猪Pit-1基因分子遗传多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催乳素(Prolactin,PRL)、生长激素(Growth Hormone,GH)、促甲状腺素(Thyroid-stimulatingHormone,TSH)是动物垂体前叶分泌的具有重要生理功能的激素。而垂体特异性转录因子(Pituitary-Specific Transcription Factor)Pit-1则是动物垂体前叶特异表达的一种具有重要功能的转录因子,它与垂体中PRL基因、GH基因、TSH基因以及Pit-1自身的启动子结合,调控这些基因的转录和表达,从而影响动物的生长、发育和繁殖。
     本研究的目的是通过分子生物技术手段,寻找猪Pit-1基因序列中的多态位点,为后续深入研究提供理论依据。试验选用北京黑猪、沂蒙黑猪、莱芜猪、巴马小型猪、滇南小耳猪、五指山猪、香猪7个中国地方猪品种以及英系大白猪、长白猪、法系大白猪、杜洛克4个国外引入品种(系)共11个试验动物群体508头个体。采用PCR-SSCP和PCR-RFLP分析方法研究猪Pit-1基因的遗传变异,研究结果如下:
     1.应用PCR-SSCP技术,利用引物P_1,在7个中国地方猪种Pit-1基因第4外显子上发现了一个突变位点。序列测定结果表明,其单核苷酸变异是由碱基C→T的替换造成的,但并没有导致编码氨基酸的改变,均编码组氨酸。对7个中国地方猪群体共计347头个体的基因型进行了检测与统计分析,Hardy-Weinberg平衡适合性检验结果表明:在这7个群体中,沂蒙黑猪、巴马小型猪群体的基因频率和基因型频率都处于平衡状态(P>0.05),而北京黑猪、莱芜猪、滇南小耳猪、五指山猪、香猪群体则未达到平衡状态(P<0.05);另由多态信息含量(PIC)值的计算可知此基因座位在莱芜猪和五指山猪群体中多态性不高,遗传变异不大,而在北京黑猪、沂蒙黑猪、巴马小型猪、滇南小耳猪和香猪群体中则呈现中度多态。
     2.应用PCR-RFLP技术,利用引物P_3,在4个国外引入猪种(系)Pit-1基因的包含部分内含子4、全部外显子5、内含子5、外显子6及部分3′侧翼的1747bp的扩增片段中检测到多个突变位点,并验证了一个RsaI-RFLP多态位点,在此位点上产生了A、B两个等位基因。测序分析表明:其多态性的产生是由于第542位碱基G→C的替代造成的。该切点存在时产生的片段为等位基因A,消失时产生的片段为等位基因B。在英系大白猪、长白猪、法系大白猪、杜洛克4个国外引入品种(系)群体共计161头个体中分析了此突变位点的基因型情况,Hardy-Weinberg平衡适合性检验结果表明:英系大白猪和杜洛克猪群体处于平衡状态(P>0.05),而长白猪和法系大白猪群体未处于平衡状态(P<0.05);另由多态信息含量(PIC)值的计算可见,4个国外引入品种(系)猪群体均处于中度多态,说明此基因座位在这4个国外引入品种(系)猪群体中多态性高,遗传变异大。同时,经过预测,发现其中的一个SNP可能使猪内含子5中出现了新的转录因子结合位点。
     3.利用引物P_4成功地克隆出猪Pit-1基因的部分外显子3及全部内含子3的序列。从而为猪Pit-1基因的进一步研究奠定了基础。
     本试验在Pit-1基因已知序列中检测到的突变可以进一步与生产性状相结合,进行更深入地研究。而所克隆的猪Pit-1基因部分外显子3及全部内含子3的序列则可被用作探针,通过构建基因组DNA文库,筛选猪Pit-1基因的全序列以及调控区的信息。此外,该段序列的克隆还为进一步寻求基因内的遗传学变异提供了基础。
Prolactin(PRL),Growth Hormone(GH) and Thyriod-Stimulating Hormone(TSH),secreting by animals' anterior pituitary, are essential hormones in physiology. Pituitary-Specific Transcription Factor(Pit-l) is one of the important transcription factors of GH, PRL and TSH gene. Pit-1 plays an important role in animals' growth, development and reproduction via regulating the expression of these genes.
    The purpose of this study is to detect the genetic variations of the pit-1 gene. Seven Chinese local pig breeds, including Beijing Black pig, Yimeng Black pig, Laiwu pig, Bama Small pig, Diannan Small-ear pig, Wuzhishan pig, Xiang pig, and four foreign breeds, which are Large White(England), Landrace, Large White(France) and Duroc were used as experimental examples. PCR-SSCP and PCR-RFLP analyses were used to analyze genetic variations in Pit-1 gene. At the same time, intron3 of pig Pit-1 gene had been cloned successfully. The results were as follows:
    1. Specific primer PI was designed to amplify fragment in exon4 of pig Pit-1 gene. Then one PCR-SSCP locus was discovered, it had two alleles, designated as A and B. Sequence analysis revealed that PI locus was generated because of C-T transilation, but they both code Histidine. The distribution of corresponding genotypes and alleles at this PCR-SSCP locus was analyzed in seven Chinese local breeds. A chi-square analysis suggested that Beijing Black pig and Bama Small pig reached Hardy-Weinberg equilibrium(P>0.05), the other five Chinese local breeds were in disequilibrium(P<0.05). Laiwu pig and Wuzhishan pig had low polymorphism(PIC<0.25), Beijing Black pig, Yimeng Black pig, Bama Small pig, Diannan Small-ear pig and Xiang pig had intermediate polymorphism(0.25    2. Using specific primer PS identified a Rsal-RFLP polymorphism site in 1747bp amplified fragment of pig Pit-1 gene. This site had two alleles, designated as A and B. The G-C transition was revealed at 542 position by sequencing analysis. The distribution of different genotypes and alleles was analyzed in four foreign breeds. A chi-square analysis suggested that Large White(England) and Duroc reached Hardy-Weinberg equiIibrium(P>0.05), Landrace and Large White(France)were in disequilibrium(P<0.05). All of these four foreign breeds had intermediate polymorphism(0.25    3. Parts of exon3 and wholly intron3 of pig Pit-1 gene were cloned successfully by using primer P4, which provide some of basal information to research the pig Pit-1 gene further.
    Mutations that detected in this study should be associated with relative performance traits, which is worthy of being further studied. Parts of exon3 and wholly intron3 sequence of pig Pit-1 gene that we cloned, can be used as probe to select the whole sequence or the regulatory domian of pig Pit-1 gene through screen genomic DNA library. At the same time, we can use those sequences that we obtained to find more molecular mutations in pig Pit -1 gene.
引文
1.陈清明等.现代养猪生产.中国农业出版社,北京,1997
    2.邓桂馨.肉牛CAST基因和HFABPL基因多态性及其与肉品质性状关系的研究.中国农业科学院硕士学位论文.北京,2003
    3.杜立新等.生物技术在动物遗传育种中的应用.第九次全国动物遗传育种学会讨论会论文集.中国农业科技出版社,1997
    4.高岩.垂体特异性转录因子研究进展.[J].国外医学内分泌学分册,1995,15(3):116-119
    5.韩秀兰,沈法富.PCR-SSCP标记技术研究及应用进展.[J].山东科学,2002,15(4):18-21
    6.姜运良.猪肌肉生长抑制素基因单核苷酸多态性及其与生产性能的关系分析.中国农业大学博士学位论文.北京,2000.
    7.李宏滨,曹红鹤,郑友民.PIT-1基因在人、鼠及猪中的研究现状.[J].遗传.2001,23(6):605-608
    8.柳楠,张明新.生物技术在动物遗传育种中的应用.[J].吉林农业科学,1997,(3):77-82
    9.刘伟信,朱庆.DNA标记及其在家禽遗传育种中的应用.[J].中国家禽,1998,20(7):27-29
    10.李学斌,李培庆,余小领,王清华.PCR-SSCP技术 及其在动物遗传变异研究中的应用.[J].甘肃畜牧兽医,1999,29(6):35-37
    11.刘继军,朱鹤岩.我国养猪生产的发展方向.[J].农业工程学报,1997,13(9)增刊:29-31
    12.马中军,张文举.动物RFLP分子标记及其应用.[J].甘肃畜牧兽医,1997,27(2):27-29
    13.帅素容等.RFLP和PCR-PFLP技术与猪分子育种.[J].养禽业,2001,(7):24-25
    14.陶勇.RFLP技术及其在猪育种中的应用.[J].动物科学与动物医学,1999,16(2):12-14
    15.吴常信.良种猪产业化工程.[J].中国畜牧杂志,1995,31(3):3-4
    16.张宇红.PCR-SSCP分析技术的研究进展及应用前景.[J].中国优生与遗传,2002,10(5):126-128
    17.张细权等.动物遗传标记.中国农业大学出版社,北京,1997,pp134-136
    18. Aarskog D, Eiken H G, et al. Pituitary dwarfism in the R271W PIT-1 gene mutation. [J]. Eur J Pediatr, 1997, 156(11): 829-834
    19. Andersen B, Pearse, R V Ⅱ, et al. The Ames dwarfgene is required for PIT-1 gene activation. [J]. Dev Biol, 1995, 172(2): 495-503
    20. April ML, Harry PE. [J]. Nucl Acids Res, 1991; 19(22): 6329-6330
    21. Archibald A L, Haley C S, et al. The PigMap consortium linkage map of the pig(Sus scrofa). [J]. Mammalian Genome 1995, 6: 157-175
    22. Arroyo A, Pernasetti F, Vasilyev VV, Amato P, Yen SS, Me PL. A unique case of combined pituitary hormone deficiency caused by a PROP1 gene mutation(R120C) associated with normal height and absent puberty. [J]. Clin Endocrinol(Oxf). 2002 Aug; 57(2): 157-158
    23. Augustijn KD, et al. Structural characteriaztion of the PIT-1/EST-1 interaction: PIT-1 phosphorylation regulates PIT-1/EST-1 binding. [J]. Proc Natl Acad Sci USA, 2002, Oct, 1; 99(20): 12657-12662
    
    
    24. Brown, M. R, J. S. Parks, M. E. Adess, B. H. Rich, I. M. Rosenthal, T. C. Voss, T. C. VanderHeyden, D. L. Hurley. 1998. Central hypothyroidism reveals compound heterozygous mutations in the Pit-1 gene. [J]. Horm. Res. 49: 98-102
    25. Brunsch C, Sternstein I, et al. Analysis of associations ofPIT1 genotypes with growth, meat quality and carcass composition traits in pigs. [J]. Appl Genet, 2002; 43(1): 85-91
    26. Chee M, Yang R, Hubbell E, et al. Accessing Genetic information with high-density DNA array. [J]. Science, 1996. 274: 610-614
    27. Cheng T C, et al. [J]. Endocrinology, 1983; 113: 1669-1678
    28. Chung, H. O, T. Kato, K. Tomizawa, Y. Kato. 1998. Molecular cloning of pit-1 cDNA from porcine anterior pituitary and its involvement in pituitary stimulation by growth hormone-releasing factor. [J]. Exp. Clin. Endocrinol Diabetes 106: 203-210
    29. Bridwell JA, et al. Role of the LIM domains in DNA recognition by the Lhx3 neuroendocrine transcription factor. [J]. Gene, 2001 Mar 7; 265(1-2): 61-69
    30. Cohen L E, Zanger K, et al. Defective retinoie acid regulation of the PIT-1 gene enhancer:a novel mechanism of combined pituitary hormone deficiency. [J]. Mol Endocrinol, 1999; 13(3): 476-484
    31. Day, R. N, K. H. Day. 1994. An alternatively spliced form of pit-1 represses prolactin gene expression. [J]. Mol. Endocrinol. 8: 374-381
    32. Delhase, M V Vila, et al. A novel pituitary transcription factor is produced by alternative splicing of human GHF-1/PIT-1 gene. [J]. Gene, 1995; 155: 273-275
    33. Dolle, P, J. L. Castrillo, L. E. Theill, T. Deerinck, M. Ellisman, M. Karin. 1990. Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. [J]. Cell. 60: 809-820
    34. Dolle M E, Synder WK, Vijg J. Genotyping the Prop-1 mutation in Ames dwarf mice. [J]. Mech Ageing Dev 2001 Oct; 122(15): 1915-1918
    35. Eicher E M, Beamer W G. New mouse dw allele: genetic location and effects on lifespan and growth hormone levels. [J]. J Hered, 1980; 71(3): 187-190
    36. Fluck C, Deladoe J, et al. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROPI gene mutation resulting in the substitution of Arg→Cys at codon 120(R120C). [J]. Clin Endocrinol Metab, 1998, 83(10): 3727-3734
    37. Flurkey K, Papaconstantinou J, Harrison D E. The snell dwarf Pitl(dw) can increase life span in mice. [J]. Mech Ageing Dev, 2002, Jan; 123(2-3): 121-130
    38. Fofanova O V, Takamura N, et al. Rarity of PIT-1 involvement in children from Russia with combined pituitary hormone deficiency. [J]. Am J Med Genet, 1998, 77(5): 360-365
    39. Hans J, et al. Hormonal regulation of the thyrotropin β-subunit gene by phosphorylation of the pituitary-specific transcription factor Pit-1. [J]. Biochemistry, July 1992, Vol. 89, pp: 5942-5945
    40. Haugen, B R, W M Wood, D F Gordon, E C Ridgway. A thyrotrope-specific variant of Pit-1 transactivates the thyrotropin β promoter. [J]. Biol. Chem, 1993, 268: 20818-20824
    41. Hayes J, Tullius T D. [J]. Biochemistry, 1989; (28): 9521-9527
    
    
    42. Ingraham H. A, S. E. Flynn, J. W. Voss, V. R. Albert, M. S. Kapiloff, L. Wilson, M. G. Rosenfeld. 1990b. The POU-specific domain of PIT1 is essential for sequence specific, high affinity DNA binding and DNA-dependent PIT1-PIT1 interactions. [J]. Cell. 61: 1021-1033
    43. Ingraham H A, Chen R P, et al. A tissue-special transcription factor containing a homeodomain specifies a pituitary phenotype. [J]. Cell, 1988; 55(3): 519-529
    44. Jacobson, E. M, P. Li, A. Leon-del-Pio, M. G. Rosenfeld, A. K. Aggarwa. 1997. Structure of pit-1 POU domain bound to DNA as dimmer: unexpected arrangement and flexibility. [J]. Gnens Dev. 11: 198-212
    45. Kalb, U F Jr, R W Berblohr. A new spectrophotometric assay for protein in cell extracts. [J]. Anal Biochem, 1997; 82: 362-371
    46. Kobayashi I, Oka H, Naritaka H, Sato Y, Fujii K, Kameya T. Expression of Pit-1 and growth hormone-releasing hormone receptor mRNA in human pituitary adenomas: difference among functioning, silent, and other nonfunctioning adenimas. [J]. Endocr Pathol, 2002, Summer; 13(2): 83-98
    47. Kristie T M, Sharp PA. [J]. Genes Dev, 1990; (4): 2383-2396
    48. Li S, Crenshaw E, et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene PIT-1. [J]. Nature. 1990, 347(6293): 528-533
    49. Mangalam H, Albert V, et al. A pituitary POU domain protein, PIT-1, avtivates both growth hormone and prolactin promoters transcriptionally. [J]. Genes Dev, 1989; 3, (7): 946-958
    50. Martineli A M P, Braga M, et al. Description of a Brazilian patient bearing the R271W PIT-1 gene mutation. [J]. Thyroid, 1998, 8: 299-304
    51. Matteri, R L, J A Carrol. Somatotroph function in the neonatal pig. [J]. Domest Anim Endocrinol, 1997; 14(4): 241-249
    52. Mouse News Letter, 1982; 66: 4-35
    53. Nelson C, et al. [J]. Science, 1988; (239): 1400-1405
    54. Ohta K, Nobukuni Y, et al. Mutations in the PIT-1 gene in children with combined pituitary hormone deficiency. [J]. Biochem Biophys Res Commun, 1992, 189(2): 851-855
    55. Ohta T C, Nobukuni, et al. Characterization of the gene encoding human pituitary-specific transcription factor, PIT-1. [J]. Gene, 1992, Dec15;122(2): 387-388
    56. Pellegrini-Bouiller I, Belicar P, et al. A new mutation of the gene encoding the transcription factor PIT-1 is responsible for combined pituitary hormone deficiency. [J]. Clin Endocrinol Metab, 1996, 81 (8): 2790-2796
    57. Pernasetti E, Milner R, D, et al. Pro239Ser: a novel recessive mutation of the PIT-1 gene in seven Middle Eastern children with growth hormone, prolactin, and thyrotropin deficiency. [J]. Clin Endocrinol Metab, 1998, 83(6): 2079-2083
    58. Pfaffle, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. [J]. Science, 1992, 257: 1118-1121
    59. Quentien M H, Pitoia F, Gunz G, Guillet MP, Enjalbert A, Pellegrini I. Regulation of prolactin, GH,
    
    and Pit-1 gene expression in anterior pituitary by Pitx2: An approach using Pitx2 mutants. [J]. Endocrinology 2002 Aug; 143(8): 2839-2851
    60. Radovick S, Nations M, et al. A mutation in the POU-homeodomani of PIT-1 responsible for combined pituitary hormone deficiency. [J]. Science, 1992, 257(5073): 1115-1118
    61. Remenyi A, Tomilin A, Scholer HR., Wilmanns M. Differential activity by DNA-induced quarternary structures of POU transcription factors. [J]. Bonchem Pharmacol, 2002, Sep: 64 (5-6): 979-984
    62. Rosas J R, et al. DnaSP version3: an integrated program for molecular population genetics and molecular evolution analysis. [J]. Bioinformatics, 1999, 15:174-175
    63. Rosenfeld M G. POU-domain transcription factors: pou-er-ful developmental regulators. [J]. Genes Dev, 1991, 5 (6): 897-907
    64. Simmons, et al. Pituitary cell phenotype involve cell-specific Pit-l mRNA translation and synergistic with other classes of transcription factors. [J]. Genes Dev, 1990, 4: 695-711
    65. Sloop KW, et al. LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes. [J]. Cell Biochem, 2003 Aug 1;89(5): 1005-1018
    66. Smith TP, et al. Identification of porcine Lhx3 and Sf1 as candidate genes for QTL affecting growth and reproduction traits in swine. [J]. Gene, 2001 Oct 17; 277(1-2): 239-250
    67. Snell G D. [J]. Proc Natn Acad Sci USA, 1989; 15:733-734
    68. Steinfelder H L, Radovick S, et al. Hormonal regulation of the thyrotropin sbuunit gene by phosphorylation of pituitary-specific transcription factor PIT-1. [J]. Proceeding of the National Academy of Science, USA, 1992; (89): 5942-5945
    69. Sturm, R A, W Herr. The POU domain is a bipartite DNA-binding structure. [J]. Nature, 1988; 336: 601-604
    70. Tatsumi K, Miyai K, et al. Cretinism with combined hormone deficiency caused by a mutation in the PIT-1 gene. [J]. Nat Genet, 1992, 1(1): 56-58
    71. Thaler JP, et al. LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. [J]. Anim Genet, 2001 Dec; 32(6): 344-350
    72. Theill L E, et al. [J]. EMBO. 1992; 11(6): 2261-2269
    73. Theill L E, Karin M. [J]. Endocrine Rev, 1993; 14(6): 670-689
    74. Theill L E, et al. [J]. Nature, 1989; (342): 945-948
    75. Tuggle C K, Yu T P, et al. Cloning and restriction fragment length polymorphism analysis of a cDNA for swine PIT-1, a gene controlling growth hormone expression. [J]. Animal Genetics, 1993, 24: 17-21
    76. Van Buul-Offer. [J]. S Acta endocr, 1983; 258:7-47
    77. Verrijzer C P, Peter C V. [J]. Biochem Biophys Aceta, 1993; (1173): 1-21
    78. Voss, et al. Pou-domain proteins Pit-1 and Oct-1 interact promoter. [J]. Genes Dev, 1991, 5:
    
    1309-1320
    79. Voss, et al. An alternative pit-1 RNA splicing product reveals modular binding and nonmodular transcriptional activities of the POU-specific domain. [J]. Mol. Endocrinol, 1993, 7:1551-1560
    80. Wary, et al. Silver staining of proteins in polyacrylamide gels. [J]. Anim. B iochem, 1981, 118(1): 197-203
    81. Wojtkiewicz PW, Phelps CJ, Hurley DL. Transcript abundance in mouse pituitaries with altered growth hormone expression quantified by reverse transcriptase polymerase chain reaction implicates transcription factor Zn-16 in gene regulation in vivo. [J]. Endocrine 2002 Jun; 18(1): 67-74
    82. Yu T P, C. B. Schmitz, M. F. Rothschild, C. K. Tuggle. 1994. Expression pattern, genomic cloning and RFLP analysis of the swine PIT-1 gene. [J]. Anim. Genet. 25: 229-233
    83. Yu T P, C K Tuggle, C B Schmitz, M F Rothschild. Association of PIT1 Polymorphisms with Growth and Carcass Traits in Pigs. [J]. Anim. Sci. 1995. 73: 1282-1288
    84. Yu T P, H. S. Sun, S. Wahls, I. Sanchez-Serrano, M. F. Rothschild, C. K. Tuggle. Cloning of the full length pig PIT-1 (POU1F1) cDNA and a novel alternative P1T1 transcript, and functional studies of their encoded proteins. [J]. Animal Biotechnoligy, 2001, 12(1): 1-19
    85. Yu T P, L Wang, M F Rothschild, C K Tuggle. Progress toward an interval map for birth weight and early growth quantitativa trait loci on pig chromose. [J]. Anmi Sci, 1997; 75(Suppl.1): 145
    86. Yu T P, Rothschild M R, et al. Rapid communication: a MspI restriction fragment length polymorphism at the swine PIT-1 locus. [J]. Journal of Animal Science, 1993, 71: 2275

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700