胶凝砂砾石坝结构设计研究与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶凝砂砾石坝是近年发展的一种新坝型,符合“宜材适构”筑坝理念,具有安全性高、经济环保、施工快速等优点,有很好的应用前景。其特点是筑坝材料一般不对骨料进行筛分和清洗,胶材用量少,应力分布均匀、应力水平低,地基适应性强、抗震和超载能力高等。
     本文针对胶凝砂砾石坝应用需求,对坝体受力与变形特点、地基适应性、超载与极限承载能力、抗震安全和耐久性等结构问题进行了研究,提出了坝体结构设计原则,相关成果纳入了《胶结颗粒料筑坝技术导则》并应用于山西守口堡工程设计。
     本文主要成果及创新点如下:
     (1)提出了胶凝砂砾石坝结构设计的应力和稳定控制标准。通过对比分析日本与土耳其类似工程导则或者设计标准,结合我国重力坝设计规范要求和胶凝砂砾石筑坝特点,提出了胶凝砂砾石坝结构设计的应力和稳定控制标准。
     (2)提出了适于胶凝砂砾石坝设计的有限元等效应力分析方法和控制指标,分析了胶凝砂砾石坝受力特性。根据应力分布的非线性、非均匀性特点,研究改进了有限元等效应力方法,并用于胶凝砂砾石坝结构设计,提出了相应的的应力控制指标。有限元等效应力法在避免应力集中的同时,能够反映材料力学方法所不能反映的地基、孔洞等应力影响因素,便于分析孔洞等复杂结构设置。坝体应力综合分析表明,胶凝砂砾石坝除坝踵、坝趾等应力集中区外,坝体应力水平很低,建基面应力分布较混凝土重力坝均匀很多。坝踵、坝趾及坝面部分的较大的压应力和可能的拉应力可以由坝体上游防渗保护层与下游保护层承担,坝体应力有比较大的安全余度。由于较大的坝体断面,以及倾斜的上游面,胶凝砂砾石坝扬压力竖向力占比要小于混凝土重力坝。
     (3)提出了胶凝砂砾石坝坝基要求。由于较大的坝体断面和上游面水重作用,胶凝砂砾石坝体稳定性较之混凝土重力坝有非常大的优越性,坝体地基适应能力明显提高。从坝体受力和稳定角度出发,坝体、地基适宜的弹性模量比可限定在0.5~2.0倍范围内。当地基、坝体弹性模量难以满足0.5~2.0倍关系时,对于较软地基,通过选用较大的坝体断面和较地基弹性模量较低的坝体弹性模量,可满足坝体的强度和稳定要求。
     (4)提出了胶凝砂砾石坝坝面保护设计的原则。坝体受力、变形及耐久性分析结果表明,胶凝砂砾石坝变形量较小,分布较均匀,坝体上游面表层由坝顶至地基处最大变形相差较小,而且变形沿保护层长度方向分布均匀,对于防渗保护层的变形与受力非常有利,而且胶凝砂砾石材料具有一定的抗渗性能,不存在由于面板淘空导致的面板开裂等问题,提出可在上游设置防渗层,下游设置保护层。
     (5)探讨了胶凝砂砾石坝超载分析模型和破坏模式,对比研究了该坝型的安全余度。胶凝砂砾石材料具有明显的弹塑性特性,弹塑性、弥散裂缝和塑性损伤本构模型在不同程度上均反映了材料的应力应变关系。DP弹塑性本构模型,可以模拟材料强度随围压增大而增强的特性,但是无法反应材料的受拉开裂和屈服软化时的卸载刚度的降低:弥散裂缝模型可以模拟材料的开裂,但是无法反应开裂后的残余变形,同时指向原点的弹性卸载,夸大了材料的损伤程度;塑性损伤本构模型能够弥补上述两者的不足,在分析结构加载-卸载等循环过程时,更加合理,但是会增加计算的复杂性。进行坝体极限承载能力分析时,塑性损伤本构模型较为合适,计算时应合理考虑基岩沿高程的不同及地基渗透压力的影响。提出对于极限承载能力分析,不应只考虑系统的失稳,还应综合考虑坝体的整体稳定性或系统自振频率特性等,并尝试采用点抗滑安全系数法进行量化评价。胶凝砂砾石坝具有非常高的超载安全度,在很大的荷载范围内,坝体材料均处于线弹性工作状态。综合分析表明100m级的胶凝砂砾石坝体-地基系统的极限承载能力在7.0倍左右。
     (6)对胶凝砂砾石坝进行了抗震安全研究。胶凝砂砾石材料动态性能与混凝土相比,有一定差异。分析了影响材料动态性能的因素,对照混凝土动态性能,给出了胶凝砂砾石材料动态性能取值建议。建立了胶凝砂砾石坝地震动响应分析模型,指出分析中应合理考虑材料动态性能、库水动力作用及远域地基的辐射阻尼效应等。坝体地震动响应分析表明,在七度地震作用下,100m高的胶凝砂砾石坝整个地震过程中均处于弹性工作阶段,坝体基本全部处于受压状态。除坝踵坝趾很小区域外,其他区域应力水平均很低,与静力应力相比,坝体动应力非常小,胶凝砂砾石坝具有很好的抗震性能。
     (7)对山西守口堡大坝工程进行了深入全面的结构分析。根据工程实际,研究了坝体地基适应能力、变形与受力特性、抗震安全、超载能力及耐久性等相关问题。基于研究成果,对坝体建基面选择、体型和材料强度确定、坝体构造等问题提出了设计建议,已为设计采纳。
As a new dam type, Cemented Sand and Gravel Dam, abbr. for CSG dam, conforms to the dam construction concept, which is to build a dam with cemented material based on better use of local materials. The CSG dam has many advantages, such as safety in overtopping, being economic and environmental friendly, and short construction period. The structural characters of CSG dam include low cemented material usage, larger cross section, low and mean stress distribution, ability to adjust kinds of base, good aseismatic capacity and high overloading capacity.
     In this thesis, aiming at application requirements, characters of stress and deformation, adaptability to kinds of base, overloading and critical loading capacity, aseismatic capacity and durability of CSG dam are analyzed. Based on this research, principals of CSG dam structural design are proposed, some of which are adopted by the Cemented Materials Dam Technology Guide and applied to the structural design of Shoukoubao project. Main achievements and innovations are abstracted as following:
     (1) Stress and stability requirements for the design of CSG dam is proposed. By comparing CSG dam design specifications of Japan, Turkey and gravity dam design specification in China, stress and stability requirements for the design of CSG dam is proposed.
     (2) Analysis method and control index of Finite Element Method Equivalent Stress Method, abbr. for FEMESM, are proposed. Based on the nonlinear and non-even distribution of stress result of FEM, improvements of FEMESM and control index are made and applied to the analysis of CSG dam. FEMESM can reflect the influence of base stiff and holes in dam on stress distribution, which is suitable for the stress analysis of dams with holes. Except for the local stress concentration on dam toe and heel, stress distribution of CSG dam is quite even and low. The concentrated stress can be bore by the protecting concrete slab. The percentage of uplift on the vertical force of CSG dam is smaller than that of concrete gravity dam.
     (3) Base requirements for CSG dam are proposed. Due to the large cross section and inclined upper stream slop, the anti-sliding ability of CSG dam is enhanced, at the same time, the adaptability to base is enhanced. The suitable stiffness ratio of dam and base elastic modulus is0.5-2.0. When the dam is built on soft base, larger cross section with smaller elastic modulus than base can be taken to satisfy the strength and anti-sliding requirements.
     (4) Principals of dam protection design are proposed. CSG dam has small and even deformation distribution. Result of analysis of stress, deformation and durability of CSG dam demonstrate that the deformation difference between dam crest and dam bottom is little, which is good for the protection panel. Principals of dam protection design, that are to set anti-seepage panel in the upstream slope and protection panel in the downstream slope, are proposed.
     (5) Analysis model and damage pattern of CSG overloading are discussed. Safety margin of CSG dam is analyzed. CSG is a typical elasto-plastic material. Elasto-plastic constitutive model, smeared cracking constitutive model and elasto-plasitic damage constitutive model all can reflect the strain-stress relationship to some extent. Research shows that elasto-plasitic damage constitutive model is more suitable for CSG, although it may increase some calculation price. The difference of seepage stress on different elevation should be considered properly. For critical analysis, except the instability of dam-base system, dam stability and vibration characteristics should be checked at the same time. In this thesis, point anti-sliding safe factor method is tried to the critical analysis. The overloading capacity of CSG dam is quietly large. In a large scale of overloading, the dam works in elastic condition. Comprehensive study shows that, for a100m high CSG dam, the critical loading capacity is about7.0.
     (6) Seismatic capacity of CSG dam is analyzed. The difference between CSG and concrete and the influence factors on dynamic performance of CSG are analyzed. Based on the analysis, dynamic performance parameters of CSG are recommended. Seismatic response analysis is modeled. It is recommended that during seismatic analysis of CSG dam, dynamic properties of CSG material, dynamic pressure of reservoir water and the damping of infinite base should be considered properly. The seismatic analysis shows that, for a100m high CSG dam, when it's subjected to7intensity earthquake, the dam works in elastic condition, and almost all area of CSG dam is under compressive condition. Compared with the static result, the seismatic stress is quite small, which shows good aseismatic capacity of CSG dam.
     (7) Comprehensive structural analyses are made to Shoukoubao Project. Based on the analysis, dam-base interface, cross section, material strength and structural measures on dam protection are advised and are adopted by the designer.
引文
[1]Raphael, J.M., The Optimun Gravity Dam [C]. Rapid Construction of Concrete Dams, ASCE,1970:221-224.
    [2]Johnson H A, Chao P C. Rollcrete Usage at Tarbela Dam[J]. Concrete International,1979, 1(11):20-33.
    [3]P. Londe and M. Lino. The faced symmetrical Hardfill dam:a new concept for RCC[J]. International Water Power & Dam Construction.1992,44(2):19-24.
    [4]D.G. Coumoulos and T.P. Koryalos, Lean RCC dams-laboratory testing methods and quality control procedure during construction[A]. Proceedings 4th International Symposium on Roller Compacted Concrete Dams[C], Madrid,2003:233-238.
    [5]Y. Hattori, et al, Construction of a sediment trap Dam using CSG concrete[J]. Dam Technology, No.150, March 1993,50-58.
    [6]I. Nagayama, et al, Development of the CSG construction method for sediment trap dams[J]. Civil Engineering Journal, Vol.41, No.7, July 1999,6-17.
    [7]T. Hirose, et al, Design Criteria for Trapezoid-Shaped CSG Dams[A]. ICOLD-69th Annual meeting[C], Dresden,2001.
    [8]P. J. Mason, R. A. N. Hughes. The design and construction of a face symmetrical Hardfill dam[J]. Hydropower&Dams,(3),2008,90-94.
    [9]贾金生,陈改新,马锋玲等译.碾压混凝土坝发展水平和工程实例—国际大坝委员会技术公报126[M].中国水利水电出版社,北京,2006.
    [10]Stevens M A, Linard J. The safest dam[J]. Journal of Hydraulic Engineering,2002, (2): 139-142.
    [11]Peter J M. Hardfill and the ultimate dam [J]. Hydro Review Worldwide,2004, (11): 26-29.
    [12]贾金生.中国大坝建设60年[M].北京:水利水电出版社,2013.
    [13]贾金生,张国新,刘毅,张磊,李炳奇.一种胶凝砂砾石坝:中国,201110300767[P].2012.06.20
    [14]Batmaz S. Cindere dam-107 m high roller compacted hardfill dam (RCHD) in Turkey[C]. Proceedings 4th International Symposium on Roller Compacted Concrete Dams. Madrid, 2003:121-126.
    [15]Yanmaz A M, Sezgin OI. Evaluation Study on the Instrumentation System of Cindere Dam[J]. Journal of Performance of Constructed Facilities,2009,23(6):415-422.
    [16]Hirose T, Fujisawa T, Nagayama I, et al. Design criteria for trapezoid-shaped CSG dams[C]. Proceedings workshop on Modern Technique for Dams-Financing, Construction, Operation, Risk Assessment.2001.
    [17]Batmaz S, Koksal A, Ergeneman I, et al.土耳其欧峪克(Oyuk)硬填方坝设计概述[J].湖南水利水电,2009(1):92-95.
    [18]刘文拯,何蕴龙,尹鹏.Hardfill坝渗流场数值分析[J].武汉大学学报:工学版,2008,41(2):5-10.
    [19]彭云枫,何蕴龙.Hardfill坝仿真计算分析[J].长江科学院院报,2010,27(004):66-69.
    [20]刘斌,何蕴龙,彭云枫.Hardfill坝温度场仿真分析[J].人民长江,2008,39(14):92-95.
    [21]贾金生,马锋玲,李新宇等.胶凝砂砾石坝材料特性研究及工程应用[J].水利学报,2006,37(5):578-582.
    [22]杨首龙.CSG坝筑坝材料特性与抗荷载能力研究[J].土木工程学报,2007,40(2):97-103.
    [23]FUJISAWAT. TRAPEZOID-SHAPED CSG DAM AND MATERIAL PROPERTIES OF CSG[C].中日韩大坝委员会第一次学术交流会议论文集.2004.
    [24]T. Hirose, T. Fujisawa, H. Yoshida, et al. Concept of CSG and its material properties[A]. Proceedings 4th International Symposium on Roller Compacted Concrete Dams[C], Madrid,2003:465-473.
    [25]Oie. M, Yamaguchi. Y, Fujita. K, et al. The construction of temporary structures by CSG method in Tokuyama Dam project[A],4th International Symposium on Roller Compacted Concrete Dams[C], Madrid,2003:499-509.
    [26]H. Hanada, T. Tamezawa, K. Ooyabu, et al. CSG method using muck excavated from the dam foundation [A]. In:Proceedings 4th International Symposium on Roller Compacted Concrete Dams[C], Madrid,2003:447-456.
    [27]T. Hirose, T. Fujisawa, H. Yoshida, et al. Design Philosophy of Trapezoid-Shaped CSG Dam and Properties of CSG[A].International Congress on Large Dams (ICOLD)[C], Montreal,2003,1437-1458
    [28]T. Yokotsuka, Y. Otaka, M. Kikui, et al. Application of CSG Method to Construction of Gravity Dam[A]. International Commission on Large. Dams (ICOLD)[C], Beijing,2000,Vol.4,C.14.
    [29]何蕴龙,刘俊林,李建成.Hardfill筑坝材料应力—应变特性与本构模型研究[J].四川大学学报:工程科学版,2011,43(006):40-47.
    [30]李建成,曾力,何蕴龙,等.Hardfill筑坝材料配合比试验研究[J].水力发电学报,2010,29(2):216-221.
    [31]何蕴龙,刘俊林,李建成,等.新型硬填料材料本构模型及数值模拟研究报告[R].武汉:武汉大学水资源与水电工程科学国家重点实验室,2010.
    [32]孙明权,彭成山,李永乐,等.超贫胶结材料三轴试验[J].水利水电科技 展,2007,27(1):46—49.
    [33]孙明权,刘运红,陈姣姣,等.胶凝砂砾石材料本构模型研究[J].华北水利水电学院学报,2012,33(5):13-15.
    [34]李永乐,侯进凯,孙明权,等.超贫胶结混凝土的力学特性试验研究[J].人民黄河,2007,29(3):59-60.
    [35]孙明权,杨世锋,张镜剑.超贫胶结材料本构模型[J].水利水电科技进展,2007,27(3):35-37.
    [36]蔡新,武颖利,李洪煊,等.胶凝堆石料本构特性研究[J].岩土工程学报,2010,32(9).
    [37]吴梦喜,杜斌,姚元成,等.筑坝硬填料三轴试验及本构模型研究[J].岩土力学,2011,32(8):2241-2250.
    [38]E. ASGHARI, D. G. TOLL, S. M. HAERI. Triaxial behavior of a cemented gravely sand, Tehran alluvium[J]. Geotechnical and Geological Engineering, 2003(21):1-28.
    [39]S. MOHSEN HAERI, S. MAHDI, D. G TOLL, et al. The behavior of an artificially cemented sandy gravel[J]. Geotechnical and Geological Engineering, 2005(23):537-560.
    [40]Omae S, Sato N, Oomoto I. Dynamic properties of CSG[C]. Proceedings 4th International Symposium on Roller Compacted Concrete Dams. Madrid,2003,518.
    [41]FUJISAWA T, NAKAMURA A, KAWASAKI H, et al. Material properties of CSG for the seismic design of trapezoid-shaped CSG dam[C]//Proceedings of the Thirteenth World Conference on Earthquake Engineering. Vancouver:[sn].2004: 391-402.
    [42]李永新,何蕴龙,乐治济.胶结砂砾石坝应力与稳定有限元分析[J].中国农村水利水电,2005,(7):35-38.
    [43]何蕴龙,彭云枫,熊堃.Hardfill坝结构特性分析[J].水力发电学报,2008,27(6):68-72.
    [44]Gurdil A F, Batmaz S. Structural design of cindere dam[C].Proceedings of 4th International Symposium on Roller Compacted Concrete Dams,2003:17-19.
    [45]熊堃,何蕴龙,刘俊林.Hardfill坝的整体稳定安全度[J].河海大学学报(自然科学版),2011,5:018.
    [46]熊堃,何蕴龙,曹学兴.基于不同结构破坏分析方法的Hardfill坝破坏模式研究[J].水力发电,2012,38(8):36-39.
    [47]杨令强,韩勇,陈祖坪.CSG坝渐进破坏过程分析[J].中国农村水利水电,2009,(7):145-147,150.
    [48]孙明权,彭成山,陈建华,等.超贫胶结材料坝非线性分析[J].水利水电科 技进展,2007,27(4):42-45.
    [49]熊堃,何蕴龙,吴迪.Hardfill坝结构破坏模型试验研究[J].水利学报,2012,43(010):1214-1222.
    [50]熊堃,何蕴龙,陈涛.百米级硬填料坝结构安全度分析[J].人民长江,2012,43(2):74-77.
    [51]T.Hirose.Engineering Manual for Construction and Quality Control of Trapezoidal CSG Dam[R] Japan Dam Engineering Center Report, September 2007.
    [52]SL203—97,水工建筑物抗震设计规范[S].北京,1997.
    [53]Sliding stability for concrete structures[S]. Washington,1981:(22)
    [54]何蕴龙,刘俊林,李建成.]Hardfill筑坝材料应力-应变特性与本构模型研究[J].四川大学学报,20011,43(6):40-47.
    [55]钱觉时.粉煤灰特性与粉煤灰混凝土[M].科学出版社,2002.5,北京.
    [56]SL319—2005,混凝土重力坝设计规范[S],2005.
    [57]朱伯芳.混凝土坝计算技术与安全评估展望[J].水力水电技术,2006,10(37):24-28.
    [58]朱伯芳.国际拱坝学术讨论会专题综述[J].水力发电,1 988,(8).
    [59]朱伯芳.拱坝的有限元等效应力及复杂应力下的强度储备[J].水利水电技术,2005,(1):43-47.
    [60]傅作新,钱向东.有限单元法在拱坝设计中的应用[J].河海大学学报,1991,19(2):8-15.
    [61]李同春,章杭惠.改进的拱坝等效应力分析方法[J].河海大学学报,2004,32(1):104-107.
    [62]肖伟荣,苏志敏,唐涛.有限元等效应力方法在拱坝设计中的应用[J].云南水力发电,2005,21(1):36-39.
    [63]SL 282-2003,混凝土拱坝设计规范[S].
    [64]范书立,陈健云,郭建业.有限元等效应力法在重力坝强度分析中的应用[J].水利学报,200738(6):754-760.
    [65]杨强,刘福深,周围垣.基于距法的重力坝建基面非线性等效应力分析[J].水利发电,2006,32(2):23-25.
    [66]中国电力企业联合会标准化部.电力工业标准汇编:水电卷一:水工(上册)[M].北京:水利电力出版社,1995.
    [67]吴兴春,王思敬,丁恩保.岩体变形模量随深度的变化关系[J].岩石力学与工程学报,1998,17(5):487-492.
    [68]Prager W, Drucker D C. Soil mechanics and plastic analysis or limit design[J]. Appi. Math,1952,10(2):157-165.
    [69]Rots J G, Nauta P, Kuster G M A, et al. Smeared crack approach and fracture localization in concrete[J].1985.
    [70]Lubliner, J., J. Oliver, S. Oiler, and E. Onate, "A Plastic-Damage Model for Concrete," International Journal of Solids and Structures, vol.25, no.3, pp. 229-326,1989.
    [71]Lee, J., and G. L. Fenves, "Plastic-Damage Model for Cyclic Loading of Concrete Structures," Journal of Engineering Mechanics, vol.124, no.8, pp. 892-900,1998.
    [72]周伟,常晓林.高混凝土重力坝复杂坝基稳定安全度及极限承载能力研究[J].岩土力学,2006,27(增):161-166.
    [73]周伟,常晓林,唐忠敏,等.溪洛渡高拱坝渐进破坏过程仿真分析与稳定安全度研究[J].四川大学学报(工程科学版),2002,34(4):46-50.
    [74]周维垣,杨若琼,倓公瑞.高拱坝稳定性评价的方法和准则[J].水电站设计,1997,13(2):1-7.
    [75]杨庚鑫,吕文龙,张林.高拱坝坝肩稳定三维地质力学模型破坏试验研究[J].水力发电学报,2010,29(5):82-86,101
    [76]张林,费文平,李桂林.高拱坝坝肩坝基整体稳定地质力学模型试验研究[J].岩石力学与工程学报,2005,24(19):3465-3469.
    [77]董建华,谢和平,张林,等.大岗山双曲拱坝整体稳定三维地质力学模型试验研究[J].岩石力学与工程学报,2007,26(10):2027-2033.
    [78]任青文.岩体破坏分析方法的研究进展[J].岩石力学与工程学报,2001,20(2):1303-1309.
    [79]冯炜.胶凝砂砾石坝筑坝材料特性研究与工程应用[D].中国水利水电科学研
    究院,2013.
    [80]宋玉普,尚世明.混凝土动态性能及其影响因素[C].防振减灾工程理论与实践新进展(纪念汶川地震一周年)——第四届全国防震减灾工程学术研讨会会议论文集.2009.
    [81]闫东明,林皋.影响混凝土动态性能的因素分析[J].世界地震工程,2010(002):30-36.
    [82]周梁.混凝土动弹性模量的试验测定[J].浙江建筑,2000(004):34-35.
    [83]张燕坤,周小二.混合骨料混凝土的动弹性模量试验研究[J].建筑技术,2012,43(7):650-651.
    [84]Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Materials Journal,1996,93(3).
    [85]Cowell wl. dynamic properties of plain portland cement concrete[r]. Naval civil engineering lab port hueneme calif,1966.
    [86]Ing A J Z D, Ing H W R D, Ir H A K. Experiments on concrete under uniaxial impact tensile loading[J]. Materiaux et Construction,1981,14(2):103-112.
    [87]李赞成,胡功笠,陈磊.混凝土强度对其动态抗压强度的影响[J].山西建筑,2007,33(4):185-186.
    [88]陈厚群,马怀发,李运成.随机骨料模型形态对大坝混凝土弯拉强度的影响[J].中国水利水电科学研究院学报,2007,5(4):241-246.
    [89]王道荣,胡时胜.骨料对混凝土材料冲击压缩行为的影响[J].实验力学,2002,17(1).
    [90]Sparks P R, Menzies J B. The effect of rate of loading upon the static and fatigue strengths of plain concrete in compression[J]. Magazine of Concrete Research, 1973,25(83):73-80.
    [91]Rossi P, Van Mier J G M, Boulay C, et al. The dynamic behaviour of concrete: influence of free water[J]. Materials and Structures,1992,25(9):509-514.
    [92]闫东明,林皋,刘钧玉等.不同环境下混凝土动态抗压特性试验研究[J].大连理工大学学报,2006,5.
    [93]Rossi P, Van Mier J G M, Toutlemonde F, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension[J]. Materials and Structures,1994, 27(5):260-264.
    [94]柯国军,陈俊杰,石建军,等.混凝土阻尼试验研究及其机理分析[J].噪声与振动控制,2005,25(5):60-63.
    [95]Westergaard H M. Water pressures on dams during earthquakes[J]. Trans. ASCE, 1933,98:418-432.
    [96]韩国城.水工建筑物地震动水压力[J].大连工学院学报,1978,4:000.
    [97]Chung, J. and Hulbert, GM., "A family of single-step Houbolt time integration algorithms for structural dynamics", Comp. Meth. in App. Mech. Engg.,118,1994.
    [98]Chung, J. and Hulbert, G.M., "A time integration algorithm for structural dynamics with improved numerical dissipation:The Generalized-a Method", Journal of Applied Mechanics, Vol.60, pp.371-375, June 1993.
    [99]Lysmer J, Kuhle meyer R L. Finite dynamic model for infinite media[J]. J. Eng. Mech. Div. ASCE,1969,95 (EM4):859-877.
    [100]王海波,涂劲,李德玉.室内动力模型试验中辐射阻尼效应的模拟[J].水利学报,2004,(2):39-44.
    [101]张顺福,王海波,杨会臣.等效黏性边界单元及黏性边界波动输入方法[J].水利学报.2008,39(10):1248-1055.
    [102]王晓强.胶凝砂砾石坝材料的渗透溶蚀研究及工程应用[D].中国水利水电科学研究院硕士论文,2005.
    [103]SL98-1999,混凝土面板堆石坝设计[S].1999.
    [104]SL282-2003,混凝土拱坝设计规范[S].2003.
    [105]胶凝砂砾石筑坝关键技术研究[R].中国水利水电科学研究院,北京,2012.
    [106]刘志明、贾金生、金峰等.胶凝砂砾石与堆石混凝土筑坝关键技术研究[R].水利部行业专项研究报告,2013.1.
    [107]朱伯芳.论特高混凝土拱坝的抗压安全系数[J].水力发电,2005,31(2):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700