003,(320):34-37
    [45]鄢建华,汤雷.水工地下工程围岩稳定性分析方法现状与发展[J].岩土力学,2003,24(增2):681-686
    [46]林崇德.层状岩石顶板破坏机理数值模拟过程分析[J].岩石力学与工程学报,1999,18(4):392-396
    [47]张志雄,余贤斌.层状岩体对巷道顶底板应力分布的影响[J].煤炭工程,2007(12):66-68
    [48]徐磊,任青文,杜小凯等.层状岩体各向异性弹塑性模型及其数值实现[J].地下空间与工程学报,2010,6(4):764-768
    [49]朱泽奇,盛谦,梅松华.改进的遍布节理模型及其在层状岩体地下工程中的应用[J].岩土力学,2009,30(10):3115-3121
    [50]韩昌瑞,张波,白世伟等.深埋隧道层状岩体弹塑性本构模型研究[J].岩土力学,2008,29(9):2404-2408
    [51]贾蓬,唐春安,王述红.巷道层状岩层顶板破坏机理[J].煤炭学报,2006,31(1):11-15
    [52]贾蓬,唐春安,张国联.深埋垂直板裂结构岩体中洞室失稳破坏机制[J].东北大学学报(自然科学版),2008,29(6):894-896
    [53]贾蓬,唐春安,杨天鸿等.具有不同倾角层状结构面岩体中隧道稳定性数值分析[J].东北大学学报(自然科学版),2006,27(11):1275-.277
    [54]张晓春,缪协兴.层状岩体中洞室围岩层裂及破坏的数值模拟研究[J].岩石力学与工程学报,2006,21(11):1645-1650
    [55]李长权,戚文革.层状顶板破断机理数值研究[J].武汉理工大学学报,2008,30(3):95-98
    [56]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994
    [57]沈明荣.岩体力学[M].上海:同济大学出版社,1991
    [58]M.鲍莱次基,M.胡戴克.矿山岩体力学[M].北京:煤炭工业出版社,1985
    [59]曲海锋,杨重存,朱合华等.公路隧道围岩压力研究与发展[J].地下空问与工程学报,2007,3(3):536-541
    [60]Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support [J]. Rock Mech,1974,6(4):184-236
    [61]Bieniawski Z T. Engineering Rock Mass Classi-fication[M]. Znc:John Wiley &Sons, 1989:1-105
    [62]Bhawani Singh, R.K. Goel, J.L. Jethwa. Support pressure assessment in arched underground openings through poor rock masses[J]. Engingeering Geology 1997(48):59-81
    [63]Bhasin.R, Grimstad. E,1996.The Use of Stress-Strengh Relationship in the Assessment of Tunnel Stability. Proc. Recent Advances in Tunneling Technology, New Delhi.India.
    [64]Goel, R.K.,Jethwa,J.L.,1991. Prediction of Support Pressure using RMR Classification. Proc. Indian Geotechnical Conf., Surat, India, December 1991.
    [65]Goel, R. K.,1994.Correlations for Predicting Support Pressures and Closures in tunnels Ph.D. Thesis, Nagpur University India, p.308.
    [66]Goel, R. K. Jethwa, J. L., Paithankar, A. G. Indian experiences with Q and RMR system[J]. Tunneling Underground Space Technology,1995,10(1):97-109
    [67]谢家杰.浅埋隧道的地层压力[J].土木工程学报1964.6
    [68]JTG D70-2004,公路隧道设计规范[S].
    [69]TB10004-2005,铁路隧道设计规范[S].
    [70]SL279-2002,水工隧洞设计规范[S].
    [71]重庆建筑工程学院等.岩石地下建筑结构[M].北京:中国建筑工业出版社,1982
    [72]刘学增,罗仁立.大跨度公路隧道围岩竖向压力分布特征探讨[J].同济大学学报(自然科学版),2010,38(12):1741-1745
    [73]李亮、郭乃正、傅鹤林等.破碎围岩中连拱隧道荷载计算理论解[J].中国铁道科学,2004,25(4):50-53
    [74]傅鹤林、韩汝才、朱汉华.破碎围岩中单拱隧道荷载计算的理论解[J].中南大学学报(自然科学版),2004,35(3):478-483
    [75]姜晨光、刘桂芳、刘华等.矿山围岩压力与应力计算的新方法[J].有色矿山,2003,32(5):1-4
    [76]王明年,郭军,罗禄森等.高速铁路大断面深埋黄土隧道围岩压力计算方法[J].中国铁道科学,2009,30(5):54-57
    [77]王志良,中林方,姚激等.浅埋隧道围岩应力场的计算复变函数求解法[J].岩士力学,2010,31(1):86-89
    [78]陈庆,杨文喜,卢珂.深埋砾石层隧道围岩压力计算方法[J].施工技术,2001,6:242-243
    [79]张铎、李德武、王君顺.浅埋黄土隧道围岩压力计算值与实测值的对比分析[J].四川建筑,2010,30(1):85-86
    [80]林银飞,郑颖大.弹塑性有限厚条法及工程应用[J].工程力学,1997,14(2): 108-112
    [81]Ahmad Fahimifar, Masoud Ranjbarnia. Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method[J]. Tunnelling and Underground Space Technology,2009,24(4):364-375.
    [82]Gunter G Gschwandtner, Robert Galler. Input to the application of the convergence confinement method with time-dependent material behaviour of the support[J]. Tunnelling and Underground Space Technology,2011,13(7).
    [83]Kumar P. Infinite elements for numerical analysis of under-ground excavations[J]. Tunneling and Underground Tech-nology,2000,15(1):117-124.
    [84]Shou K. J. A three-dimensional hybrid boundary element method for non-linear analysis of a weak plane near an underground excavation [J]. Tunneling and UndergroundSpace Technology,2000,15(2):215-226.
    [85]陈峰宾,张顶立,扈世民.基于收敛约束原理的大断面黄土隧道围岩与初支稳定性分析[J].北京交通大学学报,2011,35(4):28-32.
    [86]C. Carranza-Torres, C. Fairhurst. Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses That Satisfy the Hoek-Brown Failure Criterion[J]. Tunnelling and Underground Space Technology,2000,15(2):187-213.
    [87]Daniel Dias. Convergence-confinement approach for designing tunnel face reinforcement by horizontal bolting[J]. Tunnelling and Underground Space Technology,2011,26(4):517-523.
    [88]C. Gonza'lez-Nicieza, A.E. A'lvarez-Vigil, A. Mene'ndez-Di'az, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology,2008,23(1):25-37.
    [89]Oreste.P.P. Analysis of structural interaction in tunnels using the covergence-confinement approach[J].Tunnellingand Underground SPaee Technology.2003,18(4):347-63.
    [90]金丰年.考虑时间效应的围岩特征曲线[J].岩石力学与工程学报,1997,16(4):344-353.
    [91]张素敏,宋玉香,朱永全.隧道围岩特性曲线数值模拟与分析[J].岩土力学.2004,25(3):455-458.
    [92]马显春,石碧波,李军伟.赤平极射投影在隧道围岩稳定性评价中的应用[J].山西建筑,2009,35(4):340-341.
    [93]Arild Palmstrom. Characterizing rock mass by the RMI for use in practical rock engineering [J].Tunneling and Underground Space Technology,1996,11(2):175-188.
    [94]刘宝许,乔兰,李长洪.基于动态围岩分类的高速公路隧道围岩稳定性评价方法[J].北京科技大学学报,2005,27(2):146-149.
    [95]李健.大断面黄土隧道初支作用机理及变形控制技术研究[D].北京交通大学博土学位论文,2012
    [96]黄宏伟,徐凌.大风垭口岩石公路隧道围岩及初期支护变形与内力研究[J].岩石力学与工程学报,2004,23(1):45-52.
    [97]高军.大跨隧道初期支护稳定性分析[J].矿山压力与顶板管理,2002,19(1):45-46.
    [98]杨友元.高速铁路隧道施工中监控量测探析[J].河北工业科技,2009,26(4):274-276.
    [99]张发明,庞正江,郭丙跃等.层状岩体开挖洞室围岩块体稳定性分析及锚固方法[J].水文地质工程地质,2005,5:39-43.
    [100]赵勇,刘建友,田四明.深埋隧道软弱围岩支护体系受力特征的试验研究[J].岩石力学与工程学报,2011,30(8):1664-1669.
    [101]杨善胜.软弱围岩隧道合理支护型式研究[D].长安大学硕士学位论文,2008
    [102]杨建辉,陈自海,文献民等.初次支护结构对围岩塑性区和位移的影响研究[J].隧道建设,2012,32(4):442-446.
    [103]霍润科,王艳波,宋战平等.黄土隧道初期支护性能分析[J].岩土力学,2012,30(增2):287-290.
    [104]李东勇,徐祯祥,王琳静.地铁暗挖隧道初期支护联合系统数值模拟分析[J].铁道建筑,2007(5):34-37.
    [105]王成.隧道系统锚杆设计计算理论研究[J].重庆交通大学学报(自然科学版),2008,27(1):37-39.
    [106]方勇,何川.全长粘结式锚杆与隧道围岩相互作用研究[J].工程力学,2007,24(6):111-116.
    [107]赵景彭.节理倾角对层状岩体大断面隧道稳定性研究[J].铁道建筑,2011,9:58-61.
    [108]祁瑞清,唐万军,谢飞鸿等.锚杆支护对层状岩层巷道作用的二维有限元分析[J].中国矿业,2009,18(4):78-81.
    [109]钟放平.水平层状围岩隧道锚喷支护参数优化试验研究[J].铁道科学与工程学报,2008,5(1):59-63.
    [110]祝江鸿,纪洪广,卢鹛程等.组合拱梁理论在回采巷道顶板锚杆支护中的应用[J].煤炭科技,2009,35(4):69-72.
    [111]郑斌.陡倾角岩体地下洞室的位移和锚杆应力特性[J].山西建筑,2009,35(26):79-80.
    [112]陈鉴光,宁忠贤,曾宪营.雪峰山隧道监控量测中的锚杆轴力评测[J]冬中南公路工程,2006,31(1):167-169.
    [113]郭小红,王梦恕.隧道支护结构中锚杆的功效分析[J].岩土力学,2007,28(10):2234-2239.
    [114]江玉生,江华,王金学等.公路隧道V级围岩初支型钢支架受力分布及动态变化研究[J].工程地质学报,2012,20(3):454-457.
    [115]徐帮树,杨为民,王者超等.公路隧道型钢喷射混凝土初期支护安全评价研究[J].岩土力学,2012,33(1):248-254.
    [116]曲海锋、朱合华、黄成造等.隧道初期支护的钢拱架与钢格栅选择研究[J].地下空间与工程学报,2007,3(2):258-262.
    [117]叶康慨.木寨岭隧道大坪有轨斜井施工大变形段分析及处理技术[J].隧道建设,2010,30(2):190-194
    [118]刘高,张帆宇,李新召等.木寨岭隧道大变形特征及机理分析[J].岩石力学与工程学报,2005,24(z2):5521-5526
    [119]张文新,孙韶峰,刘虹.木寨岭隧道高地应力软岩大变形施工技术[J].现代隧道技术,2011,48(2):78-82
    [120]张献伟.木寨岭隧道炭质板岩段大变形控制技术[J].隧道建设,2010,30(6):684-686
    [121]邹翀、王超朋、张文新.兰渝铁路木寨岭隧道炭质板岩段应力控制试验研究[J].隧道建设,2010,30(2):121-124
    [122]郭啟良、伍法权、钱卫平.乌鞘岭长大深埋隧道围岩变形与地应力关系的研究[J].岩 石力学与工程学报,2006,25(11):2194-2199
    [123]卿三惠、黄润秋.乌鞘岭特长隧道软弱围岩大变形特性研究[J].现代隧道技术,2005,42(2):7-14
    [124]冉小兵.板岩隧道的施工控制与管理探讨[J].中国新技术新产品,2010,13:70
    [125]王运金.九岭山隧道塌方治理及塌方治理效果检测[J].现代隧道技术,2008,45(6):82-86
    [126]吴程辉.强富水板岩隧道防排水施工技术[J].贵州工业大学学报(自然科学版),2008,37(6):180-183
    [127]罗文涛.梅关隧道设计施工技术[J].企业技术开发,2010,29(1):126-130
    [128]王勋,李杰,张晓军.浅变质板岩隧道安全施工技术[J].中国水运,2010,10(11):217-218
    [129]彭泽波.炭质板岩地区隧道施工技术[J].探矿工程(岩土钻掘工程),2009,36(10):78-79
    [130]王维富.炭质板岩地层隧道施工要点及大变形防治措施[J].隧道建设,2010,30(6):697-700
    [131]席俊杰,李德武.纸坊隧道三台阶与两台阶开挖数值模拟对比分析[J].隧道建设,2010,30(2):147-150
    [132]于志秋.软岩地段大断面浅埋偏压隧道开挖施工与控制[J].西部探矿工程,2008,11:201-203
    [133]彭发新、郭洋阳.新现一号隧道炭质板岩破碎带围岩大变形施工控制技术[J].黑龙江科技信息,2011,28:289
    [134]赵少强,林安宁,闫小军.哈达铺隧道直立板岩大变形分析及控制施工技术[J].现代隧道技术,2011,48(2):74-76
    [135]陈飞.湘江隧道大跨、浅埋段超前预注浆加固技术[J].隧道建设,2011,31(1):121-124
    [136]何传锋.陕鄂界隧道进13洞口管棚注浆总结[J].中国水运,2009,9(10):211-212
    [137]李兵.板岩隧道光面爆破参数现场优化试验[J].公路交通科技·应用技术版,201 1,7(4):184-187
    [138]黄卫兵.桃花江核电厂进厂道路洞冲里隧道塌方处理方法[J].隧道建设,2010,30(4):469475
    [139]宋伟,吴刚,马春峰.隧道掌子面塌腔段治理方案[J].城市建设理论研究(电子版),2011,23
    [140]王京春,田殉,陈平.沙赫里斯坦隧道塌方处理技术[J].中外公路,2010,30(3):215-217
    [141]姜云.公路隧道围岩大变形预测预报及对策研究[D].成都理工大学博士学位论文,2004
    [142]李峰,王广宏,刘虹.木寨岭隧道7号斜井大变形影响因素分析[J].现代隧道技术,2011,48(2):34-36
    [143]王广宏.毛羽山隧道出口大变形影响因素探讨[J].现代隧道技术,2011,48(2):28-31
    [144]何满潮.软岩的概念及分类[A].见:中国岩石力学与工程学会软岩专委会编.世纪之交软岩工程技术现状与展望[C].北京:煤炭工业出版社,1999,37-47
    [145]刘大纲.公路隧道施工阶段岩体围岩亚级分级研究[D].西南交通大学博士学位论文,2007
    [146]孙钧,侯学渊.地下结构[M].北京:科学出版社,1987
    [147]刘锦华.块体理论在工程岩体稳定分析中的应用[M].北京:水利水电出版社,1998
    [148]贺少辉.地下工程[M].北京:清华大学出版社,北京交通大学出版社,2004
    [149]Bieniawski Z T. Engineering Rock Mass Classification. Znc:John Wiley & Sons,1989, 1-105
    [150]Bieniawski Z T. Rock Mass Classification in Rock Engineering. In:Proc. Symposium for Rock engineering. Jonannesburg:[s.n.],1976,1:97-106
    [151]Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support. Roch Mech,1974,6(4):184-236
    [152]Rabcewicz L. The new Austrian tunneling method. Water Power,1964:454-457
    [153]Franklin J A, Louis C, Masure P. Rock material classification. Proc 2nd Int. Cong. Eng. Ge01., IAEG, Sao Paulo,1974:325-341
    [154]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979
    [155]铁路工程施工技术手册一隧道(上,下册)[M].北京:中国铁道出版社,1999
    [156]关于岩石的合理分类[J].译文见:隧道译丛,1992(4).
    [157]肖文,蒋洋等.走马岭隧道围岩稳定性分析及支护结构优化[J].成都理工大学学报(自然科学版),2006,33(6):561-565
    [158]林银飞,郑颖人.弹塑性有限厚条法及工程应用[J].工程力学,1997,14(2):108-112
    [159]Ahmad Fahimifar. Masoud Ranjbarnia. Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method[J]. Tunnelling and Underground Space Technology,2009,24(4):364-375.
    [160]Gunter G Gschwandtner, Robert Galler. Input to the application of the convergence confinement method with time-dependent material behaviour of the support[J]. Tunnelling and Underground Space Technology,2011,13(7).
    [161]Kumar P. Infinite elements for numerical analysis of under-ground excavations[J]. Tunneling and Underground Tech-nology,2000,15(1):117-124.
    [162]Shou K J. A three-dimensional hybrid boundary element method for non-linear analysis of a weak plane near an underground excavation [J]. Tunneling and UndergroundSpace Technology,2000,15(2):215-226.
    [163]陈峰宾,张顶立,扈世民.基于收敛约束原理的大断面黄土隧道围岩与初支稳定性分析[J].北京交通大学学报,2011,35(4):28-32.
    [164]C. Carranza-Torres, C. Fairhurst. Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses That Satisfy the Hoek-Brown Failure Criterion[J]. Tunnelling and Underground Space Technology,2000,15(2):187-213.
    [165]Daniel Dias. Convergence-confinement approach for designing tunnel face reinforcement by horizontal bolting[J]. Tunnelling and Underground Space Technology,2011,26(4):517-523.
    [166]C. Gonza'lez-Nicieza, A.E. A'lvarez-Vigil, A. Mene'ndez-Di' az, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology,2008,23(1):25-37.
    [167]Oreste.P.P. Analysis of structural interaction in tunnels using the covergence- confinement approach[J].Tunnellingand Underground SPaee Technology.2003,18(4):347-63.
    [168]金丰年.考虑时间效应的围岩特征曲线[J].岩石力学与工程学报,1997,16(4):344-353.
    [169]张素敏,宋玉香,朱永全.隧道围岩特性曲线数值模拟与分析[J].岩土力学.2004,25(3):455-458.
    [170]关宝树.隧道力学概论[M].成都:西南交通人学出版社,1993
    [171]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学,2006.
    [172]Chern, J.C., F.Y.Shiao, C.W.Yu. An empirical safety criterion for tunnel construction[C].In:Regional Symposium on Sedimentary Rock Engineering. Taipei, Taiwan.1998.222~227.
    [173]蒋青青,胡毅夫,赖伟明.层状岩质边坡遍布节理模型的三维稳定性分析[J].岩_土力学.2009,30(3):712-716.
    [174]张志增,李仲奎,许梦国.横观各向同性岩体中深埋圆形巷道的位移解析解[J].黄金.2010,3(31):24-26.
    [175]钱鸣高,缪协兴,徐家林等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000
    [176]蒋臻蔚,王启耀,石玉玲.陡倾角层状岩体中巨型地下洞室群的围岩稳定问题[J].公路交通科技.2005,22(6):127-130.
    [177]朱建明,徐金海,张宏涛.围岩大变形机理及控制技术研究[M].北京:科学出版社,2010
    [178]刘福胜,文竟舟,王成.用隧道周边位移反分析围岩压力的解析研究[J].地下空间与工程学报.2007,3(7):1204-1207.
    [179]张奇.层状岩体内光面爆破断裂过程研究[J].东北煤炭技术.1989,2:29-33.
    [180]傅洪贤.海底隧道爆破施工减振及裂隙扩展控制技术研究[R].北京:北京交通大学

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700