颅上颌复合体及颅面骨骨折坚强内固定三维有限元模型的建立和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立生物相似性和力学相似性较高的颅上颌复合体三维有限元模型以及颅面骨骨折及其坚强内固定三维有限元模型,并进一步分析颅面骨在功能状态下以及坚强内固定时的应力分布,探讨颅面骨骨折可能的发生机制及坚强内固定的理论基础,为颅面骨骨折的诊断、治疗以及防护提供参考。
     方法:以正常咬合的健康青年男性为研究对象,用螺旋CT断层扫描技术获得数据,通过DICOM标准将CT数据转移到个人计算机中,结合MATLAB大型科学计算软件、ANSYS有限元软件等方法在计算机上建立颅上颌复合体三维有限元模型以及颅面骨骨折及其坚强内固定三维有限元模型,对功能状态下颅上颌复合体应力分布进行分析;模拟分析颧骨在外力撞击下应力分布,探讨颧骨骨折的可能发生机制;初步分析应用小型钛板及微型钛板进行颅面骨骨折坚强内固定时功能状态下骨折断层的应力,骨折段位移,评价固定方法的效果。
     结果:1、建立了包括皮质骨、松质骨及牙齿的颅上颌复合体三维有限元模型,共有节点170,840个,单元673,618个;并进一步建立了颅面骨骨折及其坚强内固定三维有限元模型,共有节点255,970个,单元1,022,820个,其中包括颧骨、颧弓骨折,上颌骨骨折,眼眶骨折的坚强内固定三维有限元模型;2、在正中咬合时,颅上颌复合体梨状孔侧缘尖牙支柱处Von-Mises应力为7.997MPa、颧牙槽嵴支柱处Von-Mises应力为22.185MPa、颧弓区Von-Mises应力为14.830 MPa,翼突处Von-Mises应力为32.959MPa。颅面骨骨折坚强内固定时,应力集中于接骨板,其中小型钛板最大Von-Mises应力为101.478 MPa,微型钛板最大Von-Mises应力为85.316MPa,骨折段最大位移为0.003245mm;3、颧骨在外力撞击作用下,颧颞缝处Von-Mises应力为26.760 MPa、颧蝶缝处Von-Mises应力为43.476MPa、颧颌缝处Von-Mises应力为11.490 MPa。
     结论:1、通过螺旋CT扫描及三维重建,应用MATLAB大型科学计算软件、ANSYS有限元软件建立的颅上颌复合体三维有限元模型以及颅面骨骨折及其坚强内固定三维有限元模型,具有较好的生物相似性和力学相似性,可用于各种工况的有限元分析,可作为今后深入研究的原始模型;2、功能状态下,颅上颌复合体梨状孔侧缘尖牙支柱、颧牙槽嵴支柱、颧弓区、翼突处为应力较为集中的区域;3、颅面骨骨折应用小型钛板和微型钛板进行内固定是安全并且有效的;4、颧骨在外力撞击作用下,颧颞缝、颧蝶缝、颧颌缝为应力较为集中的区域,容易发生骨折和移位。
Object: The purpose of this study was to establish three-dimensionalfinite element model (3-D FEM) of cranial-maxillary complex and rigid internalfixation (RIF) for craniofacial fractures with better similarity, and research onstress distribution during working occlusion and RIF of craniofacial fractures.Then the stress distribution was evaluated so as to provided theoreticallydirection for the diagnosis, protection of craniofacial fractures and RIF design.
     Methods: A young male skull with normal occlusion was adopted forCT scanned transverse section. Then the standard of DICOM was used totransfer the CT dates to personal computer. The super scientific calculatesoftware (Matlab) and the finite element software (ANSYS) were used to takeand analyse the date to establish the 3-D FEM of cranial-maxillary complex andRIF for craniofacial fractures. The working occlusion of cranial-maxillarycomplex were modeled; The stress distribution of zygomatic bone by attackingwas analysed to find the cause of zygomatic bone fracture; The stressdistribution and the mobility of fracture segment in craniofacial fractures withminiplates and microplates fixation under working occlusion, so as to evaluatedthe effect of the fixation method.
     Result: 1. A 3-D FEM of cranial-maxillary complex including cirticalbone, cancellous bone and dentition was established, which consisted of 170,840nodes and 673,618 elements. Then, a 3-D FEM of RIF for craniofacial fracturesincluding zygomatic bone fractures, maxilla fractures and orbital fractures werealso established, which consisted of 255,970 nodes and 1,022,820 elements.
     2. When cranial-maxillary complex was under working occlusion, the Von-mises stress of the caninus brace was 7.997 MPa, the zygomaticoalveolarcrest brace was 22.185 MPa, the zygomatic arch was 14.830 MPa, the pterygoidprocess was 32.959 MPa. There were higher Von-mises stress at the plates forRIF of craniofacial fractures, the highest Von-mises stress in the miniplates was101.478 MPa, in the microplates was 85.316 MPa, the most displacement offracture segment was 0.003245mm;
     3. When the zygomatic bone was attacked by force, the Von-mises stress ofthe zygomatitemporal suture was 26.760 MPa, the zygomaticsphenoid suturewas 43.476 MPa, the zygomatic-maxillary suture was 11.490 MPa.
     Conclusion: 1. The above mentioned methods were proved to befeasible in the establishment of 3-D FEM of cranial-maxillary complex and RIFfor craniofacial fractures and could improve the biomechanical similarity ofFEM effectively. The 3-D FEM could analyse the regularity of stressdistribution of craniofacial fracture by using RIF.
     2. There were higher Von-mises stress at canius brace, zygomaticoalveolarcrest brace, zygomatic arch, pterygoid process in the working occlusion.
     3. The RIF with miniplate and microplate were safe and effective.
     4. There were higher Von-mises stress at zygomatitemporal suture,zygomaticsphenoid suture and zygomatic-maxillary suture When zygomaticbone was attacked by force.The above position of zygomatic were feasible tofracture and displacement.
引文
[1] 王正国.新世纪道路交通事故的发生趋势[J].中华创伤杂志,2002,18:325-328.
    [2] 周济红,王正国.我国交通伤研究进展[J].中华创伤杂志,2005,21:71-73.
    [3] Sastry SM, Sastry CM, Paul BK, et al. Leading causes of facial trauma in the major trauma outcome study[J1. Plast Reconstr Surg, 1995, 95(1): 196-197.
    [4] Down KE, Boot DA, Gorman DF. Maxillofacial and associated injuries in severely traumatized patients: implications of a regional survey[J]. Int J Oral Maxillofac Sur, 1995, 24(6): 409-12.
    [5] Hogg NJ, Stewart TC, Armstrong JE, et al. Epidemiology of maxillofacial injuries at trauma hospitals in Ontario, Canada, between 1992and 1997[J]. J Trauma, 2000, 49(3): 425-432
    [6] Plaisier BR, Punjabi AP, Super DM, et al. The relationship between facial fractures and death from neurologic injury[J]. J Oral Maxillofac Surg, 2000, 58(7): 708-12.
    [7] 周树夏,顾晓明.现代颌面创伤救治的基本原则[J].中华口腔医学杂志,2001,36(2):85-87.
    [8] Marcelo M, Araujo D, Peter D, et al. Strength Analysis of Le Fort I Osteotomy Fixation: Titanium Versus Resorbable Plates [J]. J Oral Maxillofac Surg, 2001, 59 (13):1034-1039.
    [9] 张少锋.有限元法及其在口腔医学研究中的应用[J].国外医学口腔医学分册,1990,17(2):92-94.
    [10] 胡凯,周续林,洪民,等.建立模拟功能状态下的下颌骨三维有限 元模型[J].口腔颌面外科杂志,1997,7(3):183-185.
    [11] Aparecida CM, Francisco M, Marcantonio E, et al. Fixation of Mandibular Fractures With 2.0-mm Miniplates: Review of 191 Cases [J]. J Oral Maxillofac Surg, 2003, 61(12): 430-436.
    [12] 张益,孙勇刚.颌骨坚强内固定[M].北京:北京大学医学出版社,2003:65.
    [13] Radhakrishnan P,Mao J. Nanomechanical properties of facial sutures and sutural mineralization front [J]. J Dent Res 2004 83:6 (470-475).
    [14] 高振涛,王丽娟,胡振梅.下颌骨骨折坚强内固定技术[J].黑龙江医学,2003,27(3):180-182.
    [15] Champy M, Wilk A, Schnebelen JM. Treatment of mandibular fractures by means of osteosynthesis without intermaxillary immobilization according to F.X. Michelet's technic[J]. ZahnM und Kieferheilkd Zentralbl, 1975, 63(4):339-344.
    [16] Hart RT, Hennebel VV, Thongpreda N, et al. Modeling the biomechanics of the mandible: a three-dimensional finite element study[J]. J Biomech, 1992, 25(3):261-266.
    [17] 皮昕,何三纲。口腔解剖生理学第5版2004:257—258.
    [18] 薄斌.顾晓明,周树夏,等1693名颌面创伤患者临床病例回顾性研究[J].华西口腔医学杂志.1998.16:1-3
    [19] Huelke DF, Hauger JH. Maxillofacial injuries: their nature and mechanics of production[J]. J oral surg. 1969.27:451-460.
    [20] Turer MS, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structure [J]. J Aero Sci, 1956,23: 805.
    [21] 刘路平,由敬舜,徐剑青,等.五种咬合情况下颞下颌关节负荷的三维有限元分析[J].中华口腔医学杂志,1994,29(5):368-371.
    [22] 陈剑虹.一种基于断层测量的快速反求系统关键技术研究:博士论文 集[C].西安:西安交通大学,2000.
    [23] Jan Tams. A computer study of fracture mobility and strain on biodegradable plates used for fixton of mandibular fractures[J]. J oral maxillofac surg, 1999,57(4):973-981.
    [24] James W, De Vocbt. Experimental Validation of a finite element model of the temporomandibular joint[J]. J oral maxillofac surg,2001,59(5):775-778.
    [25] Verdonschot N, Fennis WM, Kuijs R, et al. Generation of three-dimensional -finite models of restored human teeth using micro-CT techniques[J]. Int J Prosthodont, 2001,14(4):310-315.
    [26] 赵志河,房兵,等.颅面骨三维有限元模型的建立[J].华西口腔医学杂志,1994,12(4):298-300.
    [27] 张彤,刘洪臣.上颌骨复合体三维有限元模型的建立[J].中华口腔医学杂志,2000,35(5):374-77.
    [28] 陈琼.三维有限元建模方法的研究现状.口腔医学杂志[J],2006,26(2):154.
    [29] H. K Huang,PACS and Imaging Informatics basic principles and applications [M].USA, WILEY-LISS, 2004,176—185.
    [30] 王沫然.MATLAB 6.0与科学计算[M].北京:电子工业出版社,2002.3.
    [31] 张震康,张熙恩,傅民魁,等.正颌外科学[M].北京:人民卫生出版社,1994:20-23.
    [32] 熊亚茸,陈新,刘洪臣,等.种植体在上颌骨复合体应力的三维有限元分析[J].口腔颌面修复学杂志,2002,3(1):8-11.
    [33] Cattaneo PM, Dalstra M, Filch LH. A three-dimensional finite elementmodel from computed tomography data: a semi-automatedmethod[J]. Proc Inst Mech Eng. 2001, 215(2): 203-213.
    [34] Jafari A, Shetty KS,Kumer M.Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces-a three-dimensional FEM study[J].Angle Orthod, 2003,73 (1): 12-20.
    [35] Gross MD, Arbel G, Hershkovitz I. Three-dimensional finite elementanalysis of the facial skeleton on simulated occlusal loading [J]. JOralRehabi, 2001, 28(7): 684-946.
    [36] 卢军,斯方杰,李明,等.下颌骨坚强内固定应力遮挡作用的有限元分析[J].口腔颌面外科杂志,1995,5(1):23-25.
    [37] Cox T, Kohn MW, Impelluso T. Computerized analysis of resorbable polymer plates and screws for the rigid fixation of mandibular angle fractures [J]. J Oral Maxillo fac Surg, 2003, 61(4):481-487.
    [38] Wagner A, Krach W, Schicho K, et al. A 3-dimensional finite-element analysis investigating the biomechanical behavior of the mandible and plate osteosynthesis in cases of fractures of the condylar process[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 94 (6):678-683.
    [39] 向喜林,张永福,刘路平,等.下颌骨体部骨折坚强内固定的三维有限元分析[J].中华口腔医学杂志,1995,30(2):95-98.
    [40] Femandez JR, Gallas M. Three-dimensional numerical simulation of mandible fracture reduction with screwed miniplates[J]. J Biomech, 2003,36 (3):329-337.
    [41] 吴亚东,张伟,于子莹等.下颌骨骨折坚固内固定有限元分析[J].现代口腔医学杂志,2006,20(2):175-178.
    [42] 孙庚林,齐杰,李克莉.231例面中部骨折的临床研究[J].中华创伤杂志,2002,18(11):674-676.
    [43] 李冬仙,卢凤山,武丽娟等.颧上颌骨骨折82例临床总结[J].口腔颌 面外科杂志.2004,14(2):153-155.
    [44] 薄斌,周树夏.颌面部创伤研究进展[J].中华口腔医学杂志,2000,35(5):398-400.
    [45] 李文刚,张世周,袁锡兰.以颧蝶缝为标准复位颧骨骨折[J].华西口腔医学杂志,2003,21(5):364-365.
    [46] 王伟,宋文植,尹万忠.冲击载荷下骨外段种植基桩不同设计对下颌覆盖总义齿应力分布的影响[J].现代口腔医学杂志.2000,14(6):389-390.
    [1] 蒋孝煜.有限元法基础[M].北京:清华大学出版社,1992.35-36.
    [2] Turner MS, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structure [J]. J Aero Sci, 1956,23: 805
    [3] Tanne K, Koenig HA, Burstone CJ. Moment to force ratios and the center of rotation[J].Am J Orthod Dentofac Orthop, 1988,94(5):426
    [4] Shaw AM, Sameshima GT, Vu HV. Mechanical stress generated by orthodontic forces on apical root cementum: a finite element model[J]. Orthod Craniofac Res, 2004, 7(2):98
    [5] Borcic J, Anic I, Smojver I. 3D finite element model and cervical lesion formation in normal occlusion and in malocclusion[J].J Oral Rehabil, 2005,32(7):504
    [6] Toparli M. An investigation of temperature and stress distribution on restored maxillary second premolar tooth using a three-dimensional finite element method[J]. J Oral Rehabil, 2000,27(12): 1077
    [7] Lin CL,Chang CH,Ko CC. Multifactorial analysis of an MOD restored human premolar using auto-mesh finite element approach[J].J Oral Rehabil. 2001 Jun;28(6):576-85.
    [8] 吴峻岭,牟月照.不同桩核材料修复效果的三维有限元分析[J].口腔颌面修复学杂志,2004,5(2):98
    [9] 王彬,谈龙,叶湘玉,等.上颌切牙段三维有限元模型的建立[J].中国美容医学,2003,12(2):138
    [10] 张智勇,管丽敏,周洪,等.人字曲作用下上颌切牙段应力分布的三维有限元分析[J].中国美容医学,2004,13(3):340
    [11] Rees JS, Hammadeh M, Jagger DC. Abfraction lesion formation in maxillary incisors,canines and premolars: A finite element study[J]. Eur J Oral Sci, 2003, 111(2): 149-154.
    [12] Fanuscu MI, Vu HV, Poncelet B. Implant biomechanies in grafted sinus: a finite element analysis[J]. J Oral Implantol, 2004,30(2):59
    [13] Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor[J]. J Prosthet Dent, 2005,93(1):38
    [14] Nagasao T, Nakajima T, Kimura A, et al. The dynamic role of buttress reconstruction after maxillectomy[J]. Plast Reconstr Surg, 2005,115(5): 1328
    [15] 周先连,王有朝,王成焘.面中部牵张成骨有限元研究[J].生物医学工 程学杂志,2004,21(2):292
    [16] Chun HJ, Park DN, Han CH, et al. Stress distributions in maxillary bone surrotmding overdenture implants with different overdenture attachments[J]. J Oral Rehabil, 2005,32(3): 193
    [17] 熊亚茸,陈新,刘洪臣,等.种植体在上颌骨复合体应力的三维有限元分析[J].口腔颌面修复学杂志.2002,3(1):8211
    [18] 丁晓慧,丁寅,刘东等.颅上颌复合体的三维有限元模型的建立[J].中国美容医学,2005,14(2):194
    [19] 白石柱.快速建立无牙颌上颌骨及颅骨三维有限元模型的方法探讨[J].中华口腔医学杂志,2005,40(6):515
    [20] 张海钟.颅面骨撞击伤的生物力学研究[J].中华创伤杂志,2004,20(1):26
    [21] Gross MD,Arbel G,Hershkovitz. I. Three-dimensional finite element analysis of the facial skeleton on simulated occlusal loading[J].J Oral Rehabil, 2001,28(7):684
    [22] Luboz V, Chabanas M, Swider P, et al. Orbital and maxillofacial computer aided surgery: patient-specific finite element models to predict surgical outcomes[J]. Comput Methods Biomech Biomed Engin, 2005,8(4):259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700