主要水蚀区坡面土壤侵蚀过程与机理对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对比研究我国主要水蚀区坡面侵蚀产沙过程的差异性,不但深化对我国土壤侵蚀规律的认识,也为不同水蚀类型区坡面水土保持措施配置提供理论支持。本论文首次在国内采用统一的研究方法与试验技术,对比研究了我国三个水蚀类型区(西北黄土高原、南方红壤低山丘陵和西南紫色土丘陵)在不同降雨强度(50、75和100 mm/h)和坡度(5°~30°)条件下坡面土壤侵蚀过程与机理,揭示了降雨强度和坡度对坡面侵蚀产沙的影响,阐明了细沟侵蚀发育特征及侵蚀形态演变过程,分析了坡面侵蚀产沙的动力学机理,取得了新的研究进展,为针对性地建立我国侵蚀预报模型和水土保持措施布设提供了重要的理论依据。主要研究结论如下:
     1.研究了主要水蚀区坡面降雨入渗和产流过程。坡面降雨起始产流时间均随降雨强度和坡度的增大而趋于提前。坡面起始产流的先后顺序为:紫色土、红壤、黄土。坡面土壤入渗率随时间的变化服从幂函数规律,坡面径流率呈对数函数变化。紫色土和红壤坡面在降雨开始10 min左右进入稳定入渗和产流阶段,黄土坡面约在30 min后开始趋于稳定。三个水蚀区坡面径流量均随坡度增大而减小。入渗过程与坡面土壤结皮形成及坡面侵蚀方式演变过程紧密相关。紫色土坡面的径流系数变化于0.78~0.93,红壤坡面变化于0.61~0.88,黄土坡面则变化于0.3~0.67之间。
     2.对比分析了主要水蚀区坡面侵蚀产沙过程及降雨强度和坡度的影响。当降雨强度为50和75mm/h、坡度为5°~15°及降雨强度为100 mm/h、坡度为5°~10°时,红壤坡面侵蚀量最大,其次为紫色土坡面,而黄土坡面最小;其它试验条件下,三个水蚀区坡面土壤侵蚀量的排序为:紫色土坡面>黄土坡面>红壤坡面;其结果反映了在黄土区和紫色土区,坡度对坡面土壤侵蚀的重要影响。黄土和紫色土坡面侵蚀产沙速率最大值出现在降雨过程的后期,红壤坡面最大侵蚀产沙速率出现在降雨初期。三个水蚀区坡面土壤侵蚀量均随降雨强度和坡度的增加而增大。黄土坡面和紫色土坡面在25°左右出现侵蚀产沙的临界坡度,红壤坡面的临界坡度现象不明显。
     3.揭示了主要水蚀区坡面细沟侵蚀发展过程及其对坡面侵蚀产沙动态变化的影响。随降雨强度或坡度的增加,坡面更早发生细沟侵蚀,细沟溯源侵蚀速度也随之增大。黄土和紫色土坡面细沟溯源侵蚀速率与产沙速率具有较强的同步性,红壤坡面的这种同步性则较差。在50 mm/h降雨强度下,紫色土坡面在26 min内出现细沟,黄土在40 min内出现细沟,红壤坡面无明显的细沟侵蚀发生;75和100 mm/h降雨强度下,紫色土坡面出现细沟的时间亦早于黄土坡面和红壤坡面。发生细沟溯源侵蚀所需的汇水坡长在三个水蚀区的排序为:紫色土坡面>黄土坡面>红壤坡面。紫色土和黄土坡面最大溯源侵蚀速率达到18.5 cm/s,而红壤坡面仅10 cm/s。
     4.紫色土坡面细沟平均宽度和深度略大于黄土坡面,两者趋于形成宽且深的细沟,其细沟宽度分别介于5.0~15.5和2.5~18.5 cm之间,深度分别在1.5~15和1.5~10.5 cm之间;红壤坡面常形成宽度和深度都较小的平行细沟,其细沟宽度和深度分别介于3.1~7.6 cm和1.5~6.9 cm之间。试验条件下,三个水蚀区坡面的细沟侵蚀量皆随坡度或降雨强度的增加而增加,其占坡面总产沙量的比例:黄土坡面为10%~88.7%,紫色土和红壤坡面分别为37.1%~92.8%和14.7%~80.7%。随降雨强度和坡度的增加,坡面侵蚀方式由片蚀为主向以细沟侵蚀为主演变。黄土坡面在降雨强度为50和75 mm/h、坡度为25°~30°以及降雨强度为100 mm/h、坡度为15°~30°时,坡面侵蚀均以细沟侵蚀为主;紫色土坡面在降雨强度为50 mm/h、坡度为5°~10°以及降雨强度为75和100 mm/h、坡度为10°~30°时,坡面侵蚀以细沟侵蚀为主;红壤坡面当降雨强度为75和100 mm/h、坡度为20°~25°时,坡面土壤侵蚀以细沟侵蚀为主。
     5.对比分析了三个水蚀区坡面径流的流态和水力学参数特征。坡面细沟间水流流速受降雨强度、坡度和细沟发展过程的影响,三个水蚀区坡面的对比关系为:红壤坡面>黄土坡面>紫色土坡面。试验条件下,坡面细沟的出现,在增加坡面侵蚀产沙量的同时,也使坡面薄层水流横向溢流到细沟沟槽,从而加大了细沟水流流速,在紫色土坡面表现更为明显。紫色土坡面细沟水流流速是细沟间水流流速的2.1~4.7倍,黄土坡面和红壤坡面二者的比值分别是1.1~2.3和1.2~1.85倍。黄土和紫色土坡面在50和75 mm/h降雨强度下,当细沟水流雷诺数与薄层水流雷诺数的比值分别在10倍和15倍左右时,坡面侵蚀量出现剧增现象;100 mm/h降雨强度下,雷诺数的比值分别在8.2和10.0左右时,侵蚀量出现剧增。而对于红壤坡面,则没有明显的规律性。
     6.探讨了不同水蚀区坡面径流侵蚀的产沙动力机制。黄土坡面取平均断面单位能量E≥0.398 cm作为试验条件下坡面侵蚀发生的动力临界,径流剪切力J≥5.44 Pa作为其辅助的动力临界;紫色土坡面,取E≥0.351 cm作为试验条件下坡面侵蚀发生的动力临界,径流剪切力J≥8.98 Pa作为其辅助的动力临界;对于红壤坡面,取E≥0.883 cm作为试验条件下坡面侵蚀发生的动力临界,径流剪切力J≥3.87 Pa作为其辅助的动力临界。
     7.估算了三种侵蚀土壤可蚀性K(t·hm2·h·hm-2·MJ-1·mm-1)。由土壤侵蚀与生产力关系模型(EPIC)得到黄土的K值为0.053,紫色土和红壤K值分别为0.058和0.032。单位降雨引起的坡面侵蚀量或单位径流引起的坡面侵蚀量皆表现为:紫色土坡面>黄土坡面>红壤坡面。黄土坡面每mm降雨量所引起的土壤侵蚀量平均值为71.6 g/m2·mm-1,紫色土和红壤坡面分别为155.8和40.7 g/m2·mm-1;黄土坡面每mm径流深所引起的侵蚀量为161.5 g/m2·mm-1,紫色土和红壤坡面分别为171.75和64.1 g/m2·mm-1。
Through the comparative study of the differences among the processes of hillslopeerosion and sediment yield in main water erosion regions in our country, will not only goodfor further understanding of the field of soil erosion laws, but also provide theoretical supportsfor the arrangement of hillslope soil and water conservation measurements in regions ofdifferent water erosion types. In this paper, the processes and mechanisms of hillslope soilerosion in three main water erosion regions (the Loess Plateau region, red soil low mountainhillyregion and purple soil hilly region), under different rainfall intensity (50, 75, and100mm/h) and slope gradients (5°-30°) was studied comparatively by adopting uniformresearching methodologies and experimental technologies, as well as the effects of rainfallintensity and slope gradient on the processes of hillslope erosion and sediment yield wereanalyzed. Besides, the developing features of rills and the evolution processes of erosion typeswere illustrated, and the dynamic mechanism of hillslope erosion and sediment yield were alsoanatomized. These were new developments in this field, and will provide theoreticalreferences for the establishment of soil erosion predicting model with pertinence and thearrangements of soil and water conservation measurements in our country. The mainconclusions are as follows:
     1. The hillslope rainfall and infiltration processes and runoff generation processes werestudied. The time of runoff generation tended to advance with the increasing of rainfallintensity and slope gradient. The order for the starting time of runoff generation was: purple,red soil and loess. The variation of slope infiltration rate along with time obey the law ofpower function, while the variation of slope runoff rate followed the law of logarithm function.The infiltration and runoff generation of purple soil hillslope and red soil hillslope entered tostable phases at about 10 minutes after the rainfall simulation began, while the loess hillslopeat about 30 minutes. The amount of runoff on the hillslopes of the three regions all decreasedwith the increase of slope gradient. It was found that the infiltration processes were closelyrelated to the crust formation and the evolution of erosion types on the hillslope. The runoffcoefficient of purple soil ranged from 0.78 to 0.93, red soil from 0.61 to 0.88, and loess from0.3 to 0.67.
     2. The sediment yielding processes of the main water erosion regions, and the effects ofrainfall intensity and hillslope gradient were comparatively analyzed. When the rainfallintensities were 50 mm/h and 75 mm/h and the hillslope gradients ranged from 5°-15°, or therainfall intensity was 100 mm/h and hillslope gradients ranged from 5°-10°, the red soilhillslope has the greatest sediment yield, and then the purple soil hillslope, loess hillslope was the least; under other experimental conditions, the order of sediment yield on the hillslopes ofthe three water erosion region was: purple soil hillslope>loess hillslope>red soil hillslope. Theresult indicated that hillslope gradients have important effects on soil erosion process in theloess and purple soil region. The sediment yield on loess and purple soil hillslopes reached themaximum value at the later period of the rainfall process, and the red soil hillslope at the initialstage. The sediment yield on the hillslopes of the three regions all increased with the increaseof rainfall intensity and hillslope gradient. The crucial slope gradient value of sediment yieldon the loess and purple soil hillslope appeared at 25°, but that of the red soil hillslope was notclear.
     3. The process of rill erosion developing in main water erosion regions and its influences onthe dynamic variation of sediment yielding were also illustrated. The time of rills formed wereshorten with the increase of rainfall intensity and hillslope gradient, as well as the rates ofheadward erosion. The headward erosion rates and sediment yielding rates of both loess andpurple soil were strong synchronism, which was weak for red soil. When the rainfall intensitywas 50 mm/h, rills on purple soil hillslopes appeared at the 26th min, and loess hillslopes at the40th min, while there was no clear rill appeared on the red soil hillslopes. When the rainfallintensity was 75 mm/h and 100 mm/h, rill on the red soil hillslopes appeared earlier than loesshillslopes and red soil hillslopes. The order of the slope length which were needed for theoccurring of headward erosion in the three water erosion regions was: purple hillslope>loesshillslope>red soil hillslope. The maximum value for the headward erosion on purple soilhillslopes and loess hillslopes were both18.5 cm/s, while red soil slopes was 10 cm/s.
     4. The average width and depth for rills on purple soil hillslopes were slightly wider anddeeper than that on loess hillslopes, and the rills on both soil hillslopes tended to form widerand deeper rills, the ranges of width were from 5.0 cm to 15.5 and 2.5 cm to 18.5 cm, and theranges of depth from 1.5 cm to 15 cm and 1.5 cm to 10.5 cm; while the rills formed on the redsoil hillslopes were always paralleled ones with smaller width and depth, which the width anddepth changed between 3.1 cm to 7.6 cm. Under the conditions in this study, the amount of rillerosion in the three water erosion regions all inceased with the increase of rainfall intensity orhillslope gradient. The proportion of rill erosion to total hillslope sediment yielding of was:10%-88.7% for loess, 37.1%-92.8% for purple and 14.7% - 80.7% for red soil, respectively.With the increase of rainfall intensity and hillslope gradient, the dominant erosion typeevoluted from sheet erosion to rill erosion. When the rainfall intenstiy were 50 and 75 mm/h,hillslope gradientwas 25°~30°, and rainfall intensity was 100 mm/h and hillslope gradient was15°~30°, the dominant erosion type on the loess hillslope was rill erosion; when the rainfallintenstiy was 50 mm/h, hillslope gradient was 5°~10°and rainfall intensity was 75 and 100mm/h, hillslope gradient was 10°~30°, rill erosion was the dominant erosion type on the purplesoil hillslopes ; when the rainfall intensity was 75 and 100 mm/h, hillslope gradient was20°~25°, the dominant erosion type on the red soil hillslopes was rill erosion.
     5. The flow types and characteristics of hydraulic parameter of the flows in the three watererosion regions were analyzed. The runoff rates in rills were influenced by rainfall intensity, hillslope gradient and the processes of generation and development of rills. And the runoffrates on hillslope followed the order: red soil>loess>purple soil. Under the conditions in thisstudy, the generation of rills, not only increased the amount of sediment yielding on thehillslope, but also caused the lateral overflowing of thin flow into the rills, which increased therunoff rate in rill , and this was more obvious on the purple soil hillslope. The runoff rateswithin the rills were 2.1 to 4.7 times greater than those of interrill on the purple soil hillslope,and were 1.1 to 2.3 on the loess hillslope, and 1.2 to 1.85 on the red soil hillslope.When therainfall intensity were 50 and 75 mm/h, the erosion amount increased sharply on both loesshillslopes and purple soil hillslopes, as the ratio of Reynolds of runoff within rills to that ofthin flow were 10 to 15; when the rainfall intensity was 100 mm/h, the sharp increase oferosion amount appeared as the ratio of Reynolds was 8.2 to 10.0. However, there was noobvious law on the red soil hillslope.
     6. The study discussed dynamics mechanism of sediment yielding driven by runoff erosionThe average specific energy in a cross section(E),was taken as the crutial dynamics for theoccurrence of hillslope erosion , the E value on the loess hillslopes.purple soil hillslope and red soil hillslope were E≥0.398 cm, E≥0.351 cm, and E≥0.883cm ,respectively. Moreover ,the sheer stress J was taken as the assitant crutial dynamics. The Jvalue on the loess hillslopes, purple soil hillslope and red soil hillslope were J≥5.44 Pa., J≥8.98 Pa and J≥3.87 Pa, respectively.
     7. this paper also estimated the soil erodibility K (t·hm2·h·hm-2·MJ-1·mm-1) The K value wasobtained by the Erosion and Productivity impact EPIC . The K for loess was 0.053, 0.058 forpurple soil and 0.032 for red soil, respectively. The amount of erosion caused by unit rainfall orby unit runoff followed order: purple soil hillslope>loess hillslope>red soil hillslope. Theaverage amount of loess eroded by per milimeter precipitation was 71.6 g/m2·mm-1, and that ofpurple soil and red soil was 155.8 and 40.7 g/m2·mm-1, respectively. While the average amountof loess eroded by per milimeter runoff was 161.5 g/m2·mm-1, and that of purple soil and redsoil was 171.75 and 64.1 g/m2·mm-1, respectively.
引文
[1]景可,王万忠,郑粉莉.中国土壤侵蚀环境效应[M].北京:科学出版社, 2005.
    [2]唐克丽,史立人,史明德.中国水土保持[M].北京:科学出版社, 2004.
    [3]辛树帜,蒋德麒.中国水土保持概论[M].北京:农业出版社, 1982.
    [4]朱显谟.黄土高原的形成与整治对策[J].水土保持通报, 1991, 11(1): 1-8.
    [5]钱正英.全面贯彻执行《水土保持工作条例》,为防治水土流失,根本改变山区面貌而奋斗[J].水土保持通报, 1982(5): 5-13.
    [6]史德明.土壤侵蚀对生态环境的影响及其防治对策[J].水土保持学报, 1991, 5(3): 1-8.
    [7]黄秉维.谈黄河中游水土保持问题[J].中国水土保持, 1983(1).
    [8]史德明.土壤侵蚀对生态环境的影响及防治对策[J].水土保持学报, 1991, 5(3): 1-8.
    [9]杨瑞珍.我国耕地水土流失及其防治措施[J].水土保持通报, 1994, 14(2): 32-36.
    [10]史德明.土壤侵蚀对生态环境的影响及其防治对策[J].水土保持学报, 1991, 5(3): 1-8.
    [11]朱登铨.持续不断地推进农村“四荒”资源的治理与开发[J].中国水土保持, 1999(1): 1-4.
    [12]姜春云.切实加大水土保持工作力度为实施可持续发展战略作出新的贡献[J].中国水土保持,1997(6): 2-8.
    [13]夏卫兵.具有中国特色的水土保持科学体系浅述[J].水土保持通报, 1989, 9(4): 30-35.
    [14]陈永宗.黄土高原土壤侵蚀规律研究工作回顾[J].地理研究, 1987, 6(1): 76-85.
    [15]中国科学院黄土高原综合科学考察队.中国黄土高原地区坡度分级数据集[M].北京:海洋出版社, 1990.
    [16]中国科学院黄土高原综合科学考察队.黄土高原地区自然环境及其演变[M].北京:海洋出版社,1991.
    [17]唐克丽,陈永宗.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社, 1990.
    [18]李国英.深入研究黄土高原土壤侵蚀规律[J].中国水土保持, 2006(10): 1-5.
    [19]吴士佳.四川省水土流失分区和水土保持工作[J].水土保持通报, 1986(3): 30-37.
    [20]中国科学院成都分院土壤研究室.中国紫色土(上篇)[M].北京:科学出版社, 1994.
    [21]赵其国,徐梦洁,吴志东.东南红壤丘陵地区农业可持续发展研究[J].土壤学报, 2000, 37(4):422-433.
    [22]何圆球,杨艳生.红壤生态系统研究[M].北京:中国农业科技出版社, 1998.
    [23]苗孝芳.流域水文模型研究中的若干问题[J].水科学进展, 1997, 8(1): 94-98.
    [24]赵人俊.流域水文模拟[M].北京:水利电力出版社, 1984.
    [25] Freeze R. A. Mathematical models of hillslope hydrology[M]. Hillslope hydrology, Kirkby M. J.,Norwich: Ailey-Interscience Publication, 1978.
    [26] Philip J. R. Hillslope infiltration:Planer slope[J]. Water Resource Res., 1991, 27(6): 1035-1040.
    [27]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展, 1999, 10(3): 311-318.
    [28]蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试[J].水土保持通报, 1984, 4(4): 7-9.
    [29]石生新.高强度人工降雨条件下影响入渗速率因素的试验研究[J].水土保持通报, 1992(02): 49-54.
    [30]石生新.整地造林措施对强化降雨入渗和减沙的影响[J].水土保持学报, 1996(04): 54-59.
    [31]陈浩.流域坡面与沟道的侵蚀产沙研究[M].北京:气象出版社, 1993.
    [32] Kemper W. D. Effects of soil properties on precipitation use efficiency[J]. Irrigation Sci., 1993(14):65-73.
    [33] Helalia A. M. The relation between soil infiltration and effective porosity in different soils.[J].Agricultural Water Management, 1993(24): 39-47.
    [34]贾志军,王贵平,李俊义等.前期土壤含水率对坡面产流产沙影响的研究[M].北京:水利电力出版社, 1990.
    [35]张斌,张桃林,赵其国.耕作方式对红壤水分入渗特性的影响及测定方法的比较.中国科学院红壤生态实验站编.红壤生态系统研究(第五集)[C].北京:中国农业科技出版社, 1998.
    [36] Mcintyer. Soil splash and the formation of surface crust by raindrop impact[J]. Soil Science, 1958, 85:261-266.
    [37] Moore. Effect of surface sealing on infiltration[J]. Transactions of the ASAE, 1981, 24: 126-135.
    [38] Tackett J. L.,Pearson R. W. Some characteristics of soil crusts formed by simulated rainfall[J]. SoilScience, 1965, 99: 407-413.
    [39]陈浩,蔡强国.坡度对坡面径流入渗量影响的试验研究[C].北京:水利水电出版社, 1990.
    [40]沈冰,王文焰,沈晋.短历时降雨强度对黄土坡地径流形成影响的实验研究[J].水利学报,1995(3): 21-27.
    [41]贺康宁,张建军,朱金兆.晋西黄土残源沟壑区水土保持林坡面径流规律研究[J].北京林业大学学报, 1997, 19(4): 2-6.
    [42]黄明斌,李玉山,康绍忠.坡地单元降雨产流分析及平均入渗速率的计算[J].土壤侵蚀与水土保持学报, , 5(1): 63-68.
    [43]陈洪松,邵明安,张兴昌等.野外模拟降雨条件下坡面降雨入渗、产流试验研究[J].水土保持学报, 2005, 19(1): 5-8.
    [44]陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展, 2003, 14(4):513-520.
    [45] Freeze R. A. A stochastic conceptual analysis of rainfall-runoff processes on a hillslope[J]. WaterResources Research, 1980, 16: 391-408.
    [46] Ellison W. D. Soil detachment hazard by raindrop splash[J]. Agric. Eng, 1947(28): 197-201.
    [47] Ellison W. D. Soil erosion study-PartⅤ: Soil transport in the splash process[J]. Agric. Eng., 1947(28):349-351.
    [48] Ellison W. D. Soil erosion studies - Part I[J]. Agric. Eng, 1947(28): 145-146.
    [49] Meyer L. D.,And Wischmeier W. H. Mathematical simulation of the process of soil erosion bywater[J]. Trans of ASAE, 1969(12): 754-758, 762.
    [50] Meyerld,Haxnnonwc,Medowellll. SedimentsiezerodedrfomeroProwsidesloPes[J]. Trans of ASAE,1975(23): 891-898.
    [51] Foster G. R.,Meyer L. D. A closed-form soil erosion equation for upland areas[C]. Colorado: 1972.
    [52] Hudson N. W.,窦葆璋译.土壤保持[M].北京:科学出版社, 1971.
    [53] Hudson N. W. Raindrop size distribution in high intensity storms.[J]. Rhod.I.Res, 1963(1): 6-11.
    [54]吴普特,周佩华.雨滴击溅在薄层水流侵蚀中的作用[J].水土保持通报, 1992, 9(2): 19-26.
    [55] Guy B. T.,Dickison W. T.,And Rudra R. P. The Roles of Rainfall and Runoff in the SedimentTransport Capacity of Interrill Flow[J]. Transactions of the ASAE, 1987, 30: 1378-1386.
    [56]赵晓光.黄土塬区坡面水蚀作用过程[J].水土保持学报, 2000, 14(03): 122-124.
    [57]李占斌.黄土地区坡地系统暴雨侵蚀试验及小流域产沙模型研究[D].陕西机械学院, 1996.
    [58] Laws Jo,Pasron Da. The relationship of raindrop size to intensity[J]. Trans.Am.Gepohysieal Unoin,1943(24): 452-459.
    [59] Best Ac. The size distribution of rain drops[J]. Quarterly Jounral of the Royal Meteorologieal Society,1950(6).
    [60]江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究[J].水土保持通报, 1983, 3(3): 32-36.
    [61] Wischmeier W H. Smith D. D. Rainfall energy and its relationship to soil loss[J]. Trans Am GeophysUnion, 1958(39): 285-291.
    [62] Rose Cw. soil deacthment caused by Rainafll[J]. Soil Sci, 1960, 89: 28-35.
    [63] Horton R. E. Laminar sheet flow[J]. Trans. of Am. Geo.Union, 1943, 15: 393-404.
    [64] Horton R. E. Erosion development of streams and their drainage basins;Hydrophysical approach toquantitative morphology[J]. Bull.Geol.Soc.Am, 1945, 56: 275-370.
    [65] Kirkby M. J.山坡水文学[Z].哈尔滨:哈尔滨工业大学出版社, 1987.
    [66]江忠善,宋文经.坡面流速的试验[C].西安:陕西科学技术出版社, 1988.
    [67] Liebenow A. M.,Elliot W. J.,Laflen J. M.etal. Interrill erodibility:Collection and analysis of datafrom cropland soils[J]. Transaction of the ASAE, 1990, 33(1882-1888).
    [68] Sharma P. P.,Gupta S. C.,Rawl W. J. Soil detachment by single raindrops of varying knit energy[J].Soil.Sci.Soc.Am.J, 1991, 55: 301-307.
    [69] Sharma P. P.,Gupta S. C.,Foster G. R. Raindrop-induced soil detachment and sediment transportfrom interrill areas[J]. Soil Sci.Soc.Am.J, 1995, 59: 727-734.
    [70] Sharma P. P.,Gupta S. C.,Foster G. R. Predicting soil detachment by raindrops[J]. Soil.Sci.Soc.Am.J,1993, 57: 647-680.
    [71] Meyer L. D.,Foster G. R. Mechanics of soil erosion by rainfall an overland flow[J]. Trans. of ASAE,1965, 8(4): 689-693.
    [72] Ellison W. D. Ellison O. T. Soil erosion study-PartⅥ: Soil detachment by surface flow[J]. Agric. Eng,1947(28): 402-405.
    [73] D Ellison W.,T Ellison O. Soil erosion study-PartⅥ: Soil detachment by surface flow[J]. Agric. Eng,1947, 28: 402-405.
    [74]蔡强国,陈浩,陆兆熊.表土结皮在溅蚀和坡面侵蚀中的作用.见:黄河粗泥沙来源及其侵蚀产沙机理论文集[C].北京:水利水电出版社, 1990.
    [75]陈浩.降雨特征和上坡来水对产沙的综合影响[J].水土保持学报, 1992, 6(2): 17-23.
    [76]谭宽祥.黄土地区坡度与面状侵蚀产沙的研究[J].泥沙研究, 1991(02): 64-68.
    [77]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社, 1988.
    [78]陈永宗.黄河中游黄土丘陵地区坡地的侵蚀发育,地理集刊(第10号)[M].北京:科学出版社,1976.
    [79]唐克丽,郑世清.杏子河流域坡面的水土流失及其防治[J].水土保持通报, 1984(1).
    [80]郑粉莉,唐克丽,周佩华.坡面细沟侵蚀的发生、发展和防治途径的探讨[J].水土保持学报,1987(01).
    [81]王贵平,曾伯庆,蔡强国等.晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究——第二部分细沟侵蚀[J].中国水土保持, 1992(11): 22-24.
    [82]朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报, 1982(1): 40-44.
    [83] Young R. A.土壤侵蚀对侵蚀和养分流失的影响.王玲译[J].中国水土保持, 1984(5): 23-26.
    [84]郑粉莉,唐克丽.坡面细沟侵蚀影响因素的研究[J].土壤学报, 1989, 26(2): 109-116.
    [85]郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持, 1989(08): 23-24.
    [86]郑粉莉.黄土高原坡面的细沟侵蚀及防治途径[C]. 1988.
    [87] Vanliew M. W.,Saxton K. E. Slope steepness and incorporated residue effcets on rill erosion[J].Trans. of the ASAE, 1983, 26(6): 1738-1743.
    [88] Meyer L. D.,Foster G. R. Effect of Flow rate and Canopy on Rill Erosion[J]. Transactions of theASAE, 1975, 18(5): 1472-1475.
    [89]罗来兴.黄土高原典型沟道流域侵蚀地貌与水土保持关系论丛[M].北京:科学出版社, 1958.
    [90]蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社, 1998.
    [91] Govers G.,Poesen J. Assessment of the interrill and rill contributions to total soil loss from an uplandfield plot[J]. Geomorphology, 1988, 1(4): 343-354.
    [92]张科利.黄土坡面侵蚀产沙分配及其与降雨特征关系的研究[J].泥沙研究, 1991(4): 39-45.
    [93] Young R. A.,Wiersma J. L. The role of rainfall impact in soil detachment and transport[J]. WaterResources Reasearch, 1973, 9(6): 1629-1636.
    [94] Foster G. R.,Huggins L. F.,Meyer L. D. A laboratory study of rill hydraulics:Ⅰ.velocity relationships[J]. Trans .of the ASAE, 1984, 137(3): 790-796.
    [95] Foster G. R.,Huggins L. F.,Meyer L. D. A laboratory study of rill hydraulics:Ⅱ.shear stessrelationships[J]. Trans .of the ASAE, 1984, 27: 797-804.
    [96] Merritl E. The identification of four stages during micro-rill development[J]. Earth Surf.Proc.Larf.,1984, 19: 493-496.
    [97] E Gilley J.,R Kottwitz E.,R Simanton J. Hydraulic characteristics of rills[J]. Trans. of ASAE,1990(17): 1900-1906.
    [98] Govers R. Relationship between discharge, velocity and flow area for rills eroding loose, non–layered materials[J]. Earth Surface Processes and Land forms, 1992, 17: 515-528.
    [99] Abrahams A. D.,Li Gang,Parsin A. J. Rill hydraulics on a semiarid hillsope Southern Arizona[J].Earth Surface Process and Landforms, 1996(21): 35-47.
    [100] Lepold L. B.,Maddock J. T. The hydraulic geometry of stream channels and some physiographicimplication[M]. 1953.
    [101]张科利.黄土坡面发育的细沟水动力学特征的研究[J].泥沙研究, 1999(1): 56-61.
    [102]张科利.黄土坡面细沟侵蚀中的水流阻力规律研究[J].人民黄河, 1998, 20(8): 13-15.
    [103] Savat J.,Ploey J. De. The hydraulics of sheet flow on a smooth surface and the effect of simulatedrainfall[J]. Earth Surface Processes and landforms, 1977, 2: 125-140.
    [104]张科利,秋吉康宏.坡面细沟侵蚀发生的临界水力条件研究[J].土壤侵蚀与水土保持学报,1998, 4(1): 41-46.
    [105]雷阿林,唐克丽.黄土坡面细沟侵蚀的动力条件[J].土壤侵蚀与水土保持学报, 1998, 4(3): 34-39.
    [106] Rauws G.,Govers G. Hydraulics and Soil Mechanical Aspects of Rill Generation on Agricultural[J].Soil.Sci.Soc.Am.J, 1988, 39: 111-124.
    [107] Crouch R. J.,Novruzi T. Threshold conditions for rill initiation on a vertisol, Gunnedah, N.S.W.,Australia[J]. CATENA, 1989, 16(1): 101-110.
    [108]陆兆熊,Merz W.应用盐液示踪技术测定表面水流流速[M].晋西土壤侵蚀管理与地理信息系统应用研究,北京:科学出版社, 1992, 249-257.
    [109]王贵平,张治国.黄土坡面上细沟发生及其侵蚀[M].晋西土壤侵蚀管理与地理信息系统应用研究,北京:科学出版社, 1992, 234-239.
    [110]雷阿林,唐克丽.土壤侵蚀链概念的科学意义及其特征[J].水土保持学报, 2000, 14(3): 79-83.
    [111] Horton R E. Erosional development of streams and their drainage basins , hydro physical approach toquantitative morphology[J]. Geol Soc Amer Ball, 1945, 3(56): 275-370.
    [112]郑粉莉,唐克丽,周佩华.坡面细沟侵蚀的发生、发展和防治途经的探讨[J].水土保持学报,1987, 1(1): 36-48.
    [113]郑粉莉.黄土区坡面细沟间侵蚀和细沟侵蚀的研究[J].土壤学报, 1998, 35(1): 95-101.
    [114]郑粉莉,唐克丽,周佩华.坡面细沟侵蚀的发生、发展和防治途径探讨[J].水土保持学报, 1987,1(1): 36-48.
    [115]薛亚洲,刘普灵,杨明义. REE示踪坡面侵蚀的演变过程[J].水土保持通报, 2004, 24(2): 8-11.
    [116]宋炜,刘普灵,杨明义等.坡面侵蚀形态转变过程的REE示踪法研究[J].中国稀土学报, 2003,21(06): 711-715.
    [117]宋炜,刘普灵,杨明义.利用REE示踪法研究坡面侵蚀过程[J].水科学进展, 2004, 15(02): 197-201.
    [118]王万忠.黄土地区降雨特性与土壤流失关系的研究III——关于侵蚀性降雨标准的问题[J].水土保持通报, 1984, 4(2): 58-62.
    [119]张汉雄,王万忠.黄土高原的暴雨特性及分布规律[J].水土保持通报, 1982, 2(1): 35-44.
    [120]周佩华,王占礼.黄土高原土壤侵蚀暴雨标准[J].水土保持通报, 1987, 7(1): 3844.
    [121] Ekern P. C. Problems of raindrop impact erosion[J]. Agric. Eng, 1953, 34: 23-25.
    [122]王万忠.黄土地区降雨特性与土壤流失关系的研究[J].水土保持通报, 1984, 4(2): 58-62.
    [123]王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].科学出版社, 1996.
    [124]王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报, 1996, 16(5): 1-20.
    [125]靳长兴.论坡面侵蚀的临界坡度[J].地理学报, 1995(03): 234-239.
    [126]靳长兴.坡度在坡面侵蚀中的作用[J].地理研究, 1996, 15(3): 37-43.
    [127] Zingg A W. Degree and length of land slope as it affects soil loss in runoff[J]. Agric Eng, 1940(21):59-64.
    [128]汤立群,陈国祥.小流域产流产沙动力学模型[J].水动力学研究与进展,A辑, 1997(12(2)): 164-174.
    [129] Yair A.,Klein M. The influence of s urface properties on flow and erosion processes on debriscoveredslopes in an arid area[J]. Catena, 1973, 1(1): 1-8.
    [130] Renner F. G. Conditions influencing erosion of the Boise river watershed[J]. US Dept Agric TechBull, 1936: 528.
    [131]陈法扬.不同坡度对土壤冲刷量影响试验[J].中国水土保持, 1985(2): 24-30.
    [132]席有.坡度影响土壤侵蚀的研究[J].中国水土保持, 1993(04): 23-25.
    [133]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社, 1997.
    [134]吴普特.动力水蚀实验研究[M].西安:陕西科学技术出版社, 1997.
    [135] Singer M. J.,John B. Slope angle-interrill soil loss relationships for slopes up to 50%[J]. Soil Sci.Soc. Am. J., 1982, 46: 1270-1273.
    [136]王玉宽.黄土丘陵沟壑区坡面径流侵蚀试验研究[J].中国水土保持, 1993(07): 222-224.
    [137]蔡强国,吴淑安,马绍嘉等.花岗岩发育红壤坡地侵蚀产沙规律试验研究[J].泥沙研究, 1996(1):89-96.
    [138]蒋定生,黄国俊.地面坡度对降雨入渗影响的模拟试验[J].水土保持通报, 1984, 4(4): 10-13.
    [139]蔡强国,王忠科,李克文等.水土流失规律与坡地改良利用[M].北京:环境科学出版社, 1995.
    [140]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实验研究[J].地理学报, 1999(04): 61-70.
    [141] Cook H. L. The nature and controlling variables of the water erosion process[J]. Am Soc Agri,1936, 39: 65-73.
    [142] Laws J. O.,Parsons D. A. The relationship of raindrop site to intensity[J]. AM, Geophys, Unino,1943, 24: 452-460.
    [143] Langbein W. B.,Suchumm S. A. Yield of Sediment in Ralation to Mean Preciptation[J]. Trans, AM,Geophys Union, 1958, 39(230-236).
    [144] Zingg A. W. Degree and length of land slope as it affects soil loss in runoff[J]. AgriculturalEngineering, 1940, 21(2): 59-64.
    [145]华绍祖.黄河中游实验小流域的土壤侵蚀及水土保持效益[Z]. 1982.
    [146]蔡强国.坡长在坡面侵蚀产沙过程中的作用[J]. 1989, 1989(4): 84-91.
    [147]琚彤军,田均良,刘普灵. REE示踪条带施放法研究坡面土壤侵蚀垂直分布规律[J].核农学报,1999, 13(6): 347-352.
    [148]万廷朝.黄丘五幅区降雨和地形因素与坡面水土流失关系研究[J].中国水土保持, 1996(12):26-29.
    [149]唐克丽,席道勤,孙清芳.杏子河流域的土壤侵蚀方式及其分布规律[J].水土保持通报, 1984,4(5): 10-19.
    [150]唐克丽,郑世清,席道勤.杏子河流域坡面的水土流失及其防治[J].水土保持通报, 1983, 3(5):43-48.
    [151]黄丽,丁树文,张光远等.三峡库区紫色土坡地的耕作利用方式与水土流失初探[J].华中农业大学学报, 1998, 17(1): 36-41.
    [152]黄丽,张光远,丁树文等.侵蚀紫色土土壤颗粒流失的研究[J].水土保持学报, 1999, 5(1): 35-39.
    [153]阮伏水.福建花岗岩地区坡度和坡长对土壤侵蚀的影响[J].福建师范大学学报(自然科学版),1995(01): 23-27.
    [154] Wischmeier W. H.,Mannering J. V. Relation of soil properties to its erodibility[J]. Soil ScienceSociety of American Proceeding, 1969, 33: 131-137.
    [155] Kirkby M. Modelling the interactions between soil surface proerties and water erosion[J]. Catena,2002, 46: 89-102.
    [156]杨武德,王兆骞,眭国平等.红壤坡地不同利用方式土壤侵蚀模型研究[J].水土保持学报,1999(01): 52-68.
    [157] Bryan,Rorke B. Soil erodibility and processes of water erosion on hillslope[J]. Geomorphology,2000, 32(34): 385-415.
    [158]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].西北林学院学报, 1989,4(1): 80-86.
    [159] Fox D. M.,Bryan R. B.,Price A. G. The influence of slope angle on final infiltration rate for interrillconditions[J]. Geoderma, 1997, 80(1-2): 181-194.
    [160]高学田,包忠谟.降雨特性和土壤结构对溅蚀的影响[J].水土保持学报, 2001(3): 35-39.
    [161] Ellison W. D. Studies of raindrop erosion[J]. Agric. Eng, 1944, 25: 131-136.
    [162]田积莹,黄义端.子午岭连家砭地区土壤物理性质与土壤抗侵蚀性能指标的初步研究[J].土壤学报, 1964, 12(3).
    [163] Daniel C. Moore,Michael J.张光远译,结皮的形成对土壤侵蚀过程的影响[J].华中农业大学学报增刊, 1994, 15: 95-102.
    [164] Young R. A. Characteristics of eroded sediment[J]. Transactions of the ASAE, 1980, 23: 1139-1146.
    [165] Bernard Barth,Eric Roose. Aggregate stability as an indicator of soil susceptibility to runoff anderosion:validation at several levels[J]. Catena, 2002, 47: 133-149.
    [166]杨玉盛,何宗明,林光耀等.几种侵蚀红壤中有机质和团聚体的关系不同治理模式对严重退化红壤抗蚀性影响的研究[J].土壤侵蚀与水土保持学报, 1996, 2(2): 32-37.
    [167]王春燕,黄丽,谭文峰等.几种侵蚀红壤中有机质和团聚体的关系[J].水土保持学报, 2007,21(03): 52-56.
    [168] Hallett P.,Dexter A.,Baumgartl T. Chnages to Pressure caused by indirect and direct tensile loadingof unsaturated soil aggregates[J]. Soil Technology, 1998, 34: 123-135.
    [169] Farres P. J. The dynamics of rainsplash erosion and the role of soil aggregate stability[J]. Catena,1978, 14: 119-130.
    [170]柳长顺,齐实,史明昌.土地利用变化与土壤侵蚀关系的研究进展[J].水土保持学报, 2001,15(5): 10-17.
    [171]陈松林.基于GIS的土壤侵蚀与土地利用关系研究[J].福建师范大学学报(自然科学版), 2000,16(1): 106-109.
    [172]邹亚荣,张增祥,周全斌等.基于GIS的土壤侵蚀与土地利用关系分析[J].水土保持研究, 2002,9(1): 67-69.
    [173]傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响—以延安市羊圈沟流域为例[J].地理学报, 1999, 54(3): 241-246.
    [174]傅伯杰,邱扬,王军等.黄土丘陵小流域土地利用变化对水土流失的影响[J].地理学报, 2002,57(6): 717-722.
    [175]喻权刚.遥感信息研究黄土丘陵区土地利用与水土流失.黄土高原水土保持实践与研究(二)[M].郑州:黄河水利出版社, 1998.
    [176]蒋定生,江忠善,侯喜禄等.黄土高原丘陵水土流失规律与水土保持措施优化配置研究[J].水土保持学报, 1992, 6(3): 14-17.
    [177]卢金发,黄秀华.土地覆被对黄河中游流域泥沙产生的影响[J].地理研究, 2003, 22(5): 571-578.
    [178] R. D罗杰斯,S. A舒姆.稀疏植被覆盖对侵蚀和产沙的影响[J].中国水土保持, 1992(4): 18-20.
    [179] Yang N. Y.,Harry G. W. Mechanics of sheet flow under simulated rainfall[J]. Journal of theHydraulics Division, 1971, 97(9): 1367-1386.
    [180]姚文艺.坡面流阻力规律试验研究[J].人民黄河, 1998, 20(8): 13-15.
    [181]吴长文.林地坡面的水动力学特性及其阻延地表径流的研究[J].水土保持学报, 1995, 9(2): 32-38.
    [182]张科利.黄土坡面细沟侵蚀中的水流阻力规律研究[J].人民黄河, 1998(08): 13-15.
    [183] Govers G. R.,Gerard D. Rill erosion on arable land in Central Belgium: Rates, controls andpredictability[J]. CATENA, 1991, 18(2): 133-155.
    [184] Rose C. W.,Williams J. R.,Sander G. C.etal. A Mathematical model of soil erosion and depositionprocess[J]. Soil Science society of America Journal, 1983, 47: 991-995.
    [185]肖培青,郑粉莉.细沟侵蚀过程与细沟水流水力学参数的关系研究[J].水土保持学报, 2001,15(1): 54-57.
    [186] Lyle W. M.,Smerdon E. T. Relation of compaction and other soil properties to erosion resistance ofsoils[J]. Trans. ASAE, 1965, 8(3): 419-422.
    [187] Foster G. R.,Meyer L. D. Transport of soil particles by shallow flow[J]. Transactions of the ASAE,1972, 15(1): 99-102.
    [188] Nearing M. A.,Bradorrd J. M.,Parker S. C. Soil detachment by shallow flow at low slopes[J].SSSAJ, 1991, 55: 339-344.
    [189] Nearing M. A.,Simanton J. R.,Norton L. D.etal. Soil erosion by surface water flow on a stony,semiarid hillslope[J]. Earth Surface Processes and Landforms, 1999, 24(8): 677-686.
    [190] Elliot W. J.,Laflen J. M. A process based rill erosion model[J]. Trans of ASAE, 1993, 36(1): 65-72.
    [191]蔡强国.坡面侵蚀产沙模型的研究[J].地理研究, 1988, 7(4): 94-101.
    [192]张光辉,刘宝元.坡面径流分离土壤的水动力学实验研究[J].土壤学报, 2002, 39(6): 882-886.
    [193]李占斌,鲁克新.黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报, 2002, 16(2): 5-7.
    [194]王文龙,雷阿林,李占斌等.黄土丘陵区薄层水流侵蚀动力机制实验研究[J].水利学报, 2003(9):66-70.
    [195]王占礼,邵明安,刘文兆等.纸坊沟流域土壤侵蚀与产沙初步研究[J].天津师大学报(自然科学版), 1999, 19(1): 45-50.
    [196]李斌兵,郑粉莉,龙栋材等.基于G IS纸坊沟小流域土壤侵蚀强度空间分布[J].地理科学,2009, 29(1): 105-110.
    [197]何毓蓉,张凤娟,潘乐华等.四川盆地丘陵区紫色土退化研究Ⅰ.紫色土物理特性及退化特征[J].资源开发与市场, 1990(01): 32-37.
    [198]李朝霞.降雨过程中红壤表土结构变化与侵蚀特点[D].武汉:华中农业大学, 2004.
    [199]何圆球,孙波等.红壤质量演变与调控[M].北京:科学出版社, 2008.
    [200]李庆逵.中国红壤[M].北京:科学出版社, 1983.
    [201]邢义川,刘祖典,郑颖人.黄土的破坏条件[J].水利学报, 1992, 1: 36-41.
    [202]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社, 1990.
    [203]刘昌明等.中国科学院地理研究所水文研究室,黄土坡面坡面水土流失计算方法的探讨[J].地理学报, 1966, 32(2): 140-154.
    [204]潘成忠,上官周平.牧草对坡面侵蚀动力参数的影响[J].水利学报, 2005, 36(3): 371-376.
    [205]李裕元,邵明安.土壤翻耕对坡地水分转化与产流产沙特征的影响[J].农业工程学报, 2003,19(1): 46-50.
    [206]李裕元,邵明安.土壤翻耕影响坡地磷流失试验研究[J].应用生态学报, 2004(03): 35-42.
    [207]王玉宽,王占礼,周佩华.黄土高原坡面降雨产流过程的试验分析[J].水土保持学报, 1991, 5(2):25-31.
    [208] Rubin J. Theory of rainfall uptake by soil initially driver than their field capacity and itsapplication[J]. Water Resour Res, 1996, 2(4): 739-749.
    [209] Aken A. O.,Yen B. C. Effect of rainfall intensity no infiltration and surface runoff rate[J]. J.ofHydraulic Research, 1984, 21(2): 324-331.
    [210]郭索彦等袁建平雷廷武.黄土丘陵区小流域土壤入渗速空间变异性[J].水利学报, 2001(10):88-92.
    [211] Assouline S.,Ben-Hur M. Effects of rainfall intensity and slope gradient on the dynamics of interrillerosion during soil surface sealing[J]. CATENA, 2006, 66(3): 211-220.
    [212] Janeau J. L.,Bricquet J. P.,Planchon O.etal. Soil crusting and infiltration on steep slopes innorthern Thailand[J]. Eur. J. Soil Sci, 2003(54): 543-553.
    [213]田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊, 1987(5):5-12.
    [214] Helalia A. M. The relation between soil infiltration and effective porosity in different soils[J].Agricultural Water Management, 1993, 24(8): 39-47.
    [215] Morgan R. P. Soil Erosion and Conservation[M]. Edinburgh: Addison-Wesley Longman, 1995.
    [216] Foster G. R. Modeling the erosion process In :Hydrologic Modeling of Small Watersheds[J]. ASAEmonograph, 1982, 5.
    [217]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报, 1998, 53(5): 422-428.
    [218]吕甚悟,王世平,徐多润等.紫色土坡面耕作方法对土壤侵蚀影响的试验研究[J].中国水土保持, 1996(02): 38-41.
    [219]郑粉莉,高学田.黄土坡面土壤侵蚀过程玉模拟[M].西安:陕西人民出版社, 2000.
    [220]郑粉莉,唐克丽.坡面细沟侵蚀影响因素的研究[J].土壤学报, 1989, 26(2): 109-116.
    [221] Luk S. H.,Cai Q. G. Laboratory experiments on crust development and rain splash erosion of loesssoil[J]. Catena, 1990, 17: 261-276.
    [222] Young R. A.,Onstad G. A. The effect of soil characteristics on erosion and nutrient loss[M]. IAHSPublication, 1982.
    [223]周佩华,吴普特.黄土坡面薄层水流侵蚀试验研究[J].水土保持学报, 1996, 2(01): 40-45.
    [224] Foster G. R.,Osterkamp W. R.,Lane L. J.etal. An erosion equation derived from basic erosionprinciples [J]. Trans of ASAE, 1982(4): 678.
    [225] Bagnold R. A. An approach to the sediment transport problem from general physics[J]. U. S.Geological Survey Professional , 1966: 422.
    [226]刘秉正,吴发启.土壤侵蚀[M].西安:陕西人民出版社, 1997.
    [227]王万忠.黄土地区降雨侵蚀力R指标的研究[J].中国水土保持, 1987, 12: 34-38.
    [228] Wischmeier W H. Smith D. D. A universal soil loss equation to guide conservation farm planning[J].Trans. 7th International Cong. Soil Sci, 1960: 418-425.
    [229]王万忠,焦菊英,郝小品等.中国降雨侵蚀力R值的计算与分布(Ⅰ) [J].水土保持学报, 1995,9(4): 5-18.
    [230]刘宝元,张科利,谢云.土壤侵蚀模型[M].北京:中国科学技术出版社, 2001.
    [231]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报, 2007, 44(1): 7-13.
    [232]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报, 1956, 4(2): 99-115.
    [233]刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报, 1999, 14(4):345-350.
    [234]周佩华,郑世清,吴普特等.黄土高原土壤抗冲性的试验研究[J].水土保持研究, 1997, 4(5): 47-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700