柴达木盆地北缘早古生代碰撞造山及岩浆作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴北缘早古生代碰撞造山带呈北西向展布于祁连山与柴达木盆地之间,是我国中央造山带的重要组成部分,也是我国仅有的几个存在高压-超高压变质岩的地点之一。本文在柴北缘关键部位1∶5万和1∶25万区调填图基础上,以板块构造和大陆造山带理论为指导,着重研究了造山带的内部结构、造山过程中的岩浆作用和变质作用,并进行了较系统的锆石U-Pb年代学测试分析。
    研究结果表明,柴北缘早古生代造山带可以划分为三个主要构造单元:(1)鱼卡河-沙柳河高压-超高压变质构造带,主要由新元古代花岗片麻岩、鱼卡河(沙柳河)岩群变质表壳岩和榴辉岩等高压-超高压变质岩组成;(2)滩间山蛇绿杂岩-岛弧构造带,由蛇绿杂岩、岛弧火山岩、弧后盆地火山-沉积建造和岛弧深成岩等岩石组合构成;(3)欧龙布鲁克陆块,具基底和盖层的双层结构,基底由古元古代的德令哈杂岩组成,盖层为全吉群等未变质盖层。
    与造山过程相关的岩浆作用包括:(1)蛇绿杂岩组合,以超镁铁质-镁铁质堆晶岩类为主,少量变质橄榄岩、枕状熔岩、硅质岩和浅色花岗岩,岩石地球化学特点指示其属SSZ型蛇绿岩,;(2)岛弧火山岩组合,为一套浅变质的钙碱性火山岩,以中基性火山岩为主,少量酸性火山岩,形成时代在450Ma之前;(3)弧后盆地火山岩组合,与一套类复理石建造的陆缘碎屑岩共生,在~435Ma发生了变质作用;(4)岛弧深成岩组合,为一套钙碱性的石英闪长岩-英云闪长岩-花岗闪长岩-二长花岗岩,从岛弧向大陆一侧具有碱性程度增加的趋势,形成时代上可划分为465-435Ma和435-400Ma两个阶段;后一阶段有少量同碰撞型花岗岩产出。
    变质作用研究表明,柴北缘造山带具有双变质带结构,即鱼卡河-沙柳河高压-超高压变质带和滩间山岛弧中低压变质带。在高压-超高压变质带中,包括变质泥质岩和花岗片麻岩在内的许多岩石都遭受过高压变质作用,许多榴辉岩达到了超高压变质条件;但变质温度和P-T-t路径在高压-超高压变质带的横向和纵向上均有所不同;纵向上,野马滩和锡铁山一带的榴辉岩折返过程中经历麻粒岩相的变质叠加,而绿梁山地区的榴辉岩仅达到角闪岩相的温度条件;横向上表现为靠近缝合线一侧榴辉岩形成的温压条件较高。岛弧构造带以中低压角闪岩相-绿片岩相为主,其中弧后盆地建造靠近高压变质带一侧为(高)角闪岩相变质,远离缝合带变质程度降为绿片岩相。
    通过岩石学、地球化学、同位素年代学等方面的综合分析建立了柴北缘造山带的年代事件序列,以及造山过程与岩浆作用和变质作用之间的内在联系,探讨了柴北缘造山带从洋壳俯冲到陆-陆碰撞的演化过程。
The northwest-trending Early Paleozoic collisional orogenic belt located on northernmargin of the Qaidam basin is a part of the Central Orogenic belt and one of a few places inChina where HP-UHP metamorphic rocks exposed. Based on the data of 1:50 000 and 1:250000 regional mapping and the theories of plate tectonics and continental orogeny, this paperstudies basically the framework of the orogen, magmatism and metamorphism duringorogenic process and presents zircon U-Pb isotopic ages of igneous and metamorphic rocksfrom the orogen.
    The Early Paleozoic orogenic belt consists of three tectonic units: (1) the Yuqiahe-Shaliuhe HP-UHP metamorphic belt, which is predominantly composed of Neoproterozoicgranitoid gneisses and metamorphic supercrutal rocks (Yuqiahe/Shaliuhe Group complex)with minor HP-UHP metamorphic rocks such as eclogite;(2) the Tanjianshan ophiolitecomplex – volcanic arc belt, which consists of ophiolite complex, volcanic island arc,back-arc basin assemblage and arc granitoid rocks;(3) the Olongbruk micro-block, whichhas a double-layered structure, i.e. a metamorphic basement composed of the Delinghacomplex and a cover composed of the Quanji Group.
    The igneous petrotectonic assemblages formed in the orogenic process include: (1)ophiolite complex assemblage, composed predominantly of the ultramafic-mafic cumulates,minor metamorphic peridotite, pillow lava, cherts and leucocratic granites as well.Geological and geochemical characteristics indicate that ophiolite complex is classified as“SSZ”(supra-subduction zone) type;(2) island arc volcanic assemblage, a suit oflower-grade metamorphic calc-alkaline volcanics, composed mainly of intermediate-basicvolcanic rocks with minor acidic volcanic rocks and formed before ~450Ma;(3) back-arcbasin volcanic assemblage, associated with a suit of terrigenous flysch, which underwentmetamorphism at ~435Ma;and (4) arc granitoid rocks assemblage, a suit of calc-alkalinequartz-diorite, tonalite, granodiorite and granite, whose alkalinity increases toward continent,and formed during two stages of 465-435Ma and 435~400Ma, and accompanied bysyn-collisinal granites at later stage.
    The study of metamorphism indicates that the orogen has a paired-metamorphic beltstructure, i.e., co-existence of Yuqiahe-Shaliuhe HP-UHP metamorphic belt and Tanjianshanisland-arc lower-medium pressure metamorphic belt. Rocks in the HP-UHP metamorphicbelt, including pelites and granitic gneisses, was probably all or partly subducted into the
    deep interior of the lithosphere and underwent HP metamorphism, but some eclogites wentup to the UHP metamorphic condition. Metamorphic temperatures and P-T-t paths ofHP-UHP metamorphic rocks are spatially diverse. Longitudinally, the P-T-t path of eclogitesfrom Yematan and Xitieshan differ from the one in Lüliangshan area. While the former hadbeen overprinted by granulite facies metamorphism during exhumation, the later onlyreached amphibolite facies metamorphism. Laterrally, the metamorphic temperature andpressure increase toward the geosuture. The island-arc belt underwent chiefly LP-MPamphibolite-greenschist facies metamorphism, and the metamorphic facies in the back-arcassemblage changed from high-amphibolite facies to greenschist facies from island-arc tocontinent.Based on the studies of petrology, geochemistry and zircon U-Pb isotopic dating, wehave established the sequence of chronotectonic events in the orogenic belt and the geneticrelationship among magmatism, metamorphism and orogenesis, and discussed the evolutionof the Early-Paleozoic Orogenic belt from the period of subduction of the oceaniclithosphere to that of the continent-continent collision.
引文
1. Aki K, Christoffersson A , Husebye E S. 1977. Determination of the three-dimensional seismic structure of the lithosphere , J . Geophy. Res. , 82 (2) : 277-296.
    2. Almendinger R W, Nelson K D, Potter C J, et al. Deep seismic reflection characteristics of the continental crust. Geology, 1987, 15: 304-310.
    3. Arai, S. The Circum-Izu Massiv peridotite, central Japan, as back-arc mantle fragments of the Izu-Bonin arc system. In: Peters, Tj., Nicolas, A. and Coleman, R.G. (eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Kluwer, Dordrecht, 1991, 807-822.
    4. Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362: 144-146.
    5. Barbarin B.1990. Granitoids: main petrogenetic classification in relation to origin and tectonic setting. J. Geol., 25:227-238.
    6. Barbarin B.1996. Genesis of two main types of peraluminous granitoids. Geology. 24: 295-298.
    7. Barbarin B.1999. A review of the relationships between granitoid types.their origins and their geodynamic environment. Lithos, 46:605~625。
    8. Barker F. Trondhjemite: definition, environment and hypotheses of origin. in Barker, F. (ed.), Trondhjemites, dacites and related rocks, Elsevier, Amsterdam, 1979, 1-12.
    9. Batcheler R A and Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 1985, 48: 43-55.
    10. Bonin B. From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenisis. J. Geol., 1990, 25: 261-270.
    11. Boudier F.and Nicolas A. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth planet. Sci. Lett. 1985, 76(1-2): 84-92.
    12. Boynton M V. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. (ed.), Rare earth element geochemistry. Elsevier, 63-114.
    13. Brown M. p-T-t evolution of orogenic belts and the causes of regional metamophism. J Geol Soc L ond , 1993 , 150: 227-241.
    14. Bucher, K., and Frey, M., 2002. Petrogenesis of Metamorphic Rocks. (Seventh Edition), Springer, p.341.
    15. Carlson W, Schwarze E. Petrological significance of prograde homogenization of growth zoning in garnet: an example fromthe Liano Uplift . J Metamorphic Geol , 1997 , 15 : 631~644
    16. Chappell B W. 1999, Aluminum saturation in I-and S-type granites and the characterization of fractionated haplogranites. Lithos, 46:535-552.
    17. Chappell, B.J. and White, A.J.R., "Two Contrasting Granite Types". Pac. Geol., 1974, 8: 173-174
    18. Chen N S, Sun M, You ZD, et al . Well-preserved garnet growth zoning in granulite from the Dabie Mountains, central China. J metamorphic Geol., 1998, 16: 213~222.
    19. Chopin C. Coesite and pure pyrope in high grade pelitic blueschists of the Western Alps: a first record and some consequences : Contrib. Mineral. Petrol., 1984, 86: 107-118.
    20. Coleman R G and Wang X. Overview of the geology and tectonics of UHPM. Coleman R G and Wang X (eds.). Ultrahighpressure Metamorphism. Cambridge, 1995 ,1-32.
    21. Coleman R G, Lee D E, Beatty L B, Brannock W W. Eclogites and eclogites: their differences and similarities. Geol. Soc. Am. Bull. 1965, 76: 483-508.
    22. Coleman R G. Ophiolites: ancient ocenic Lithosphere? Springer-Verlag. 1977, 229
    23. Collins W J, Beams S D, White A J R and Chappell B W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contr. Mineral. Petrol. 1982, 10:189-200.
    24. Condie K C. Plate Tectonics and Crustal Evolution. New York: Pergamon Press, 1989, 110-200.
    25. Cottin J Y, Lorand J P, Agrinier P, et al. Isotopic (O. Sr. Nd) and trace element geochemistry of the Laouni Layered intrusions (Pan-African belt, Hoggar, Algeria): evidence for post-collisional continental tholeiitic magmas variably contaminated by continental crust. Lithos, 1998, 45: 197-222.
    26. Deer, WA, Howie RA, and Zussman J. An Introduction to the Rock-forming Minerals. Prentice Hall 1992, 696.
    27. Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted litho-sphere. Nature, 347: 662—665.
    28. Dewey J F, Bird P. Mountain belts and the new global tectonics. J. Geophys. Res., 1970, 75: 2625-2647.
    29. Dewey J F, Hempton M R, Kidd W S F, et al. Shortening of continental lithosphere, the neotectonics of eastern Anatolia: a young collision zone. Geol. Soc. London, Spec. Publ., 1986, 19: 3-36.
    30. Dewey J F, Horsfield B. Plate tectonics, orogeny and continent drift. Nature, 1970, 225: 521-525.
    31. Dewey J F, Shackelton R M, Chang C, Sun Y. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond. 1988, A327:379-413.
    32. Dick H J B and Bullen T. Chromian spinel as a pet rogenetic indicatorin abyssal and alpine-type peridotite and spat ially as sociated lavas. Contrib. Mineral. Petrol., 1984, 86: 54-76
    33. Dickinson W R. Plate tectonic models for orogeny at continental margins. Nature, 1971 (232) :41-42
    34. Droop G T R. Alpine metamorphism in the south-east Tauern Window, Austria.Ⅰ. P-T variation in space and time. Jour. Meta. Geol., 1985, 3: 371-402
    35. Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geol., 1992, 20: 641~644.
    36. England P C and Thompson A B. Pressure-temperature-time paths of regional metamorphism of the continental crust. I: Heat transfer during the evolution of regions of thickened continental crust. Jour. Petrol., 1984, 25: 894-928.
    37. Evans J R , Achauer U. Teleseismic velocity tomography using the ACH method: theory and application to continental-scale studies. In : Iyer H M, Hirahara K ed. Seimic tomography : Theory and Practice, 1993, 309-360.
    38. Evans J R, Zucca J J. Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake volcano, northern California Cascade Range. J. Geophys. Res., 1988, 93: 15016-15036.
    39. Flagler P A, Spray J G. Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology, 1991, 19: 70-73.
    40. Florence F P, Spear F S. Effects of diffusional modification of garnet growth zoning on P-T path calculation. Contrib. Mineral Petrol., 1991, 107: 487-500.
    41. Grand S P, van der Hilst R D, Widiyantoro S. Global seismic tomography: a snapshot of convection in the Earth. GSA Today 1997, 7: 1~7.
    42. Hatcher R D and Williams R T., Mechanical model for single thrust sheets;Part I, Taxonomy of crystalline thrust sheets and their relationships to the mechanical behavior of orogenic belts. GSA. Bull. 1986, 97: 975-985.
    43. Hatcher R D, Tectonics of the southern and central Appalachian internides: Annual Review of Earth and Planetary Sciences, 1987, 15: 337–362.
    44. Haugerud R A, E-An Zen. An essay on metamorphic path studies or Cassandra in p-T-t space. In: Perchuk L L, ed. Progress in Metamorphic and Magamtic Petrology. Cambridge U K: Cambridge University Press. , 1991. 323-348.
    45. Hiroi Y, Kishi S, Nohara T, et al . Cretaceous high-temperature rapid loading and unloading in the Abukuma metamorphic terrane, Japan. J. Metamorphic Geol , 1997, 16 : 67-81.
    46. Hiroi Y, Seneviratne L K, Motoyoshi Y, et al. Compositional zoning of garnet in pelitic granulite from Sri Lanka: Four major elements (Fe, Mg, Mn, Ca). Journal of Geological Society of Japan, 1995, 101: VII~VIII.
    47. Hsu K J. The concept of tectonic facies. Bulletin of Technique University Istanbul, 1991, 44 (1-2) : 25-42.
    48. Hsu K J. The Geology of Switzerland and an Introduction to Tectonic Facies. Princeton Univ. Press. 1995. 250.
    49. Hsu K J., Time and space in Alpine orogenesis——the Fermor Lecture. Geol. Soc. London Spec. Publ., 1989, 45: 421-443.
    50. Hyndman D W. Petrology of Igneous and Metamorphic Rocks. McGraw-Hill, New York. 1985.
    51. Jiang J Z, Lasaga A C. The effect of post-growth thermal events on growth-zoned garnet: implications for metamorphic P-T history calculations. Contrib Mineral Petrol., 1990, 105: 454-459.
    52. Kanasewich E R, Chiu S K L. Least-squares inversion of spatial seismic refraction data. B. S. S. A., 1985, 75: 865-880.
    53. Laajoki K, Tuisku P. Metamorphic and structural evolution of the Early proterozoic Puolankajarvi Formation, Finland Ⅰ. Structural and texturual relations. Jour Meta Geol., 1990, 8: 357-374.
    54. Liou J G, Maruyama S and Ernst W G. 1997. Seeing a mountain in a grain of garnet. Science , 276: 48-49.
    55. Liou J G, Zhang R Y, Ernst W G, et al., 1998. High-pressure minerals from deeply subducted metamorphic rocks. In: Ribbe P L(eds). Ultrahigh-pressure Mineralogy, Physics and Chemistry of the Earth Deep Interior. Mineralogical Society of America, Reviews in Mineralogy. 37: 33-138.
    56. Loiselle, M C, and Wones, DR, 1979, characteristics and origin of anorogenic granites: Geol. Soc. Am. Abstr. Programs, 11, 468.
    57. Louden K E. Formation of oceanic crust at slow spreading rates: New Constrains from an extinct spreading center in the Labrader Sea. Geology,1996 ,24 (9): 771-774.
    58. Lu S N, Yang C L, Li H K, et al. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 2002, 5: 123~131.
    59. Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. GSA,Bull. 1989, 101: 635-643
    60. Martin H. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 1999, 46: 411-429.
    61. Maruyama, S. Plume tectonics. Jour. Geol. Soc. Japan., 1994, 100(1): 24-49.
    62. Miller C F. Are strongly peraluminous magmas derived from pelitic sedimentary sources? J. Geol., 1985, 93: 673-689.
    63. Miyashiro A. Metamorphism and Metamorphic Belts. London: George Allen and Unwin Ltd. 1973. 429.
    64. Mo Xuanxue, Lu Fengxiang, Deng Jinfu. Volcanism in Sanjiang Tethyan orogenic belt: New facts and concepts. Jour. of China University of Geosciences, 1991, 2(1): 58~74.
    65. O'Brien J P. Garnet zoning and reaction textures in overprinted eclogites , Bohemian Massif , European Variscides: A record of their thermal history during exhumation. Lithos, 1997, 41: 119-133.
    66. Patino Douce A E. Experimental generation of hybrid silicic melts by reaction of high Al basalt with metamorphic rocks. J. Geophys. Res., 1995, 100: 623-639.
    67. Patino Douce A E. Generation of metaluminous A-type granites by low-pressure melting of Calc-alicaline granitoids.Ged. 1997, 25(8): 743~746.
    68. Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust. Earth Planet Sci. Lett., 1994, 121: 227-244.
    69. Pearce J A, A User's Guide to Basalt Discrimination Diagrams. In Wyman D A ed., Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration: Geological association of Canada, Short Course Notes, 1996, 12: 79-113.
    70. Pearce J A, Harris N B W and Tindle A G, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 1984, 25: 956-983.
    71. Pearce J. A., Lippard S. J., Roberts S. Characteristics and tectonic significance of supra-subdution zone ophiolites. In: Marginal Basin Geology. Geol. Soc. Lond. Spec. Publ. 1984, 16: 77-94.
    72. Petford N, Atherton M, Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol., 1996, 37: 1491-1521.
    73. Pitcher W S. Granite type and tectonic environment. In: Hsu K editor. Mountain Building Processes. Acad. London, Press. 1982.19~40
    74. Pitcher W S. The nature and origin of granite. London: Chapman & Hall, 1997, 298.
    75. Pober E and Faupl P. The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps. Geologische Rundschau, 1988, 77: 641-670.
    76. Ringwood A E. Composition and evolution of the upper mantle. Am. Geophys Union Mon., 1969, (13) : 1-17.
    77. Robertson A H F. Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the eastern Mediterranean region. Earth Science Reviews, 1994, (37): 139-213.
    78. Robinson P T & Malpas J. The origin and tectonic significance of ophiolites. IGCP-430 workshop I. Covasna Romania. Abstract. 2000, 64.
    79. Rogers J J W, Greenberg J K. Late-orogenic, post-orogenic and anorogenic granites: distinction by major-element and trace-element chemistry and possible origins. J.Geol., 1990, 98(3): 291~309.
    80. Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Group UK Ltd, 1993, 1~352.
    81. Saunder A D and Tarney J. Geochemical characteristics of basaltic volcanism within back-arc basins. In: Kokelaar B P and Howells M F (eds.), Marginal basin geology, Spec. Publ. Geol. Soc. London 1984, 16: 59-76.
    82. Schreyer W. Ultradeep metamorphic rocks, the retrospective viewpoint. Journal of Geophysical Research, 1995. 100: 8353-8366.
    83. Seng?r A M C. The Paleo-Tethys suture: a line of demarcation between two fundamentally different achitechtural styles in the structure of Asia. The Island Arc. 1992, 1: 78-91.
    84. Seyler M, Bonatti E. Na, Al IV and AlVI in clinopyroxenes of subcontinental and suboceanic ridge peridotites: A clue to different melting processes in the mantle? Earth Planet SciLett., 1994, 122: 281-289.
    85. Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 1984, 310 : 641~644.
    86. Song S G, Yang J S, Liou J G, Xu Z Q. Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos, 2003, 70: 195-211.
    87. Song S G, Zhang L F, and Niu Y L. Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. American Mineralogist, 2004, 89, 1330-1336.
    88. Song S G. Metamorphic geology of blueschists, ecologites and ophiolites in the North Qilian Mountain. In: 30th IGC field trip guide T392. Beijing: geological Publishing House, 1996.40
    89. Spear F S, Selverstone J, Hickmott D, et al, P-T paths from garnet zoning: a new technique for deciphering tectonic processes in crystalline terranes. Geology, 1984, 12: 87-90.
    90. Spear F S, Selverstone J. Quantitative p-T paths from zoned minerals. Theory and Tectonic Applications. Contrib. Mineral Petrol., 1983, 83 : 348-357
    91. Spear F S. Metamorphic phase equilibrium and pressure-temperature-time paths. Washington D C: Mineralogical Society of America Monograph, 1993. 799
    92. Spear F S. On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling. J metamorphic Geol, 1991, 9: 379-388
    93. Spear F S. Petrologic determination of metamorphic pressure-temperature-time paths. In: Spear F S and Peacock S M(eds), Short Courst in Geology,1989, 7, 1-56.
    94. Sylvester P J. Post-collisional alkaline granites. J.Geol., 1989, 97: 261~280
    95. Thompson A B, England P C. Pressure-temperature-time paths of regional metamorphism Ⅱ: their inference and interpretation using mineral assemblages in metamorphic rocks. Jour Petrol., 1984, 25: 929-955.
    96. van der Hilst R D, Widiyantoro S, Engdahl E R. Evidence for deep mantle circulation from global tomography. Nature, 1997, 386: 578~584.
    97. van der Voo R, Spakman W, Bijwaard H. Mesozoic subducted slabs under Siberia. Nature, 1999, 397: 246~249.
    98. Walck M C. Three-dimensional Vp/Vs variations for the Coso region, California. J. Geophys Res., 1988, 93: 2047-2052.
    99. Walker K B, Joplin G A, Lovering J F and Green R. Metamorphic and metasomatic convergence of basic igneous rocks and limemagnesia sediments of the Precambrian of northwestern Queensland. Geol. Soc. Australia. 1960, 6: 149-178.
    100. Wang Hongzhen and Mo Xuanxue. An outline of the tectonic evolution of China. Episodes., 1995. 18 (1-2): 6-16.
    101. Whalen J B. Currie K L, and Chappell B W. A-type granites: geochemical characteristics. discrimination and petrogenesis. CMP, 1987, 95: 407~419.
    102. Wilde S A, Zhao G C and Sun M. Development of the North China Craton during the late Archaean and its final amalgmation at 1.8Ga: some speculations on its position within a global Paleoproterozoic supercontenent. Gondwana Research, 2002, 5: 85~94
    103. Wilson M. Igneous Petrogenesis: a global tectonic approach. London: Chapman and Hall. 1989, 466.
    104. Winchester J A. and Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 1977, 20: 325-343.
    105. Wu C L, Yang J S, Wooden J, et al. Zircon SHRIMP dating of granite from Qaidamshan, NW China. Chinese Science Bulletin, 2002 , 47 (5) : 418-422.
    106. Wu Fu-Yuan, Sun De-You, Li Huimin, et al., A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol., 2002, 187: 143-173.
    107. Xu P, Sun R, Liu F, et al. Seismis tomography showing subduction and slab breakoff of the Yangtze block beneath the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 2000, 45: 70-73.
    108. Yang J S , Xu Z Q , Zhang J X, et al. Tectonic significance of caledonian high-pressure rocks in the Qilian-Qaidam-Altun mountains, NW China. The Geological Society of American, Memoir, 2001, 194: 151-170.
    109. Yardley B W D. An tntroduction to metamorphic petrology, Longman Group. Harlow, U K, 1989, 49-51.
    110. Ye K, Cong B, and Ye D N. The possible subduction of continental material to depths greater than 200 km. Nature, 2000, 407: 734-736
    111. Zen E. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogical and petrographic constraints. J. Petrol. 1986, 27: 1095-1117.
    112. Zhang J X, Yang J S, Mattinson C G, Xu Z Q, et al. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: Petrological and isotopic constraints. Lithos, 2005, 84: 51– 76.
    113. Zhang J X, Zhang Z M, Xu Z Q, et al. Petrology and geochronology of eclogites from west segment of the Altyn Tagh, northwestern China. Lithos, 2001, 56: 187-206.
    114. Zhang Jianxin, Yang Jingsui, Meng Fancong, Wan Yusheng, et al. U–Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam mountains, western China: New evidence for an early Paleozoic HP–UHP metamorphic belt. Journal of Asian Earth Sciences, 2006, in press.
    115. Zhang Z M, You Z D, Han Y J, et al. Petrology, metamorphic process and genesis of the Dabie-Sulu eclogite belt , Eastern-central China. Acta Geologica Sinica, 1996, 9: 134-156.
    116. Zhao GC, Wilde S A, Cawood P A , et al. SHRIMP U-Pb zircon ages of the Fuping complex: implications for late archean to Paleoproterozoic accretion and assembly of the North China Craton. American J ournal of Science, 2002, 302(3) : 191~226.
    117. Zhao, G. C., Wilde, S. A., Cawood, P. A. et al., Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution, Precambrian Research, 2001, 107: 45~73.
    118. Zhao, G. C., Wilde, S. A., Cawood, P. A. et al., Petrology and P-T path of the Fuping mafic granulites: Implications for tectonic evolution of the central zone of the North China Craton, Journal of Metamorphic Geol., 2000, 18: 375~391.
    119. Zhao, G.C., Sun, M. and Wilde, S.A., 2003.. Major tectonic units of North China Craton and their Paleoproterozoic assembly. Science in China ( Series D) , 46(1) :23~38.
    120. 曹运江, 陆廷清, 徐望国, 等. 柴达木盆地北缘地区逆冲推覆构造及其油气勘探意义,湘潭矿业学院学报, 2000, 15(2): 12-17.
    121. 车自成, 刘良, 刘洪福. 阿尔金地区高压变质泥质岩石的发现及其产出环境. 科学通报, 1995, 40(14) : 1298-1300.
    122. 程裕淇, 庄育勋, 沈其韩. 变质作用研究的回顾与展望, 地学前缘,1998, 5(4): 257-264.
    123. 崔作舟, 李秋生, 吴朝东, 等. 格尔木-额济纳旗地学断面的地壳结构与深部构造. 地球物理学报, 38(增Ⅱ): 15-28.
    124. 邓晋福, 莫宣学, 罗照华, 赵海玲, 等. 火成岩构造组合与壳-幔成矿系统. 地学前缘,1999, 6(2): 259-270.
    125. 邓晋福, 赵海玲, 莫宣学,等. 中国大陆根柱构造大陆动力学的钥匙. 北京: 地质出版社, 1996, 1-110.
    126. 丁晓, 周祖翼, 赵国先, 等译(Seng?r A M C 著). 板块构造学与造山运动——特提斯例析.上海: 复旦大学出版社, 1992, 182.
    127. 高俊. 西天山榴辉岩的发现及其地质构造意义. 科学通报, 1997, 42: 737-740.
    128. 高锐, 成湘洲, 丁谦. 格尔木-额济纳旗地学断面地球动力学模型初探. 地球物理学报, 1995, 38(增Ⅱ): 3-14.
    129. 葛小月, 李献华, 陈志刚, 李伍平. 中国东部燕山期高Sr低Y中酸性火山岩的地球化学特征及成因: 对中国东部地壳厚度的制约. 科学通报, 47(6): 474-480.
    130. 韩英善, 孙延贵, 郝维杰, 等, 托莫尔日特蛇绿混杂岩带地质特征及其构造意义, 青海地质, 2000, 9(1): 18-25.
    131. 郝国杰, 陆松年, 李怀坤, 等. 柴北缘沙柳河榴辉岩岩石学和年代学初步研究. 前寒武纪研究进展, 2001, 24(3): 154-162.
    132. 洪大卫, 1994, 全球构造和岩浆活动. 见黄怀曾主编“岩石圈动力学研究”第七章, 北京:地质出版社.
    133. 洪大卫, 王式桄, 韩宝福, 等. 1995, 碱性花岗岩的构造环境分类及其鉴定标志. 中国科学D辑, 25: 418-426.
    134. 胡能高, 王涛, 杨家喜, 等. 东秦岭秦岭岩群中榴辉岩的发现及其地质意义. 西安地质学院学报, 1994, 16(2) : 105-106.
    135. 胡受权, 郭文平, 曹运江, 等.柴达木盆地北缘构造格局及在中-新生代的演化, 新疆石油地质. 2001, 22(1)13-16.
    136. 赖绍聪, 邓晋福, 赵海玲.柴达木北缘奥陶纪火山作用与构造机制.西安地质学院学报, 1996, 18(3):8-14.
    137. 赖绍聪, 邓晋福, 赵海玲.柴达木盆地北缘古生代蛇绿岩及其构造意义. 现代地质, 1996, 10(1):18~28.
    138. 赖绍聪, 钟建华, 聚敛型板块边缘岩浆作用及其相关沉积盆地. 地学前缘,1998, Vol. 5 Suppl.. 86-94.
    139. 李怀坤, 陆松年, 王惠初等. 青海柴北缘新元古代超大陆裂解的地质记录——全吉群. 地质调查与研究, 2003, 26(1):27-37.
    140. 李怀坤, 陆松年, 赵风清等. 柴达木北缘鱼卡河含柯石英榴辉岩的确定及其意义. 现代地质, 1999, 13(1): 43-50.
    141. 李继亮, 孙枢, 郝杰, 等. 论碰撞造山带的分类. 地质科学,1999, 34(2): 129-138.
    142. 李继亮, 张国伟, 钟大赉, 等. “造山带研究笔谈会”. 地学前缘, 1999,6(3): 1-19.
    143. 李继亮. 碰撞造山带的大地构造相. 见:李清波等主编, 现代地质学研究论文集. 南京: 南京大学出版社,1992, 9-22.
    144. 李武显, 李献华. 蛇绿岩中的花岗质岩石成因类型与构造意义.地球科学进展, 2003, 18(3): 392-397.
    145. 李献华, 苏犁, 宋彪, 等. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义. 科学通报, 2004, 49(4): 401~402.
    146. 梁斌, 王国灿, 田军. 碰撞造山带的大地构造相及研究意义. 地质科技情报, 1999,18(1), 8-12.
    147. 刘敦一, 简平, 张旗等. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP 测年: 早古生代洋壳消减的证据. 地质学报, 2003,77 (3) : 317~327.
    148. 刘良, 车自成, 罗金海. 阿尔金山西段榴辉岩的确定及其地质意义. 科学通报, 1996, 41: 1485-1488.
    149. 刘良, 孙勇, 肖培喜, 等. 阿尔金发现超高压(>3.8GPa)石榴二辉橄榄岩. 科学通报, 2002, 47(5): 657-662.
    150. 柳小明, 高山, 袁洪林. 193nm LA-ICPMS 对国际地质标准参考物质中42 种主量和微量元素的分析. 岩石学报, 2002, 18(3): 408-318.
    151. 卢良兆. 变质作用 PTt 轨迹及其动力学意义. 国外前寒武纪地质, 1991,(3): 4-20.
    152. 卢良兆. 麻粒岩相变质作用的 PTt 演化及其地质动力学意义. 国外前寒武纪地质, 1993, (1): 1-15.
    153. 陆松年, 李怀坤, 陈志宏.塔里木与扬子新元古代热-构造事件特征, 序列和时代——扬子与塔里木连接(YZ-TAR)假设.地学前缘, 2003, 10(4): 321-326.
    154. 陆松年, 李惠民. 蓟县长城系大红峪组火山岩锆石 U-Pb 准确定年. 中国地质科学院院报, 1991, 22: 139-143.
    155. 陆松年, 王惠初, 李怀坤, 等.柴达木盆地北缘“达肯大坂群”的再厘定.地质通报, 2002, 21(1):19-23.
    156. 陆松年, 赵风清, 李怀坤, 等. 青海柴达木盆地北缘“达肯大坂群” 的重新厘定及其地质意义初探.第三届全国地层会议论文集. 2000, 13-18.
    157. 陆松年主编. 青藏高原北部前寒武纪地质初探. 北京:地质出版社, 2002, 125.
    158. 罗照华, 柯珊, 谌宏伟. 埃达克岩的特征, 成因及构造意义. 地质通报, 2002, 21(7): 436-439.
    159. 梅华林, 于海峰, 李铨等. 甘肃北山地区首次发现榴辉岩和古元古花岗质岩石. 科学通报, 1998,43 (19) : 2105-2111.
    160. 孟繁聪, 张建新, 杨经绥, 等. 柴北缘锡铁山榴辉岩的地球化学特征, 岩石学报, 2003, 19(03): 435-442.
    161. 莫宣学, 邓晋福, 董方浏, 等. 西南三江造山带火山岩-构造组合及其意义. 高校地质学报, 2001, 7(2):121-138.
    162. 莫宣学, 路凤香, 沈上越, 等. “三江”特提斯火山作用与成矿. 北京: 地质出版社, 1993.
    163. 潘桂棠, 陈智梁, 许效松, 等. 东特提斯地质构造形成演化. 北京: 地质出版社, 1997,216
    164. 潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分.地质通报, 2002, 21(11): 701-707.
    165. 青海省地质矿产局, 青海省区域地质志. 北京:地质出版社, 1991, 662.
    166. 邱家骧, 曾广策, 朱云海, 等.北秦岭—南祁连早古生代裂谷造山带火山岩与小洋盆蛇绿岩套特征及纬向对比. 高校地质学报, 1998, 4(4): 393-405.
    167. 史仁灯, 杨经绥, 吴才来, 柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义. 岩石矿物学杂志, 2003, 22(3) : 229-236.
    168. 史仁灯, 杨经绥, 吴才来, 等.柴达木北缘超高压变质带中岛弧火山岩.地质学报, 2004, 78(1): 52-64.
    169. 宋述光, 杨经绥. 柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体:超高压变质作用的证据. 地质学报, 2001, 75(2):180-185.
    170. 孙殿卿, 等. 柴达木盆地北部第三纪地层与地质构造特征. 北京: 科学出版社,1959.
    171. 孙延贵, 郝维杰, 韩英善, 等. 柴达木盆地北缘东段托莫尔日特似蛇绿岩岩石组合特征. 中国区域地质, 2000(03): 35-41.
    172. 孙延贵, 郝维杰, 韩英善, 等. 柴达木盆地东段托莫尔日特似蛇绿岩岩石组合特征. 中国区域地质, 2000, 19(3): 258~264.
    173. 孙延贵, 田琪, 王青海. 西秦岭与东昆仑的侧向碰撞与造山. 青海国土经略, 2001(02): 22-29.
    174. 孙延贵, 张国伟, 郭安林, 等. 秦—昆三向联结构造及其构造过程的同位素年代学证据,中国地质, 2004(04): 39-45
    175. 汤良杰, 金之钧, 戴俊生, 等.柴达木盆地及相邻造山带区域断裂系统. 地球科学-中国地质大学学报, 2002, 27(6): 676-681.
    176. 王臣, 青藏高原北部板块构造地球物理特征. 青海地质, 1991, (2): 1-13.
    177. 王根厚, 冉书明, 李明, 2001, 柴达木盆地北缘赛什腾--锡铁山左行逆冲断裂及地质意义, 地质力学学报, 7(3):224—230.
    178. 王惠初, 陆松年, 袁桂邦, 等. 柴北缘滩间山群的构造属性及形成时代. 地质通报, 2003, 22(7):487~493.
    179. 王惠初, 袁桂邦, 辛后田, 等. 柴北缘鱼卡河岩群的地质特征和时代归属. 地质通报, 2004, 23(4):314-321.
    180. 王强, 许继锋, 王建新, 等. 大别山adakite 岩型灰色片麻岩的确立及其与超高压变质作用的关系. 科学通报, 2000, 46(10): 1017-1024.
    181. 王清晨, 林伟. 大别山碰撞造山带的地球动力学. 地学前缘, 2002, 9(4): 257-265
    182. 王清晨. 中国超高压变质岩十五年研究进展. 地球学报, 2001, 22(1): 11-16.
    183. 王希斌, 鲍佩声. 试论中国蛇绿岩成员类型分类及其成矿专属性. 见: 张旗主编, 蛇绿岩与地球动力学. 北京: 地质出版社, 1996. 68~74.
    184. 王毅智, 梁超云, 王桂秀. 柴达木盆地北缘麻粒岩的发现及地质特征. 青海地质, 2000, 9(1):33~38.
    185. 王毅智, 梁超云. 柴达木盆地东北缘古元古代变质镁铁—超镁铁质岩的地质特征及成因探讨. 青海地质, 2001(增刊) , 22-27.
    186. 王云山, 陈基娘, 主编. 青海省及毗邻地区变质地带与变质作用. 地质专报, 北京: 地质出版社, 1987, 1-268.
    187. 王云山, 庄庆兴, 史从彦, 等. 柴达木北缘的全吉群. 中国震旦亚界, 天津: 天津科学技术出版社,1980, 214 -230
    188. 邬介人, 任秉琛, 张莓, 等. 青海锡铁山块状硫化物矿床的类型及地质特征.中国地质科学院西安地质矿产研究所所刊, 1987, (20): 1-30.
    189. 吴才来, 杨经绥, Ireland T, 等.祁连南缘嗷唠山花岗岩 SHRIMP 锆石年龄及其地质意义. 岩石学报, 2001, 17(2): 215-221.
    190. 吴才来, 杨经绥, Wooden J, 等. 柴达木山花岗岩锆石 SHRIMP 定年. 科学通报, 2001, 46(20): 1743-1747.
    191. 吴才来, 杨经绥, Wooden J, 史仁灯, 等. 柴达木北缘都兰野马滩花岗岩锆石 SHRIMP 定年. 科学通报, 2004(16): 95-100
    192. 吴福元, 葛文春, 孙德有. 埃达克岩德概念, 识别标志及其地质意义. 见肖庆辉等主编: 花岗岩研究思维与方法. 北京: 地质出版社, 2002, 172-191.
    193. 吴功建. 格尔木-额济纳旗地学断面综合研究. 地质学报, 1998 , 72(4) : 289-300.
    194. 吴汉泉, 冯益民, 霍有光, 等. 北祁连山中段甘肃肃南奥陶纪变质硬柱石蓝片岩的发现及其意义. 地质论评, 1990, 3: 277-280.
    195. 肖庆辉, 卢欣祥, 王菲, 等. 柴达木北缘鹰峰环斑花岗岩的时代及其地质意义. 中国科学(D 辑), 2003, 33(12):1193~1200.
    196. 肖庆辉, 卢欣祥. 2002. 花岗岩构造环境判断方法. 见:肖庆辉等.花岗岩研究思维方法. 北京:地质出版社, 12~52
    197. 辛后田, 郝国杰, 王惠初, 等.柴北缘前寒武纪地层新认识. 前寒武纪研究进展, 2002, 25(2):113-119.
    198. 熊兴武, 陈忆元.1994.柴达木地块北缘早古生代裂陷槽.见:王鸿祯, 王自强, 张玲华等著.中国古大陆边缘中, 新元古代及古生代构造演化.北京:地质出版社. 114-131.
    199. 胥颐, 刘福田, 刘建华, 陈辉, 孙若昧. 中国西北大陆碰撞带的深部特征及其动力学意义. 地球物理学报, 44(1): 40-47.
    200. 许继锋, 王强, 徐义刚, 等. 宁镇底侵中生代安基山中酸性侵入岩的地球化学: 亏损重稀土和钇的岩浆产生的限制. 岩石学报, 2001, 17(4): 576-584.
    201. 许靖华. 弧后碰撞造山带的大地构造相. 南京大学学报, 1994, 6 (1) : 1-11.
    202. 许志琴, 李海兵, 陈文,等, 中国西部祁连山南缘大型韧性左行走滑剪切带及其活动时限,地质学报, 2002, 76(2): 288.
    203. 许志琴, 杨经缓, 吴才来, 等. 柴达木北缘超高压变质带形成与折返的时限及机制, 地质学报,2003, 77 (2): 165-176.
    204. 许志琴, 杨经绥, 姜枚, 李海兵. 大陆俯冲作用及青藏高原周缘造山带的崛起. 地学前缘, 1999, 6(3): 139-151.
    205. 许志琴, 杨经绥, 姜枚. 青藏高原北部的碰撞造山及深部动力学——中法地学合作研究新进展. 地球学报, 2001, 22(1): 5-10.
    206. 许志琴, 杨经绥, 张建新,等, 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制, 地质学报, 1999, 73 (3) :193-205.
    207. 杨建军, 朱红, 邓晋福, 等.柴达木北缘石榴子石橄榄岩的发现及其意义.岩石矿物学杂志, 1994, 13(2):97-105.
    208. 杨经绥, 史仁灯, 吴才来,等. 柴达木盆地北缘新元古代蛇绿岩的厘定——罗迪尼亚大陆裂解的证据? 地质通报, 2004, 23(9-10): 893-898.
    209. 杨经绥, 宋述光, 许志琴,等, 柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物——柯石英. 地质学报, 2001, 75(2): 175-179
    210. 杨经绥, 许志琴, 李海兵等. 我国西部柴北缘地区发现榴辉岩. 科学通报, 1998, 43(14): 1544-1548.
    211. 杨经绥, 许志琴, 裴先治,等. 秦岭发现金刚石: 横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别. 地质学报, 2002 ,76 (4) : 484-495.
    212. 杨经绥, 许志琴, 宋述光等. 青海都兰榴辉岩的发现及对中国中央造山带内高压—超高压变质带研究的意义. 地质学报, 2000, 74(2): 156~168.
    213. 杨经绥, 张建新, 孟繁聪, 等.中国西部柴北缘-阿尔金的超高压变质榴辉岩及其原岩性质探讨. 地学前缘, 2003, 10(3): 291-314.
    214. 杨经绥,刘福来,吴才来,等. 中央碰撞造山带中两期超高压变质作用: 来自含柯石英锆石的定年证据. 地质学报,2003, 77(4): 463-477.
    215. 杨巍然, 王国灿, 简平. 大别造山带构造年代学. 武汉: 中国地质大学出版社, 2000. 141.
    216. 袁桂邦, 王惠初, 李惠民, 等. 柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及其意义. 前寒武纪研究进展.2002, 25(1):36-40.
    217. 翟明国, 卞爱国. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(增刊) , 2000, 129~137.
    218. 张国伟, 董云鹏, 姚安平. 秦岭造山带的基本组成于结构及其构造演化. 陕西地质,1997,15(2): 1-14.
    219. 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征. 中国科学(D), 1996. 26(3): 193-200.
    220. 张建新, 孟繁聪, 戚学祥. 柴达木盆地北缘大柴旦和锡铁山榴辉岩中石榴子石环带对比及地质意义. 地质通报, 2002, 21(3):123-129.
    221. 张建新, 孟繁聪, 杨经绥, 柴北缘西段榴辉岩相的变质泥质岩: 榴辉岩与围岩原地关系的证据. 中国科学 D辑, 2004, 39(4): 825-834.
    222. 张建新, 孟繁聪, 杨经绥, 柴达木盆地北缘西段榴辉岩相变质泥质岩的确定及意义. 地质通报, 2003, 22(9): 655-658
    223. 张建新, 万渝生, 孟繁聪, 杨经绥,等. 柴北缘夹榴辉岩的片麻岩(片岩)地球化学, Sm-Nd 和 U-Pb 同位素研究——深俯冲的前寒武纪变质基底? 岩石学报, 2003, 19(3): 443-451.
    224. 张建新, 万渝生, 许志琴, 杨经绥, 等, 柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代. 岩石学报, 2001, 17(3): 453-458.
    225. 张建新, 杨经绥, 许志琴, 等.柴北缘榴辉岩的峰期和退变质年龄:来自 U-Pb 及 Ar-Ar 同位素测定的证据. 地球化学, 2000, 29(3):217-222.
    226. 张建新, 杨经绥, 许志琴,等. 阿尔金榴辉岩中超高压变质作用证据. 科学通报, 2002, 47(3): 231-234.
    227. 张立飞, David J. E , 艾永亮, 等. 新疆西天山超高压变质榴辉岩. 岩石矿物学杂志, 2002, 21(4): 371-386.
    228. 张立飞, 高俊, 艾克拜尔, 王宗秀. 新疆西天山低温榴辉岩相变质作用. 中国科学(D辑), 2000, 30(3): 345-354.
    229. 张旗, 钱青, 王二七, 等. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 2001. 36(2): 248-255.
    230. 张旗, 王焰, 王元龙. 燕山期中国东部高原下地壳组成初探:埃达克质岩Sr, Nd同位素制约. 岩石学报, 2001, 17(4): 505-513.
    231. 张旗, 云南双沟蛇绿岩的特征和成因, 岩石学报, 1995, 增刊(蛇绿岩专辑) : 190-201.
    232. 张旗, 周国庆, 王焰. 中国蛇绿岩的分布, 时代及其形成环境. 岩石学报, 2003, 19(1): 1-8.
    233. 张旗, 周国庆. 中国蛇绿岩. 北京: 科学出版社, 2001, 182.
    234. 张雪亭, 吕惠庆, 陈正兴等. 柴北缘造山带沙柳河地区柳辉岩相高压变质岩石的发现及初步研究. 青海地质, 1999, (2): 1~13.
    235. 赵风清, 郭进京, 李怀坤. 青海锡铁山地区滩间山群的地质特征及同位素年代学. 地质通报, 2003, 22(1):28-31.
    236. 朱夏. 关于柴达木盆地的几个主要地质问题. 地质知识, 1957, (6-7): 7-11。
    237. 庄育勋. 造山带变质作用 PTt 轨迹研究存在的问题和发展趋势. 地球科学进展, 1994, 9(2): 35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700