用户名: 密码: 验证码:
多尺度Bi_2Te_3系热电材料的制备及性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为室温附近热电性能最好的热电材料之一,Bi2Te3系材料在国防、医疗、微电子、航空航天等诸多领域有广泛应用前景。但传统的Bi2Te3系块体材料的热电性能一直在一个比较低的水平徘徊。随着纳米技术的飞速发展,热电材料正面临新的发展机遇。研究表明,Bi2Te3系纳米热电材料,包括纳米量子点、纳米线、纳米薄膜和块体纳米材料,热电性能可望大幅度提高。在对Bi2Te3系热电材料的国内外研究现状、发展趋势详细调研的基础上,提出了本文的研究目的、意义及研究内容,拟从纳米颗粒、纳米薄膜以及块体材料三个方面研究多尺度Bi2Te3系热电材料的制备工艺及其热电性能。
     采用电化学原子层外延(ECALE)、微波辅助湿化学方法(MAWCS)、机械合金化(MA)结合等离子活化烧结(PAS)和热压烧结(HP)方法分别了制备纳米薄膜、纳米颗粒和块体Bi2Te3系热电材料。通过X射线衍射分析(XRD)、场发射扫描电镜(FE-SEM),能谱分析(EDS),高分辨透射电镜(HRTEM)等多种分析测试手段研究了材料的成分及组织结构;通过对带隙、Seebeck系数、电阻率、载流子浓度、迁移率及热导率等材料性能的测试考察了工艺条件对Bi2Te3系热电材料性能的影响,在此基础上优化了其热电性能。
     考察了Bi、Se在不同衬底及相互之上的欠电位沉积(UPD)特性,确定了Bi2Se3化合物在多晶Pt和单晶Au衬底上的ECALE沉积工艺,在上述衬底上成功沉积了Bi2Se3纳米薄膜。组织结构分析表明:在多晶Pt衬底上经400个稳定ECALE循环获得了平整的正交结构Bi2Se3薄膜;单晶Au衬底上200个循环获得菱方Bi2Se3薄膜,薄膜由大量垂直衬底的纳米片构成。二者的物相和形貌差异主要源于衬底表面状态和单循环沉积量。红外光谱分析发现Au衬底上沉积的Bi2Se3薄膜能隙发生蓝移。
     利用微波辅助湿化学法成功合成了二元Sb2Te3纳米片、Sb2Se3纳米棒。探讨了微波合成条件对产物组成的影响,分析了微波辅助合成中的反应机制及合成粉体微观形貌的生长和调控机制。Sb2Te3化合物为六角形纳米片,TEM和SAED及HRTEM分析证实纳米片为菱方结构,纳米片沿垂直于z轴的六个边向外扩张生长。Sb2Se3化合物呈纳米棒状,正交结构Sb2Se3晶体三个方向上的生长速率不一致,导致纳米棒沿[001]方向进行一维生长。
     采用MAWCS方法首次合成了Bi0.4Sb1.6Te3和Bi2Te2.5Se0.5三元化合物固溶体纳米粉体,探讨了反应环境中碱性强度和还原剂对合成反应的影响,发现在一定的KOH与KBH4配合量下可以得到目标三元化合物。利用表面活性剂可获得Bi0.4Sb1.6Te3纳米片,Bi2Te2.5Se0.5在无表面活性剂条件下也能获得六角形纳米片结构。
     将MAWCS合成的Bi0.4Sb1.6Te3纳米片掺入MA合成的Bi0.4Sb1.6Te3粉体进行纳米复合后热压成型,研究了不同纳米片掺入比例对材料热电性能的影响。纳米片的加入能显著降低声子热导率,加入7.5wt.%纳米片后样品热导率比未复合样品下降7.2%,声子热导率下降9.8%,室温下7.5wt.%掺入比例的样品有最大ZT值(1.31)。
     采用MA-PAS制备了P型Bi0.4Sb1.6Te3块体材料。探讨了PAS工艺对材料性能的影响,发现平行压力方向的热电性能要优于垂直压力方向。考察了不同烧结温度对材料热电性能的影响,653K烧结的样品在323K下具有最大功率因子和Seebeck系数,分别为5.7x10-3W·m-1·K-2和244.8μV·K-1,653K烧结样品具有最大的ZT值1.42(T=323K)。
     TEM观察到PAS烧结样品中存在孪晶,晶粒内部具有明暗相间的层片条纹。HRTEM观察条纹处存在晶格扭曲和晶格缺陷,说明这些层片条纹是由晶内微观应力造成的剧烈晶格畸变所导致的衬度差别。晶格畸变、晶内缺陷及纳米非晶区使晶格热传导受到强烈干扰,导致热导率下降,热电性能提高。
As one of the most frequently used thermoelectric materials near room temperature, Bi2Te3-based compounds have been broadly applied in many fields, such as minicooler for micro-and opto-electronics, medical device, electronic consumables, and so on. However, the thermoelectric performance of traditional Bi2Te3-based bulk materials has been stagnated for a long time. With the development of nanotechnologies, thermoelectric materials are facing new opportunities and rejuvenation. As pointed out by previous researchers, thermoelectric performance of nano-materials could be greatly improved owing to the strong quantum confinement effect. Based on a detailed review to the research status and developing trend of thermoelectric materials, the research topic of this thesis is focused on Bi2Te3-based multi-dimensional thermoelectric materials, the preparation techniques of multi-dimensional bismuth telluride based thermoelectric materials were explored and their thermoelectric performance was optimized
     Electrochemical atomic epitaxy(ECALE), microwave assisted wet chemical synthsis (MAWCS), mechanical alloying plus hot pressing (MA-HP) and mechanical alloying plus plasma activated sintering (MA-PAS) were subjected to fabricate the nano-films, nano-particles and Bi2Te3 bulk materials respectively. FE-SEM, EDS, XRD and HRTEM were performed to characterize the morphology, composition and structure of Bi2Te3-based multi-dimensional materials respectively. Energy band gap and transport properties, such as Seebeck coefficient, electrical resistivity, charge carrier concentration, mobility and thermal conductivity, were measured to study the effect of processing conditions on thermoelectric performance of Bi2Te3-based compounds. Based on these results, thermoelectric performance of the materials was optimized.
     Electrochemical aspects of bismuth and selenium on different substrates and each other are carefully investigated. The optimal deposition conditions are determined for the ECALE process of Bi2Se3 on polycrystalline Pt substrate and single crystal Au substrate. A 400 ECALE-cycle and 200 ECALE-cycle Bi2Se3 thin film deposits were grown on polycrystalline Pt substrate and single crystal Au substrate respectively. The 400-cycle nanofilm on polycrystalline Pt substrate shows an orthorhombic structure and a smooth morphology. While a rhombohedral Bi2Se3 film, was obtained on the single-crystal Au substrate. The different structure of Bi2Se3 deposits should be ascribed to the crystal structure and surface situation of the substrates. Due to the quantum confinement effect, the band gap of the 200-ECALE-cycle Bi2Se3 film on Au substrate is blueshifted.
     Sb2Te3 and Sb2Se3 binary compounds were synthesized successively by the means of microwave assisted wet chemical method (MAWCS). Effect of synthesizing conditions on the composition of the reaction products was studied, and the reaction mechanisms of microwave assistant synthesis are analyzed. Hexagonal Sb2Te3 nano-plates with rhombohedral structure were synthesized by MAWCS; while Sb2Se3 compound with orthorhombic structure, which has a nanorod morphology, was obtained by MAWCS. The unique morphology of the compound is determined by the growing speed difference between different crystal planes.
     Bio.4Sb1.6Te3 and Bi2Te2.5Se0.5 ternary compounds were synthesized via MAWCS for the first time in this work. The strength of KOH and KBH4 plays a critical role in the synthesis of Bi0.4Sb1.6Te3 and Bi2Te2.5Se0.5. The morphology of Bi0.4Sb1.6Te3 powders was tuned from irregular nano-particles to nano-plates structure with addition of a certain amount of sodium dodecyl sulfonic (SDS) to the solution system; while Bi2Te2.5Seo.5 hexagonal nano-plates could be obtained without addition of any surfactant.
     The Bi0.4Sb1.6Te3 nano-plates synthesized by MAWCS are mixed with the as-MAed Bi0.4Sb1.6Te3 powders and then consolidated with hot press. Effect of the content of nano-plates on thermoelectric properties of the bulk (Bi,Sb)2Te3 alloys was investigated. When the doping content is 7.5wt.%, the total thermal conductivity and the phonon thermal conductivity of the sample reduced 7.2% and 9.8% respectively than those of the sample without addition of nano-plates. The maximum figure of merit was achieved as ZT=1.31 at room temperature with addition of 7.5wt.% nano-plates.
     P-type Bio.4Sb1.6Te3 bulk thermoelectric materials were fabricated by MA-PAS. Effects of processing conditions of PAS were investigated. Thermoelectric performance parallel to the pressure direction outweighs that of perpendicular to the pressure direction of the samples. The dependence of thermoelectric performance on sintering temperature and current were researched, and the maximal Seebeck coefficient of 244.8μV·K-1was obtained at 323K in the sample sintered at 653K, and it also has the maximum power factor of 5.7×10-3Wm-1K-2. The maximum ZT of 1.42(T=323K) was achieved in the sample sintered at 653K.
     TEM observation shows that there are twin crystals and layered stripes within the grains of the samples prepared by MA-PAS, and further HRTEM observation reveals confirmed crystal lattice distortion and crystal defects exist around those stripes. The results of TEM and HRTEM observation demonstrate the layered stripes are caused by diffractioin contrast due to dramatic crystal lattice distortion and lattice defects. Crystal lattice distortion, crystal defects within the grains, together with nano non-crystal areas greatly depress crystal lattice thermal conduction, which results in decrease of thermal conductivity and improvement of thermoelectric performance.
引文
[1]F.J. DiSalvo, Thermoelectric cooling and power generation, Science,1999,285:703-706.
    [2]徐德胜,半导体制冷与应用技术,上海:上海交通大学出版社,1992.
    [3]A.F. Loffe, Semiconductors thermoelements and thermoelectric cooling, London:Infosearch,1957, 36-41.
    [4]M. Telkes, The efficiency of thermoelectric generators, International J. Appl. Phys.,1947, 18:1116-1127.
    [5]刘恩科.半导体物理学,北京:国防工业出版社,2003,167-169.
    [6]J.E. Parrott. Transport theory of semiconductor energy conversion. J. Appl. Phys.,1982, 53(12):9105-9111.
    [7]黄昆,韩汝琦,固体物理学,北京:高等教育出版社,2000,142-145.
    [8]C. Kittel, Introduction to Solid State Physics,8. Aufl., Wiley, New York,2005.
    [9]J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed.2009,48,8616-8639.
    [10]A. Majumdar, Thermoelectricity in semiconductor nanostructures, Science,2004,303:777-778.
    [11]B.C. Sales. Smaller is cooler, Science,2002,295:1248-1249.
    [12]K.F. Hsu, S. Loo, F. Guo, et al. Cubic AgPbmSbTe2+m:bulk thermoelectric materials with high figure of merit. Science,2004,303:818-821.
    [13]B.C. Sales, D. Mandrus, B.C. Chakoumakos, et al. Filled Skutterudite antimonides:electron crystals and phonon glasses. Phys. Rev. B,1997,56(23):15081-15086.;
    [14]B.C. Sales, D. Mandrus, R.K.Williams, Science,1996,272,1325.
    [15]V.L. Kuznetsov, L.A. Kuznetsova,A.E. Kaliazin, et al., J. Appl. Phys.2000,87,7871.
    [16]L.D. Zhao, B.P. Zhang, J.F. Li, Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering, J Alloys and Compdss,2008, 455,259-264
    [17]H. Wang, J.F. Li, C.W. Nan, et al., High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Appl. Phys Lett.,2006,88, 092104
    [18]W.J. Xie, X.F. Tang, Y.G. Yan, et al., Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Appl. Phys. Lett.,2009,94,102111
    [19]R. Venkatasubramanian, E. Siivola, T. Colpitts, et al., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature,2001,413,597-602
    [20]J.C. Caylor, K. Coonley, J. Stuart, et al., Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity, Appl. Phys Lett.2005,87, 023105
    [21]G.A. Slack.1st National Thermogenic Cooler Conference, ed S. Horn (Center for Night Vision and Electro-Optics) Fort Belvoir, Virgins, September 17,1992.171
    [22]N.F. Mott, H. Jones, The theory of the properties of metals and alloys, Dover Publications, New York,1958.
    [24]L.D. Hicks, M.S. Dresselhaus. Effect of quantum-well structure on the thermoelectric figure of merit, Phys Rev B,1993,47(19):12727-12731.
    [25]L.D. Hicks, T.C. Harman, M.S. Dresselhaus. Use of quantum-well superlattices to obtain a high figure of merit from nonconvertional thermoelectric materials, Appl. Phys. Lett,1993,63(23): 3230-3232.
    [26]L.D. Hicks, T.C. Harman, X. Sun, et al. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B,1996,53:10493-10496.
    [27]M. Masashi, F. Ryoji, J. Solid State Chem.2005,178,1670.
    [28]J.M. Zide, D.O. Klenov, S. Stemmer, et al., Appl. Phys. Lett.,2005,87,112102.
    [29]S. Iwanaga, M. Marciniak, R.B. Darling, et al., J. Appl. Phys.,2007,101,123709.
    [30]G.M. Beensh-Marchwicka, E. Proclow, W. Mielcarek, Cryst. Res. Technol.,2001,36,1035.
    [31]G.D. Staneff, P.I. Asimow, L Mat Res Soc Symp Proc,2004,793:S4.
    [32]G.S. Nolas, H.B. Lyon, J.L. Cohn, et al.,16th international conference on thermoelectrics,1997, 321.
    [33]D.J. Singh, I.I. Mazin, Calculated thermoelectric properties of La-filled skutterudites, Phys Rev B, 1997,56(4):1650-1653.
    [34]S.B. Schujman, G.S. Naloas, R.A. Young, et al., J. Appl Phys,2000,87(3):152-161.
    [35]N.P. Blake, L. Mollnitz, G. Kresse, et al., J Chem Phys,1999,111:3133-3138.
    [36]G.S. Nolas, T.R. Weakley, J.L. Cohn, et al., Phys Rev B,2000,61:3845-3849.
    [37]G.S. Nolas, M. Beekman, J. Gryko, et al., Appl Phys Lett,2003,82(6):910-915.
    [38]C.W. Myles, J. Dong, O.F. Sankey, Phys Stat Sol,2003,239(1):26-29.
    [39]J.H. Kim, N.L. Okamoto, K. Kishida, et al., Acta Mater.,2006,54,2057-2063.
    [40]A. Bentien, V. Pacheco, S. Paschen, et al., Phys. Rev. B 2005,71,165206.
    [41]I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power of Na2Co2O4 single crystals, Phys Rev B,1997,56(12):685-689.
    [42]A.C. Masset, C. Michel, A. Maignan, et al., Misfit-layered cobaltite with an anisotropic giant magnetoresistance Ca3Co4O9, Phys Rev B.,2000,62:166-175.
    [43]J.P. Heremans, V. Jovovic, E.S. Toberer, et al., Science 2008,321,554-561.
    [44]T.P. Hogan, A. Downey, J. Short, et al., J. Electron. Mater.,2007,36,704-709
    [45]K. Hoang, K. Desai, S.D. Mahanti, Phys. Rev. B,2005,72,064102.
    [46]A. Gueguen, P.F. P. Poudeu, C.P. Li, et al., Chem. Mater.,2009,21,1683-1687.
    [47]J.R. Sootsman, R.J. Pcionek, H. Kong, et al., Chem. Mater.,2006,18,4993.
    [48]M.W. Oh, D.M. Wee, S.D. Park, et al., Phys. Rev. B,2008,77,165119.
    [49]A. Heinrich, H. Griessmanna, G. Behr, et al., Thermoelectric properties of β-FeSi2 single crystals and polycrystalline β-FeSi2+x thin films, Thin solid films,2001,381, (2),287-295.
    [50]I. Yamauchi, T. Okamotol, H. Ohata, et al., β-phase transformation and thermoelectric power in FeSi2 and Fe2Si5 based alloys containing small amounts of Cu, J Alloys and Compdss,1997,260, (1-2),162-171.
    [51]T. Caillat, J.P. Fleurial, A. Borshchevky, Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids,1997,58:1119-1125.
    [52]D.L. Wang, L.D. Chen, Q. Yao, et al. High-temperature thermoelectric properties of Ca3Co4O9+δwith Eu substitution. Solid State Communications.,2004,129:615-618.
    [53]F. Konig, Cryst. Res. Technol.,1998,33(2):219-232.
    [54]V.S. Zemskov, A.D. Belaya, U.S. Beluy et al. Growth and investigation of thermoelectric properties of Bi-Sb alloy single crystals. Journal of Crystal Growth,2000; 212:161-166.
    [55]D. Perrin, M. Chitroub, S. Scherrer, et al., Study of the n-type Bi2Te2.7Se0.3 doped with bromine impurity. J Phys Chem of Solids,2000,61:1687-1691.
    [56]L.D. Hicks, M.S. Dresselhaus, Thermoelectric figure of merit of one dimensional conductor, Phys. Rev. B,1993,47,16631-16634.
    [57]X.B. Zhao, X.H. Ji, Y.H. Zhang, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett.2005, 86:062111-062113.
    [58]X.H. Ji, X.B. Zhao, Y.H. Zhang, et al., Proceedings of the 23th international conference on thermoelectrics. Adelaide:Australia,2004
    [59]X.A. Fan, J.Y. Yang, Z. Xie, et al., Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites,J. Phys. D:Appl. Phys.,2007,40,5975-5979.
    [60]B. Poudel, Q. Hao, Y. Ma, et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science,2008,320,634-638.
    [61]S.J. Hong, B.S. Chun, Microstructure and thermoelectric properties of extruded n-type 95%Bi2Te3-5%Bi2Se3 alloy along bar length. Materials Science and Engineering A,2003,356: 345-351.
    [62]S.J. Hong, S.H. Lee, B.S. Chun. Thermoelectric properties of newly fabricated n-type 95%Bi2Te2-5%Bi2Se3 alloys by gas atomizing and extrusion process. Materials Science and Engineering B,2003,98:232-238.
    [63]X.K. Duan, J.Y. Yang, W. Zhong, et al., Synthesis of Bi2Te3 nanopowders by vacuum arc plasma evaporation, Powder Technology,2007,172:63-66.
    [64]吴会军,朱冬生,向兰,有机溶剂热法合成纳米材料的研究与发展,化工新型材料,2005,33:1-4.
    [65]X.B. Zhao, X.H. Ji, Y.H. Zhang, et al. Effect of solvent on the microstructures of nano-structure Bi2Te3 prepared by solvothermal synthesis. JAlloys and Compdss.2004,368:349-352.
    [66]H.L. Ni, X.B. Zhao, et al., Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites. J Alloys and Compds.,2005,397:317-321.
    [67]H.L. Ni, T.J. Zhu, X.B. Zhao, Thermoelectric properties of hydrothermally synthesized and hot pressed n-type Bi2Te3 alloys with different contents of Te, Materials Science and Engineering B, 2005,117:119-122.
    [68]Y.Y. Zheng, T.J. Zhu, X.B. Zhao, et. al, Sonochemical synthesis of nanocrystalline Bi2Te3 thermoelectric compounds, Materials Letters,2005,59:2886-2888.
    [69]Q. Yao, Y.J. Zhu, L.D. Chen, et al., Microwave-assisted synthesis and characterization of Bi2Te3 nanosheets and nanotubes, J Alloys and Compdss.,2009,48191-95.
    [70]B. Zhou, Y.Zhao, L. Pub, et al, Microwave-assisted synthesis of nanocrystalline Bi2Te3, Mater Chem and Phys.,2006,96,192-196.
    [71]B. Zhou, J.J. Zhu, Microwave-assisted synthesis of Sb2Se3 submicron rods, compared with those of Bi2Te3 and Sb2Te3, Nanotechnology,2009,20:085604.
    [72]Y. Jiang, Y.J. Zhu, Microwave-assisted synthesis of sulfide M2S3 (M=Bi, Sb) nanorods using an ionic liquid, J. Phys. Chem. B,2005,109,4361-4364.
    [73]B. Zhou, Y. Ji, Y.F. Yang, et al., Rapid microwave-assisted synthesis of single-crystalline Sb2Te3 hexagonal nanoplates, Cryst. Growth Des.,2008,8(12),4394-4397.
    [74]X.H. Liao, H. Wang, J.J. Zhu, et al., Preparation of Bi2S3 nanorods by microwave irradiation, Materials Research Bulletin,2001,36:2339-2346.
    [75]J. Heremans, C.M. Thrush, Phys. Rev. B,1999,95(19):12579.
    [76]H.W. Hillhouse, M.T. Tuominen, Modeling the thermoelectric transport properties of nanowires embedded in oriented microporous and mesoporous films, Microporous and Mesoporous Materials,2001,47:39-50.
    [77]王为,贾法龙,黄庆华等,电化学组装一维纳米线阵列P型Bi2Te3温差电材料,无机材料学报,2004,3:517-522.
    [78]C.G. Jin, X.Q. Xiang, C. Jia, et al., Electrochemical fabrication of large-Area, ordered Bi2Te3 nanowire arrays, J. Phys. Chem. B,2004,108,1844-1847.
    [79]C.G. Jin, G.Q. Zhang, T. Qian, et al., Large-area Sb2Te3 nanowire arrays, J. Phys. Chem. B,2005, 109,1430-1432.
    [80]U.K. Gautama, C.N. R. Rao, Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process, J. Mater. Chem.,2004,14, 2530-2535.
    [81]X.F. Qiu, C. Burda, R.L. Fu, et al., Heterostructured Bi2Se3 nanowires with periodic phase boundaries, J. Am. Chem. Soc.2004,126,16276-16277.
    [82]R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures, Physical Review B,2000,61,3091-3096.
    [83]A. Balandin, K. L. Wang, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells, J. Appl. Phys.,1998,84(11):6149-6154.
    [84]B.Y. Yoo, C.K. Huang, J.R. Lim, et al., Electrochemically deposited thermoelectric n-type Bi2Te3 thin films, Electrochimica Acta,2005,50:4371-4377.
    [85]H. Kose, M. Bicer, C. Tiitiinoglu, et al., The underpotential deposition of Bi2Te3-ySey thin films by an electrochemical co-deposition method, Electrochimica Acta,2009,54:1680-1686.
    [86]A. Giani, A. Boulouz, B. Aboulfarah, et al. Effect of antimony concentration on the electrical and thermoelectrical properties of (Bi 1-xSbx)2Te3 thin films grown by metal organic chemical vapour deposition (MOCVD) technique. Journal of Crystal Growth,1999,204:91-96.
    [87]H. Beyer, J. Nurnus, H. Bottner, et al. High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity, Physica E,2002,13: 965-968.
    [88]D.J. Yao, C.J. Kim, G. Chen, et al., MEMS Thermoelectric microcooler,20th international conference on thermoelectrics, Beijing,2001,401-404.
    [89]B.R. Sankapal, C.D. Lokhande. Photoelectrochemical characterization of Bi2Se3 thin films deposited by SILAR technique, Meter Chem Phys,2002,73:151-155.
    [90]C.D. Lokhande, B.R. Sankapal, S.D. Sartale, et al. A novel method for the deposition of nanocrystalline Bi2Se3, Sb2Se3 and Bi2Se3-Sb2Se3 thin films-SILAR, Applied Surface Science, 2001,182:413-417.
    [91]B.R. Sankapal, C.D. Lokhande, Effect of annealing on chemically deposited Bi2Se3-Sb2Se3 composite thin films. Meterials Chemistry and Physics,2002,74:126-133.
    [92]B.W. Gregory, D.W. Suggs, J.L. Stickney, Conditions for the deposition of CdTe by electrochemical atomic layer epitaxy (ECALE). JElectrochem Soc,1991,138:1279-1284.
    [93]R. Vaidyanathan, J.L. Stickney, U. Happek, Quantum confinement in PbSe thin films electrodeposited by elecrochemical atomic layer epitaxy (EC-ALE), Electrochimica Acta,2004, 49:1321-1326.
    [94]M. Innocenti, F. Forni, G. Pezzatini, et al. Electrochemical behavior of As on silver single crystals and experimental conditions for InAs growth by ECALE. J. Electroanal. Chem,2001,514:75-82.
    [95]T.L. Wade, R. Vaidyanathan, U. Happek, et al., Electrochemical formation of a Ⅲ-Ⅴ compound semiconductor superlattice:InAs/InSb, J Electroanal Chem,2001,500:322.
    [96]T. Oznuluer, U. Demir, Formation of Bi2S3 thin films on Au(111) by electrochemical atomic layer epitaxy:kinetics of structural changes in the initial monolayers. J. Electroanal. Chem,2002,529: 34-42.
    [97]W. Zhu, J.Y. Yang, X.H. Gao, et al. Optimization of the formation of bismuth telluride thin film by using ECALE. Journal of Electroanalytical Chemistry,2005,585:83-88.
    [98]J.Y. Yang, W. Zhu, X.H. Gao, et al. Electrochemical aspects of the formation of Bi2Te3 thin film via the route of ECALE. Journal of Electroanalytical Chemistry,2005,577:117-123.
    [99]J.Y. Yang, W. Zhu, D.X. Zhou, et al. Electrochemical formation of Sb2Te3 thin films on Pt by electrochemical atomic layer epitaxy. J. Phys. Chem. B,2006,110:4599-4604.
    [100]J.Y. Yang, W. Zhu, D.X. Zhou, et al. Electrochemical aspects of depositing Sb2Te3 compound on Au substrate by ECALE, Electrochimica Acta,2007,52:3035-3039.
    [101]W. Zhu, J.Y. Yang, D.X. Zhou, et al., Electrochemical aspects and structure characterization of VA-VIA compound semiconductor Bi2Te3/Sb2Te3 superlattice thin films via electrochemical atomic layer epitaxy, Langmuir,2008,24,5919-5924.
    [102]C.B. Vining, Mater. Res. Soc. Symp. Proc.,1991,234:95-99.
    [103]P.G. Klemens,15 International Conference on Thermoelectrics,1996,206.
    [104]M. Miyajima, K. Takagi, H. Okamura, et al., Thermoelectric properties of Bi-Sb composite prepared by mechanical alloying method, Proceedings of the 15th ICT,1996,18-21.
    [105]L.D. Zhao, B.P. Zhang, J.F. Li, et al., Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering, J Alloys and Compdss,2008,455:259-264.
    [106]X.F. Tang, W.J. Xie, Li H, et al., Applied Physics Letters,2007,90(1).
    [107]M. Otake, K. Sato, O. Sugiyama, et al., Solid State Ionics,2004.172(1-4):523-526.
    [108]罗锡裕,放电等离子烧结材料的最新进展,粉末冶金工业,2001,11(6):7-17.
    [109]X.F. Tang, W.J. Xie, H. Li, et al., Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure, APPLIED PHYSICS LETTERS, 2007,90:012102-012104.
    [110]J. Jiang, L.D. Chen, S.Q. Bai, et al., Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering, Scripta Materialia,2005,52:347-351.
    [111]J. Jiang, L.D. Chen, S.Q. Bai, et al.,Fabrication and thermoelectric performance of textured n-typeBi2(Te,Se)3 by spark plasma sintering, Materials Science and Engineering B,2005, 117:334-338.
    [112]L.D. Zhao, B.P. Zhanga, J.F. Li, et al., Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering, Physica B,2007, 400:11-15.
    [113]X.A. Fan, J.Y. Yang, R. G. Chen, et al. Characterization and thermoelectric properties of p-type 25%Bi2Te3-75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering, J. Phys. D:Appl. Phys.,2006,39:740-745.
    [114]X.A. Fan, J.Y. Yang, W. Zhu, et al. Microstructure and thermoelectric properties of n-type Bi2Te2.85Se0.15 prepared by mechanical alloying and plasma activated sintering, J. Alloys Compdss.,2006,420:256-259.
    [115]X.A. Fan, J.Y. Yang, W. Zhu, et al. Effect of nominal Sb2Te3 content on thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x alloys by MA-HP. J. Phys. D:Appl. Phys.2006,39:5069-5073.
    [116]朱文,VA-VIA族化合物半导体纳米热电薄膜的电化学原子层外延生长,[博士学位论文],华中科技大学图书馆,2005年.
    [117]M.C. Santos, S. A.S. Machado, J. Electroanal. Chem.567 (2004) 203.
    [118]W. Zhu, J.Y. Yang, X.H. Gao, et al., Growth of bismuth telluride thin film on Pt by electrochemical atomic layer epitaxy, Transactions ofNonferrous Metals Society of China,2005, 15(2):405-409.
    [119]J.I. Pankove, in:Optical processes in semiconductors, Prentice-Hall, Englewood Cliffs, NJ,1971.
    [120]A.B. Novoselova (Ed.), Physical and chemical properties of semiconductors, Handbook, Moscow, 1978.
    [121]B. Pejova, I. Grozdanov, A. Tanusevski, Optical and thermal band gap energy of chemically deposited bismuth(Ⅲ) selenide thin films, Materials Chemistry and Physics,2004,83:245-249.
    [122]T.E. Lister, J.L. Stickney, Atomic level studies of selenium electrodeposition on gold(111) and gold(110),J.Phys. Chem.,1996,100,19568-19576.
    [123]C.H. Chen, K.D. Kepler, A.A. Gewirth, et al. Electrodeposited bismuth monolayers on gold (111) electrodes:comparison of surface x-ray scattering, scanning tunneling microscopy, and atomic force microscopy lattice structures. J. Phys. Chem.,1993,97:7290-7294.
    [124]A.A. Bayaz, A. Giani, A. Foucaran, et al., Elaboration and characterisation of Bi2Se3 thin films using ditertiarybutylselenide as a precursor by MOCVD system, Journal of Crystal Growth, 2002,243:444-449.
    [125]A.G. Saskia, Microwave chemistry, Chemical Society Reviews,1997,26,233-238.
    [126]A.G. Whittaker, D. M. P. Mingos, J. Chem. Soc., Dalton Trans.,2000,1521.
    [127]A.G. Whittaker, D. M. P. Mingos, J. Chem. Soc., Dalton Trans.,1995,2073.
    [128]谢振,微波湿化学方法制备纳米Bi2Te3/Bi2Se3系热电材料,[硕士学位论文],华中科技大学图书馆,2007年。
    [129]W.Z. Wang, B. Poudel, J. Yang, et al., High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach, J. AM. CHEM. SOC.2005,127, 13792-13793.
    [130]Q. Wang, C.L. Jiang, C.F. Yu, et al., J. Nanopart. Res.,2007,9 (2),269-274.
    [131]W.D. Shi, J.B. Yu, H.S.Wang, et al., J. Am. Chem. Soc.2006,128(51):16490-16491.
    [132]袁良生,金胜明等,乙二醇还原制备镍粉的产物分布研究,化学通报,2005,68:1-6.
    [133]B.D. Busbee, S.O. Obare, C.J. Murphy, An improved synthesis of high-aspect-ratio gold nanorods,Adv. Mater.,2003,15,414-416.
    [134]N.S. Platakis, H.C. Gatos, Threshold and memory switching in crystalline chalcogenide materials, physica status solidi (a),1972,13(1), K1-K4.
    [135]M. Chen, L. Gao, Polyol method synthesis and characterization of nanoscale Sb2Se3 wires, Materials Research Bulletin 2005,40:1120-1125.
    [136]L. Guo, G.B. Ji, X.F. Chang, et al., Microwave-assisted synthesis of Sb2Se3 submicron tetragonal tubular and spherical crystals, Nanotechnology,2010,21,035606.
    [137]C. Zhao, X.B. Cao, X.M. La, Microwave-enhanced rapid and green synthesis of well crystalline Sb2Se3 nanorods with a flat cross section, Materials Letters,2007,61,5083-5086.
    [138]陈名海,高濂,多元醇法制备和表征Sb2Se3纳米线,无机材料学报,2006,20(6),1343-1348.
    [139]R. Harpeness, A. Gedanken, Microwave-assisted synthesis of nanosized Bi2Se3, New J. Chem., 2003,27,1191-1193.
    [140]C.G. Jin, G.Q. Zhang, T. Qian, et al., J. Phys. Chem. B,2005,109,1430-1432.
    [141]罗婷,任山,纳米技术在提高热电材料性能上的应用现状及发展趋势,材料导报,2006,20(2):50-53.
    [142]樊希安,(Bi,Sb)2(Te,Se)3系热电材料的制备及性能优化研究,[博士学位论文]。华中科技大学图书馆,2007年。
    [143]W.J. Xie, X.F. Tang, Y.G. Yan, et al., High thermoelectric performance BiSbTe alloy with unique low-dimensional structure, J. Appl. Phys.,2009,105,113713;
    [144]G. de Groat, One-shot powder metal parts, Am. Mach.,1965,109(21),107-109.
    [145]F.K. Lotgering, J. Inorg,Nucl. Chem.1959,9,113-116.
    [146]N. Keawprak, Z.M. Sun, H. Hashimoto, et al. J. Alloys Compds.2005,397,236-240.
    [147]J.Y. Yang, T. Aizawa, A. Yamamoto, et al. Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1-x prepared by bulk mechanical alloying and hot pressing. J Alloys Compds. 2000,312:326-330.
    [148]J.Seo, K. Park, D. Lee, et al. Thermoelectric properties of hot-pressed n-type Bi2Te2.85Se0.15 compounds doped with SbI3. Materials Science and Engineering B,1997,49:247-250.
    [149]J. Jiang, L.D. Chen, Q.Yao, et al. Effect of TeI4 content on the thermoelectric properties of n-type Bi-Te-Se crystals prepared by zone melting. Materials Chemistry and Physics,2005,92:39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700