黄土坡地耕作侵蚀及其效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耕作侵蚀是导致坡地土壤退化,使坡耕地出现严重水土流失极其重要的一种侵蚀,在耕作历史悠久的我国黄土地区表现的尤为突出。耕作侵蚀也是国际土壤侵蚀研究的一个新领域,国内对它的研究极为薄弱。本文以黄土丘陵沟壑区的典型坡地为研究对象,采用人为施放示踪材料进行耕作侵蚀试验、理论推导、测量、~(137)Cs示踪、重复耕作、土壤理化分析及数理统计分析相结合的方法,系统定量研究了黄土坡地畜力横坡耕作条件下的耕作侵蚀及其效应,取得了创新性的研究成果,对丰富和推动国际耕作侵蚀及国内土壤侵蚀研究,有效地治理黄土地区坡耕地水土流失和实现土壤可持续利用具有重要理论和实践意义。本研究条件下的主要结论如下:
     1.阐明了耕作侵蚀过程中的土壤再分布规律
     研究表明,一次耕作造成的耕层土壤水平位移及垂直位移随坡度及深度的变化均可用二元线性相关方程描述;耕作后原耕层土壤距地表深度随耕作前距地表深度及坡度的变化可用二元二次抛物面相关方程描述;一次耕作前后,原耕层深度约1/3处的土壤距地表深度基本不变,小于1/3处的土壤距地表深度增大,大于1/3处的土壤距地表深度减小。
     2.建立了不同形式的耕作侵蚀模型
     研究表明,耕作搬运量模型是一次耕作导致的单宽耕作搬运土量随坡度变化的线性相关方程;耕作侵蚀模型是一次耕作导致的坡地任何位置耕作净侵蚀模数等于耕层土壤容重、耕作深度、土壤与耕作条件决定的系数与地形曲率的乘积。
     各种耕作侵蚀模型均表明,地形是影响耕作侵蚀的主要因素,在特定土壤与耕作条件下,地形则是唯一的因素。一次耕作导致的坡地单宽土壤搬运量只与坡度有关。一次耕作导致的坡地耕作净侵蚀模数,只受坡地地形曲率的影响,与地形因子的坡度和坡长特征无关。耕作净侵蚀主要在复合地形上发生,在耕作过程中,坡地的凸形部位发生净侵蚀,坡地的凹形部位发生沉积,坡地地形越不规则,起伏越大,这种净侵蚀和沉积过程越广泛,越强烈。
     3.评价了耕作侵蚀强度及其空间格局
     研究表明,研究坡地一次耕作造成的单宽土壤搬运量为24.02—44.58 kg·m~(-1)。其中,搬运量小于30.00 kg·m~(-1)的坡段占坡地面积的23.43%,分布在坡地的最上段和最下段,搬运量为30.00—40.00 kg·m~(-1)的坡段占坡地面积的42.07%,分布在坡地
    
    V
    的中上段和中下段,搬运量大于40.00kg’m一’的坡段占坡地面积的34.5俄,分布在
    坡地的中段。
     研究坡地耕作侵蚀模数主要集中在700一1800 t.km众之间,平均为1 324.33
    t.kzn一,占坡地面积的49.24%,发生在坡地上部凸形部位;耕作沉积模数主要集中在
    1200一1800t·km·2之间,平均为1452.77t·km·,,占坡地面积的35.0钱,发生在坡
    地下部凹形部位;零侵蚀与沉积发生在坡地由上部凸形向下部凹形过渡的部位。
     4.分析了耕作侵蚀对艳一137分布的影响
     研究表明,研究坡地耕作侵蚀部位土壤中的’37Cs含量在2 16.80-930.O8Bq’‘2
    之间,平均为525.49Bq’m-2,耕作沉积部位土壤中的’37Cs含量在1004.95一
    3163.26Bq’m一2之间,平均为2184.72Bq’m-,;研究坡地耕作侵蚀与土壤中的’3ts含量
    存在着好的负相关性,相关关系可通过指数相关方程描述。
     5.揭示了耕作侵蚀对水蚀的影响及对总土壤侵蚀的贡献
     研究表明,研究坡地的平均水力侵蚀模数为501.6.51 t.km一a,占坡地面积的
    88.18%,主要发生在凸型坡面及凹型坡面上部约314的坡段:平均水力沉积模数为
    1346.50 t.km·,·a,占坡地面积的11.82%,主要发生在凹型坡面下部约114的坡段;水
    蚀导致的坡地平均土壤流失模数为3844.犯tkm一a,泥沙输移比为0.9689;研究坡
    地不同地形部位坡度与坡长差异造成的径流变化是导致水蚀空间分异的主要原因,
    坡度与坡长对水蚀空间变化的影响可通过二元线性相关方程很好地描述。
     总土壤侵蚀具有与水蚀相似的特征,但与水蚀相比:侵蚀强度沿坡地投影坡长
    的变率增大,侵蚀区面积减小,沉积区面积增大,凸形坡段上侵蚀强度增大,凹形
    坡段上侵蚀强度减小、沉积强度增大、部分坡段由侵蚀变为沉积;坡地平均总土壤
    流失模数为4400.18 t.km,2.a,总泥沙输移比为0.91:总土壤侵蚀强度空间分异的主
    要原因转变为坡度、坡长及地形曲率的综合影响,其影响关系可通过三元线性相关
    方程很好地描述。
     在研究坡地,耕作侵蚀与水蚀之间存在着正相关关系,并可以通过抛物线相关
    方程进行描述;在研究坡地的凸形部位,耕作侵蚀与水蚀皆表现为侵蚀,且水蚀大
    于耕作侵蚀;在研究坡地的凹形部位,耕作侵蚀均表现为沉积,但水蚀分别表现为
    侵蚀、水力沉积速率小于及大于耕作沉积速率的沉积。
     研究坡地耕作侵蚀占总土壤侵蚀的百分比沿坡地投影坡长的空间分布由坡顶到
    坡底明显地分为三段,并逐段依次变化:在耕作侵蚀与总土壤侵蚀皆呈侵蚀的部位,
    
    VI
    该百分比的平均值为17.36%,占坡地面积的52.81%,发生在坡地上部呈凸起的部位;
    在耕作侵蚀表现为沉积,而总土壤侵蚀又表现为侵蚀的部位,该百分比的平均值为-
    34.42%,占坡地面积的19.28%
Tillage erosion is one of soil erosion processes, which may cause soil degradation and further severe soil and water loss on sloping cultivated land. These effects of tillage erosion are very obvious in the loess region of China where tillage history is very long. Research on tillage erosion has become a new area in the world recently, but little has been done in China. This paper, taking a typical sloping land in the loess region of hilly and gully in China as an example, quantitatively study tillage erosion and its effects there in the case of animal powered across-slope tillage operation by tillage erosion experiment in which small cubes are used as tracers of soil displacement, theoretical deduction, measurements, 137Cs tracing, repeated tillage, analyses of soil physics and chemistry, and statistics analyses. The research work has obtained innovational results which are significant in enhancing research on tillage erosion in the World and research on soil erosion in China, promoting efficient management
     of sloping land, controlling soil and water loss, and realizing sustainable use of soil resources in the loess region of China. The main progresses are as follows:
    1. Features of soil displacement in-processes of tillage are clarified
    Study shows that the variations of horizontal and vertical soil displacements per tillage operation with slope gradient and depth can be described with a binary linear regression equation. The variations of soil depth after tillage with its depth before tillage and slope gradient can be described with a binary quadratic paraboloid regression equation. After per tillage operation, depth of soil with about one thirds of tillage depth did not change basically. Depth of soil shallower than one thirds of tillage depth became deeper than before. Depth of soil deeper than one thirds of tillage depth became shallower than before.
    2. Tillage erosion models for calculating soil flux and erosion intensity are developed Study shows that model for calculating tillage soil flux is a linear regression equation
    which describes relationship between soil flux per unit width per tillage operation at any position of sloping land and slope gradient. The model for calculating erosion intensity is that net soil erosion module (amount per unit area) per tillage operation at any position of
    
    
    sloping land is equal to products of soil bulk density, tillage depth, coefficient determined with soil and tillage factors, and topography curvature.
    The tillage erosion models indicate that topography is the major factor affecting tillage erosion. It becomes a controlling factor when conditions of soil and tillage are fixed. The soil flux per unit width per tillage operation on sloping land is only related to slope gradient in a tillage process. The net erosion modulus per tillage operation on sloping land is only affected by topography curvature of the sloping land and is not correlated to slope gradient and slope length. A net erosion is mainly observed in the complex topography. When soil plough is implemented, net erosion is produced on convexities of slope profile and the deposition appears on concavities of slope profile. The more irregular and fluctuant the topography , the more extensive and intense the net erosion and deposition processes.
    3. Tillage erosion intensity and its spatial pattern are evaluated
    Study shows that soil flux per tillage operation is 24.02-44.58 kg-m'1 on study site. The segments of study site with soil flux less than 30.00 kg-m"1, between 30.00 and 40.00 kg-m' ', and grater than 40.00k kg-m"1 account for 23.43%, 42.07%, and 34.5% of the whole slope respectively, and mainly distribute in the upper and the lower parts, the upper middle and the lower middle parts, and the middle part of sloping land respectively.
    The tillage erosion modulus mainly ranges from 700 to 1800 t-km-2, taking an average of 1324.33 t-km-2 on study site. The net eroded area accounts for 49.24% of the slope, distributing on the convexity located in the upper part of the slope. The tillage depo
引文
[1] Alderman, J. K., 1956. The erodibility of granular material. Journal of Agricultural Engineering Research, 1: 136-142.
    [2] Busacca, A. J., McCool, D. K., Papendick, R. I., Young, D. L., 1985. Dynamic impacts of erosion processes on productivity of soils in the Palouse. In: Soil Erosion and Productivity, Proc. National Symp. On Erosion and Productivity, 10-11 December 1984, New Orleans, USA. Am. Soc. Agric. Eng. St. Joseph, pp. 152-169.
    [3] Dabney, S. M., Liu, Z., Lane, M., Douglas, J., Zhu, J., Flanagan, D. C., 1999. Landscape benching from tillage erosion between grass hedges. Soil & Tillage Research 51: 219-231.
    [4] De Roo, A. P. J. and C.G.Wesseling, 1995. LISEM-Limburg soil erosion model: a user guide.
    [5] De Jong, E., Villar, H., Bettany, J. R., 1982. Preliminary invastigation on the use (137)~Cs to estimate erosion in Saskathewan. Can. J. Soil Sci. 62: 673-683.
    [6] Ellison, W. D., 1947. Soil erosion studies. Agric.Eng., 28,145-146.
    [7] Ellison, W. D., 1944. Study of raindrop erosion. Agric. Eng., 25:131-136,181-182.
    [8] Foster, G R, L. J. Lane, 1987. User requirements, USDA-Water erosion prediction project (WEPP). NSERL Report No. 1, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN 47907.
    [9] Foster, G. R., L. D. Meyer and C. A. Onstad, 1977a. An erosion equation derived from basic erosion principles. Trans. ASAE, 20(4): 678-682.
    [10] Foster, G. R., L. D. Meyer and C. A. Onstad, 1977b. A runoff erosivity factor and variable slope length exponents for soil loss estimates. Trans. ASAE., 20: 683-687.
    [11] Foster, G. R. and L. D. Meyer, 1997c. Soil erosion and sedimentation by water-An overview. In: proceedings of a national symposium on soil erosion and sedimentation by water. ASAE Publication 4-77, ASAE, St. Joseph, MI, 4908.
    [12] Govers, G., Vandaele, K., Desmet, P., Poesen, J., Bunte, K., 1994. The role of soil tillage in soil redistribution on hillsiopes. Eur. J. Soil Science, 45: 469-478.
    [13] Govers, G., Quine, T. A.,Walling, D. E., 1993. The effect of water erosion and tillage movement on hilislope profile development: a comparison of field observations and model results. In: Farm Land Erosion in Temperate Plains Environments and Hills. Wicherek, S. (ed.). Proceedings of the International Symposium on Farm Land Erosion in Temperate Plains Environments and Hills. Saint-Cloud, Paris, France, May 1992. Elsevier Science publishers B.V., pp. 285-300.
    [14] Govers, G., 1987. Spatial and temporal variability in rill development processes at the Huldenberg experimental site. In. R.B. Bryan (ed.) Rill Erosion. CATENA Supplement 8: 17-34.
    [15] Govers, G., Quine, T. A., Desmet, P. J. J.,Walling, D. E.,1996. The relative contribution of soil tillage and overland flow erosion to soil redistribution on agricultural land. Earth Surface Processes and Landforms, Vol. 21, pp. 929-946.
    [16] Horton, R. E., 1945. Erosional development of streams and their drainage basins. hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56: 275-370.
    [17] Hudson, N. H. (窦葆璋译).土壤保持,科学出版社,1971.
    [18] H. N. 霍洛特(谭锦维,刘天福译).农业生产效果预测.农业出版社,1983.
    [19] Jerry, C. Ritchie, J. Roger, McHenry(张玉胜译),1993.关于利用(137)~Cs测定土壤侵蚀和泥沙沉积速率的评述.水土保持科技情报,4:59—62.
    [20] Jerry, C. Ritchie, J. Roger, McHenry(张玉胜译),1994.关于利用(137)~Cs测定土壤侵蚀和泥沙
    
    沉积速率的评述.水土保持科技情报,1:58-60.
    [21] Kachanoski, R. G., Miller, M. H., Lobb, D. A., 1992. Soil Loss by Tillage Erosion: The Effects of Tillage Implement, Slope Gradient, and Tillage Direction on Soil Translocation by Tillage. Final report, prepared for the SWEEP/TED program, Agriculture Canada. University of Guelph, Canada.
    [22] Kachanoski, R. G., Rolston, D. E., De Jong, E., 1985. Spatial variability of a cultivated soil as affected by past and present microtopography. Soil Sci. Soc. Am. J. 49: 1082-1087.
    [23] Kaiser, V. G., 1961. Historical land use and erosion in the Palouse-A reappraisal. Northwest Sci., 35:139-153
    [24] Lindstrom, M. J., Nelson, W. W., Schumacher, T. E., Lemme, G. D., 1990. Soil movement by tillage as affected by slope. Soil & Tillage Research 17:255-264.
    [25] Lindstrom, M. J., Nelson, W. W., Schumacher, T. E., 992. Quantifying tillage erosion rates due to mouldboard plowing. Soil & Tillage research 24:243-255.
    [26] Lindstrom, M. J., Schumacher, J. A. and Schumacher, T. E., 2000. TEP: A tillage erosion prediction model to calculate soil translocation rates from tillage. Journal of Soil and water Conservation 55:105-108.
    [27] Lindstrom, M. J., Michael J., 1997. Soil movement by tillage as influenced by variations in slope gradients. Journal of Soil and Water Conservation 52:304.
    [28] Lobb, D. A. and Kachanoski, R. G., 1993. The relationship between landscape position, tillage practices, and soil loss: Model development. NSCP Report. Univ. Of Guelph, Guelph, Ontario.
    [29] Lobb, D. A., Kachanoski, R. G., Miller,,M. H., 1995. Tillage translocation and tillage erosion on shoulder slope positions measured using l37Cs as a tracer. Can.J.Soil Sci.75: 211-218.
    [30] Lobb, D. A., Kachanoski, R. G., Miller, M. H., 1999. Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario, Canada. Soil & Tillage Research 51: 189-209.
    [31] Lobb, D. A., & Kachanoski, R. G., 1999. Modelling tillage erosion in the topographically complex landscapes of southwestern Ontario, Canada. Soil & Tillage Research 51:261-277.
    [32] Lobb, D. A., Kachanoski, R. G., 1999. Modelling tillage translocation using step, linear-plateau and exponential functions. Soil & Tillage Research 51: 317-330.
    [33] Lobb, D. A., 1991. Soil erosion processes on shoulder slope landscape position. M. Sc. Thesis. University of Guelph, Guelph.
    [34] Lal, R., 1976. Soil erosion problems on an Alfisol in western Nigeria and their control. Monograph 1. International Institute of Tropical Agriculture, Ibadan, Nigeria.
    [35] Lane, L. J., Renard, K. G., Foster, G. R. and Laflen, J. M., 1992. Development and application of modern soil erosion prediction technology-The USDA experience. Aust. J. Soil Res.30: 893-912.
    [36] Lowdermilk, W. C., 1953. Conquest of the land through 7000 years. USDA SCS Bulletin No. 99. Washington, DC.
    [37] M.J.柯克比,R.P.C.摩根(王礼先等译).土壤侵蚀,水利电力出版社,1987.
    [38] Mech, S. J. and Free, G. R.,1942. Movement of soil during tillage operations. Agric. Eng., 23: 379-382.
    [39] Montgomery, J. A., McCool, D. K., Busacca, A. J., & Frazier, B. E., 1999. Quantifying tillage translocation and deposition rates due to moldboard plowing in the Palouse region of the Pacific Northwest, USA. Soil & Tillage Research 51: 175-187.
    
    
    [40] Montgomery, J. A., Busacca, A. J., Frazier, B. E., McCool, D. K., 1997. The evaluating soil movement using Cesium-137 and the revised universal soil loss equation. Soil Science Society of America Journal, Vol. 61. No. 1, pp.571-579.
    [41] Muysen, W. Van, Govers, G., Roxo, M., Poesen, J., 1999. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil & Tillage Research 51: 341-356.
    [42] Misra, R.K, and C.W. Rose. 1996. Application and sensitivity analysis of process-based erosion model GUEST. European Journal Soil Science 10: 593-604.
    [43] Morgan, R.P.C., 1998. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms 23: 527-544.
    [44] Meyer, L. D. and W. H. Wischmerier, 1969. Mathematical simulation of the process of soil erosion by water. Trans. ASAE, 12(6) : 754-758, 762.
    [45] Meyer, L. D. And E. J. Monke, 1965. Mechanics of soil erosion by rainfall and overland flow. Trans. ASAE 8: 572-577,580.
    [46] Morgan, R.C., 1978. Field studies of rainsplash erosion, Earth Surface Processes and Landforms Vol. 3, pp.295-299.
    [47] Morgan, R. C., 1986. Soil erosion and conservation, Longman Group UK Limited.
    [48] Nyssen, J., Poesen, J., Haile, M., Moeyersons, J., Deckers, J., 2000. Tillage erosion on slopes with soil conservation structures in Ethiopian Highlands. Soil and Tillage Research 57: 115-127.
    [49] Nearing, M. A., and J. M. Bradford, 1985. Asingle waterdrop splash detachment and mechanical properties of soils. Soil Sci. Soc. Am. J. 49: 547-552.
    [50] Nearing, M. A., and J. M. Bradford, and R. D. Holtz, 1987. Measurement of waterdrop impact pressures and soil surface. Soil Sci. Soc. Am. J. 51: 1302-1306.
    [51] Oostwoud Wijdenes, D. J., Poesen J., 1999. The effect of soil moisture on the vertical movement of rock fragments by tillage. Soil and Tillage Research 49 4:301-312.
    [52] Onstand, C. A. and A. J. Bowie, 1977. Basin sediment yield modelling using hydrological variables, Int. Assoc. Hydrol. Sci., Publ. 122, 191-202.
    [53] Poesen, J., Vanwesemael, B., Covers, G., Martinezfernandez, J., Desnet, P., vandele, K., Quine, T., Degraer, G., 1997. Pattern of rock fragment cover generated by tillage erosion. Geomorphology 18: 183-197.
    [54] Poesen, J. W., Vanwesemael, B., Bunte, K., Benet, A. S., 1998. Variation of rock fragment cover and size along semiarid hillslopes: a Case-study from southeast Spain. Geomorphology 23: 323-335.
    [55] Papendick, R. I. and Miller, D. E., 1977. Conservation tillage in the Pacific Northwest. J. Soil Water Conserv., 32: 49-56
    [56] Papendick, R. I., McCool, D. K. and Krauss, M. A., 1983. Soil conservation: Pacific Northwest. In: H. E. Dregne and W.o. Willis (Editors), Dryland Agriculture. Agronomy 23. American Society of Agronomy, Madicon, WI, pp.273-290.
    [57] Papendick, R. I., Young, D. L., McCool, D. K. and Krauss, H. A., 1985. Regional effects of soil erosion on crop productivity-The palouse area of the Pacific Northwest. In: Follet, R. F., Stewart, B. A. (Eds), Soil Erosion and Crop Productivity. ASA-CSSA-SSSA, Madison, 305-320.
    [58] Peel, T. C., 1937. The relation of certain physical characteristics to the erodibility of Soils. Soil science society of American-proceedings, Vol.2, p97-100.
    
    
    [59] Quine, T. A., Walling, D. E. Chakela, Q. K., Mandiringana, O. T. and Zhang, X., 1999. Rate and patterns of tillage and water erosion on terraces and contour strips: evidence from casium-137 measurements. Catena 36: 115-142
    [60] Quine, T. A., 1999. Use of caesium-137 data for validation of spatially distributed erosion models: the implications of tillage erosion. Catena 33: 415-430.
    [61] Quine, T. A., Covers G., Poesen J., Walling D. E., van Wesemael B., Martinez-Fernandez J., 1999. Fine-earth translocation by tillage in stony soils in the Guadalentin, South-east Spain: an investigation using Caesium-137. Soil and Tillage Research 51: 279-301
    [62] Quine.T. A., Covers, G., Walling. D. E., Zhang, X. B., Desmet, P. J .J., Zhang. Y. S., Vandaele,K., 1997. Erosion processes and landform evolution on agricultural land-new perspectives from caesium-137 measurements and topographic-based erosion modelling. Earth Surface Processes and Landforms, Vol.22, No.9, pp.799-816.
    [63] Quine.T. A., Walling, D. E. and Zhang, X., 1993. The role of tillage in soil redistribution within terraced fields on the Loess Plateau, China: An investigation using caesium-137. In: K. Banasik and Zbikowski (eds.) Runoff and Sediment Yield Modeling: 149-155
    [64] Quine.T. A., Desmet, P. J. J., Vandaele, K., Covers, G., Walling, D. E., 1994. A comparison of the roles of tillage and water erosion in landform development and sediment export on agricultural land near Leuven, Belgium. In: Variability in Stream Erosion and sediment Transport, Olive, L., Loughran. R. J. and Kesby, J. A. (eds). Proceedings of the Canberra Symposium, December 1994. IAHS Publication No 224. pp.77-86.
    [65] Quine, T. A., Walling, D. E., Zhang, X., 1999. Tillage erosion, water erosion and soil quality on cultivated terraces near Xifeng in the Loess Plateau, China. Land Degradation & Development, Vol. 10,No.3,pp.251-274.
    [66] Rymshaw, E., Walter, M. F., Vanwambeke, A., 1997. Processes of Soil Movement on steep cultivated hill slopes in the Venezuelan Andes. Soil and Tillage Reasearch 44: 265-272.
    [67] Schumacher, T. E., M. J. Lindstrom, J. A. Schumacher, and G. D. Lemme. 1999. Modeling spatial variation in productivity due to tillage and water erosion. Soil and Tillage Research 51: 331-339.
    [68] Renard, K. G., Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, Coordinators, 1997. Predicting soil erosion by water. A guide to conservation planning with the revised universal soil loss equation (RUSLE). USDA. Agric. Handb. No. 703. U.S. Gov. Print. Office, Washington, DC.
    [69] Rose, C. W., 1985. Development in soil erosion and deposition models. Advance in Soil Science 2: 1-63.
    [70] Richie, J. C. & McHenry, J. R., 1973. Vertical distribution of fallout cesium-137 in cultivated soils. Radiation Data and Reports, 14: 727-728.
    [71] Richie, J. C. & McHenry, J. R., 1975. Fallout Cs-137: a tool in conservation research. Journal of Soil and Water Conservation, 30: 283-286.
    [72] Rogowski, A. S. & Tamira, T, 1965. Movement of l37Cs by runoff, erosion and infiltration on the alluvial Captina silt lome. Health Physics, 11: 1333-1340.
    [73] Rogowski, A. S. & Tamira, T, 1970. Erosional behaviour of cesium-137. Health Physics, 18: 467-477.
    [75] Schumacher, Tom E., Michael J. Lindstrom and Gary D. Lemme. 1997. Spatial variation in
    
    productivity due to tillage erosion. Journal of Soil and Water Conservation 52(4): 308.
    [76] Schumacher, T. E., J. A. Schumacher and M. J. Lindstrom, 1998. Modeling change in topography caused by tillage and water erosion. Agron. Abstr. p.63.
    [77] Subhash chandra & S.K.DE, 1978. A simple laboratory apparatus to measure relative erodibility of soils. Soil Science, Vo1.125, No.2. pp.115-121.
    [78] Turkelboom, F., Poesen, J., Ohler, I., Ongprasert. S., 1999. Reassessment of tillage erosion rates by manual tillage on steep slopes in northern Thailand. Soil and Tillage Research 51: 245-259.
    [79] Turkelboom, F., Poesen, J., Ohler, I., Vankeer, K., Ongprasert, S., Vlassak, K., 1997. Assessment of tillage erosion rates on steep slopes in northern Thailand. Catena29: 29-44.
    [80] Thapa, B. B., Cassel, D. K., Garrity, D. P., 1999. Assessment of tillage erosion rates on steepland Oxisols in the humid tropics using granite rocks. Soil & Tillage Resrarch 51: 233-243.
    [81] Tamlin C. Oison and W. H. Wischmeier, 1963.Soil erodibility evaluations for soils on the runoff and erosion stations. Soil Science Society of American-proceedings, 27, 590-592.
    [82] Tsara, M., Gerontidis, S., Marathianou, M., Kosmas, C., 2001. The long-term effect of tillage on soil displacement of hilly areas used for growing wheat in Greece. Soil Use and Management, 17(2): 113-120.
    [83] USDA., 1995. Water erosion prediction project: hillslope profile and watershed model documentation. USDA-ARS, NSERL, Report no.10 (Ed. By Flangan, D C and Nearing, M A). USDA-ARS, West Lafayette, Indiana, USA.
    [84] Van Muysen, W., Govers, G., Bergkamp, G., Roxo, M., Poesen, J., 1999. Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage. Soil & Tillage Resrarch 51:303-316.
    [85] V. B. Gussak, 1946. A device for the rapid determination oferodibiliry of Soils and Some results of its application. Abstract in Soils and Fertilizers, 10: 41.
    [86] Walling, D. E. & Quine, T.A., 1993. Use of caesium-137 as a tracer of erosion and sedimentation: Handbook for the application of the caesium-137 technique. UK Overseas Development Administration Research Scheme R4579.
    [87] Wischmeier, W. H, and D. D. Smith, 1958. Rainfall energy and its relationship to soil loss. Transactions of American Geophysical Union, 39(2): 285-291.
    [88] Wischmeier, W H and D.D. Smith, 1978. Predicting rainfall erosion losses-Aguide to conservation planning. USDA, ARS, Agricultural Handbook No.537, Washington, D.C..
    [89] Wischmeier, W. H. and J. V. Mannering, 1969. Relation of Soil Properties to its erodibility. Soil Science Society of American-Proceedings, 33, 131-137.
    [90] 张信保,李少龙,T.A.Quine,O.E.Walling.梨耕作用对(137)~Cs法测算农地土壤侵蚀量的影响.科学通报,1993,38(22):2072-2076.
    [91] 张建辉,李勇,David A Lobb,张建国.我国南方丘陵区土壤耕作侵蚀的定量研究.水土保持学报,2001,15(2):1-4.
    [92] 王占礼.耕作侵蚀研究项目进展.水土保持通扭,2001,21(1):34.
    [93] Wang Zhanli & Shao.Ming'an, 2001. Modelling on tillage erosion in loess region of China. Transactions of the CSAE, Vol. 17, No. 1, pp.53-57.
    [94] 王占礼,邵明安,李勇.黄土地区耕作侵蚀过程中的土壤再分布规律.植物营养与肥料学报,2002,8(2):168-172.
    [95] 王占礼,邵明安.黄土坡地耕作侵蚀对坡地土壤养分影响的研究.农业工程学报,2002,18(6):1-5.
    
    
    [96] 张信保,D.L.赫吉特,D.E.沃林.(137)~Cs法测算黄土高原土壤侵蚀速率的初步研究.地球化学,1991,(3):212-218.
    [97] 张信保,李少龙,王成华,潭万沛等.黄土高原小流域泥沙来源的(137)~Cs法研究.科学通报,1989,34(3):210-213.
    [98] 周维芝.(137)~Cs法研究不同地幔类型土壤侵蚀强度分异.中国科学院水利部水土保持研究所硕士学位论文,1996.
    [99] 杨明义.(137)~Cs法研究小流域土壤侵蚀与沉积空间分布特征.中国科学院水利部水土保持研究所硕士学位论文,1997.
    [100] 杨明义,田均良,石辉,周维芝.核分析技术在土壤侵蚀研究中的应用.水土保持研究,1997,4(2):100—112.
    [101] 李勉.小流域侵蚀速率与产沙关系的(137)Cs、(210)~Pb_(ex)示踪研究.中国科学院水利部水土保持研究所博士学位论文,2002.
    [102] 陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理.科学出版社,1988.
    [103] 景可,卢金发,粱季阳,张信保,韩家林.黄河中游侵蚀环境特征和变化趋势.黄河水利出版社,1997.
    [104] 蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产沙过程模型,地理学报,1996,51(2):108-117.
    [105] 蔡强国.降雨特性对溅蚀影响的初步试验研究.中国水土保持,1986,(6):41-42.
    [106] 蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟.科学出版社,1998.
    [107] 周佩华,窦葆璋,孙清芳.降雨能量试验研究初报.水土保持通报,1981,(1):51-60.
    [108] 王万中.黄土地区降雨侵蚀力R指标的研究.中国水土保持,1987,(12):34-40.
    [109] 郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟.陕西人民出版社,2000.
    [110] 刘秉正,吴发启.土壤侵蚀.陕西人民出版社,1997.
    [111] 吴发启,赵晓光,刘秉正.缓坡耕地侵蚀环境及动力机制分析.陕西科技出版社,2001.
    [112] 赵晓光.黄土高原坡面水蚀作用过程.中国科学院水利部水土保持研究所博士论文,1999.
    [113] 吴普特.动力水蚀实验研究.陕西科学技术出版社,1997.
    [114] 江忠善等.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究.水土保持研究,1996,3(2):85-97
    [115] 江忠善,王志强,刘志.黄土丘陵沟壑区小流域土壤侵蚀空间变化定量研究.土壤侵蚀与水土保持学报,1996,2(1):1—9.
    [116] 江忠善,刘志.降雨因素和坡度对溅蚀的影响试验研究.水土保持学报,1989,3(2):29-35.
    [117] 陈恩风.水土保持概论.商务印书馆出版,1951.
    [118] 朱显谟.泾河流域土壤侵蚀现象及其演变.土壤学报,1954,2(4):209-222.
    [119] 朱显谟.黄土地区植被因素对于水土流失的影响.土壤学报,1960,8(2):110-121.
    [120] 田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究.土壤学报,1964,12(3):286-296.
    [121] 蒋定生.黄土高原水土流失与治理模式.中国水利水电出版社,1997.
    [122] 史德明,杨艳生,姚宗虞.土壤侵蚀调查方法中的侵蚀试验研究和侵蚀量测定问题.中国水土保持,1983,(6):21-22.
    [123] 李勇.黄土高原植物根系与土壤抗冲性.科学出版社,1995.
    [124] 李勇,朱显谟,田积莹,黄义端.黄土高原土壤抗冲性机理初步研究.科学通报,1990,35(5):390-393.
    [125] 李勇,吴钦孝,朱显谟,田积莹.黄土高原植物根系提高土壤抗冲性能的研究.水土保持学报,1990,4(1):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700