DDR1在垂体腺瘤海绵窦侵袭中的作用和机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     垂体腺瘤是一种严重危害人类身心健康的脑良性肿瘤,部份垂体腺瘤具有向周围结构尤其是海绵窦侵袭的特征。目前侵袭性垂体腺瘤向海绵窦侵犯的机制尚不清楚,其生物学特征和组织学特征相背离的现象令人困惑,难以找到合适的理论和作用机制来解释。海绵窦特殊的微环境可能是肿瘤侵袭的重要因素。细胞表面受体DDR1具有接受肿瘤微环境信号,启动磷酸化通路并上调MMP-2/9表达、促进肿瘤细胞侵袭的能力,可能在垂体腺瘤细胞和肿瘤的微环境的相互作用中起到重要作用。
     本课题利用基因工程技术,采取真核表达系统纯化出DDR1的可溶性特异竞争阻断蛋白NDDR1。课题以临床磁共振影像学为侵袭性判断标准,在大量组织标本免疫组化结果的基础上,以NDDR1和nilotinib对原代培养的垂体腺瘤细胞DDR1进行干预研究,旨在明确垂体腺瘤中DDR1对MMP-2/9和侵袭能力的调节作用,探讨DDR1在垂体腺瘤海绵窦侵袭发病过程中的作用和相关机制。
     第一部分:DDR1和MMP-2/9在人垂体腺瘤组织中的表达和相关性研究
     目的:明确DDR1、MMP-2/9在各类型垂体腺瘤组织中的表达及其同肿瘤生物学行为的关系,探讨DDR1和MMP-2/9的相关性。
     方法:肿瘤组织标本按MRI表现分为侵袭组和非侵袭组,按临床和免疫组化分为功能性腺瘤组和无功能腺瘤组。共聚焦显微镜下观察DDR1的细胞定位;免疫组化观察DDR1和MMP-2/9蛋白的表达情况;Western blot对DDR1和MMP-2/9的表达进行半定量分析;同时采用即时荧光定量PCR检测各组的DDR1、MMP-2/9mRNA表达水平。
     结果:1.DDR1表达于细胞膜;2.侵袭组中DDR1蛋白和mRNA水平显著高于非侵袭组(P<0.01),功能性腺瘤组显著高于无功能腺瘤组(P<0.01);3.侵袭组MMP-2/9蛋白和mRNA水平显著高于非侵袭组(P<0.01),功能性腺瘤组和无功能腺瘤组无显著差异(P>0.05);4.DDR1和MMP-2之间有正相关性(r=0.857,P<0.01),DDR1和MMP-9之间有正相关性(r=0.813,P<0.01)。
     结论:DDR1和垂体腺瘤的侵袭性有关;DDR1可能通过上调MMP-2/9的表达,从而增强垂体腺瘤的侵袭性。
     第二部分:重组DDR1竞争阻断蛋白(NDDR1)的制备和活性鉴定
     目的:制备DDR1的可溶性特异竞争阻断蛋白(NDDR1);对重组NDDR1进行活性鉴定,确定其阻断垂体腺瘤原代培养细胞DDR1的量效关系。
     方法:扩增DDN1胞外区,构建真核表达质粒pcDNA3.1-NDDR1,瞬时转染293细胞,纯化获得NDDR1蛋白;ELISA竞争抑制实验验证NDDR1的生物学活性,确定阻断垂体腺瘤原代培养细胞DDR1的最佳剂量。
     结果:1.获得哺乳动物系统表达和纯化的NDDR1蛋白3mg/L;2.竞争抑制实验示NDDR1具有可竞争阻断细胞表面天然DDR1受体的能力;3.2μg/L的NDDR1即可阻断原代培养的垂体腺瘤DDR1。
     结论:可溶性竞争阻断蛋白NDDR1可特异性阻断原代培养的垂体腺瘤DDR1受体。
     第三部份原代培养细胞中胶原Ⅰ-DDR1-MMP-2/9环路的激活
     目的:确定垂体腺瘤原代培养细胞中诱发DDR1信号通路的胶原类型,研究启动DDR1信号通路后Tyr磷酸化水平的变化,探讨细胞水平DDR1调节MMP-2/9表达的作用,体外论证垂体腺瘤海绵窦侵袭中胶原Ⅰ-DDR1-MMP-2/9环路的激活过程。
     方法:原代培养垂体腺瘤细胞中,给予外源性胶原Ⅰ、胶原Ⅱ、胶原Ⅲ、胶原Ⅳ刺激,细胞上清液行ELISA法以确定诱发DDR1信号通路的胶原类型;免疫沉淀法测定NDDR1和nilotinib干预前后Tyr磷酸化水平;明胶酶谱法和ELISA法测量刺激和阻断DDR1信号通路后MMP-2/9活性和表达水平的变化情况;建立Transwell侵袭模型小室,镜下计数观察NDDR1和nilotinib干预前后细胞侵袭能力的变化。
     结果:成功对9例垂体腺瘤进行原代培养。1.胶原Ⅰ是激发垂体腺瘤DDR1信号通路的主要胶原类型;2.胶原Ⅰ刺激后Tyr磷酸化水平明显升高(P<0.05),NDDR1和nilotinib可抑制自磷酸化;3.胶原Ⅰ刺激后显著提高MMP-2/9的表达(P<0.05),NDDR1和nilotinib可抑制该效应;4.NDDR1和nilotinib干预后细胞侵袭能力下降(P<0.05)。
     结论:胶原Ⅰ通过诱发DDN1的磷酸化上调MMP-2/9的表达,从而增强垂体腺瘤的侵袭能力,阻断DDR1可有效降低肿瘤的侵袭性;体外证实了胶原Ⅰ-DDR1-MMP-2/9环路的激活可能是垂体腺瘤海绵窦侵袭的重要环节和发生机制。两侧海绵窦壁高表达胶原蛋白1可能是垂体腺瘤海绵窦壁侵袭的病理基础之一。
Background
     Pituitary adenomas is a benign brain tumor which usually lead to severely health problems.Some of them could invade surrounding structures,especially cavernous sinus. The molecular mechanisms that dictate this local invasive behavior of Pas remain poorly understood by now.Few theory and mechanism can explain the discrepancy between biology characteristics and histologic characteristics in invasive pituitary adenomas. Special microenvironment in cavernous sinus is a possibly important factor that contribute to invasion.DDR1,a cell surface receptor,can receive signal from tumor microenvironment,induce autophosphorylation and upregrate expression of MMP-2/9, promote the invasiveness of pituitary adenomas.Thereby,DDR1 may play an impotant role between pituitary adenomas cells and tumor microenvironment.
     In the present investigation we expressed and purified soluble protein NDDR1,which have a capability to block DDR1 with competition inhibition effection,by eukaryotic expression system and genetic engineering.We used MRI finding as criterion to assess the clinical invasiveness of the pituitary adenomas,Based on Immunohistochemistry founding of large pituitary adenomas sample,NDDR1 and nitotinbib was used to inhibit DDR1 in pituitary adenornas primary cultured cells.Our study aimed to investigate the effects of DDR1 on the regulation of expression of MMP-2 and MMP-9 in pituitary adenomas,and to explore its potential role and mechanism of action of carvernous sinus invasion by pituitary adenomas.
     Part one:Expression of DDR1 and MMP-2/9 in human pituitary adenomas and their significanees
     Objective:To determine the expression of DDR1 and MMP-2/9 in pituitary adenomas and their relationships with biological behaviour of pituitary adenomas;to explore the significances between DDR1 and MMP-2/9.
     Methods:All adenomas samples were divided into invasion group and non-invasion group according to MRI finding or divided into functional adenomas group and non-functional adenomas group on the basis of clinic manifestation and results of Immunohistochemistry.Cellular localization of DDR1 was detected by confocal microscopy observaion,Immunohistochemistry was used to confirm the expression of DDR1 protein and MMP-2/9 protein.Semiquantitative analysis of DDR1 protein and MMP-2/9 protein was evaluated by Western blot;the expressions of DDR1 mRNA and MMP-2/9 mRNA were also analysised by the method of reverse transcriptase poly merase chin reaction(RT-PCR).
     Results:1.DDR1 immunoreactivity was located in cellular membrane of pituitary adenomas cells.2.The expression of DDR1 protein and mRNA in invasive pituitary adenomas was significantly higher than in noninvasive pituitary adenomas(P<0.01);the expression of DDR1 in functional pituitary adenomas was significantly higher than in non-functional pituitary adenomas(P<0.01);3.There was no significant difference of MMP-2/9 protein and mRNA between functional and non-functional pituitary adenomas(P>0.05).In invasive pituitary adenomas,there were more expression of MMP-2/9 protein and mRNA than in corresponding noninvasive adenomas(P<0.01).4.A positive correlation existed between expression of DDR1 and MMP-2(r=0.857,P<0.01) in functional pituitary adenomas,either between DDR1 and MMP-9(r=0.813,P<0.01).
     Conclusions:DDR1 may play an important role in the invasiveness of pituitary adenomas. DDR1 could increase the invasiveness of pituitary adenomas by up-regulating expression of MMP-2/9.
     Part two:Express and purify of competition inhibition protein(NDDR1) and identify the biologic activity of NDDR1
     Objective:To express and purify soluble protein(NDDR1) which have a capability to block DDR1 with competition inhibition effection,to identify the biologic activity of NDDR1 and determine the dose-effect relationship between NDDR1 and pituitary adenomas primary cultured cells.
     Motheds:Extracellular domain of DDR1 was amplify by PCR and an eukaryotic expression plasmid pcDNA3.1-NDDR1 was constructed.Then the plasmid was transiently transfected into 293 cells,purified the expressed protein NDDR1.Competitive blinding inhibition assay by ELISA was used to demonstrate the biologic activity of NDDR1 and determine the optimum dose blocking DDR1 activity of pituitary adenomas primary cultured cells.
     Results:1.3mg/L protein of NDDR1 expressed and purified by mammalian express system was obtained.2.Competitive blinding inhibition assay demonstrated that expressed NDDR1 could block the blinding of DDR1 and natural DDR1 receptors on primary culture cells.3.2μg/L of NDDR1 could block the blinding of DDR1 and natural DDR1 receptors on primary cultured cells.
     Conclusions:Soluble protein NDDR1 could block the blinding of DDR1 and natural DDR1 receptors on primary cultured cells with a competitive inhibition effection.
     Part three:Activation of circuit loop of collagenⅠ-DDR1-MMP-2/9 in pituitary adenomas primary cultured cells
     Objective:To determine the collagen subtypes that induces the signal pathway of DDR1 in pituitary adenomas primary cultured cells.To investigate autophosphorylation of DDR1 after DDR1 signal was started.To investigate regulation on MMP-2 and MMP-9 of DDR1. To demonstrate the activation of circuit loop of collagenⅠ-DDR1-MMP-2/9 in cavernous sinus invasion by pituirary adenomas.
     Motheds:The MMP-2/9 level of the supernatants of primary cultured human pituitary adenoma cells was detectd by ELISA after stimulated by different collage subtypes. Autophosphorylation of DDR1 was evaluated by immuno-precipitation after blocked by NDDR1 and nilotinib.Gelatine zymography was used to detected MMP-2/9 activity and protein expression after DDR1 signal pathway was stimulated or blocked.An invasion model was established by Transwell chambers and cell invasion was observed with microscope after intervention by NDDR1 and nilotinib.
     Results:Nine cases of functional pituitary adenomas primary cultured cells were obtaind successully.1.CollagenⅠwas the main collagen subtypes that induces the signal pathway of primary cultures cell of pituitary adenomas.2.Autophosphorylation of DDR1 was significant higher after stimulated by collagenⅠ(P<0.05),NDDR1 and nilotinib could inhibit autophosphorylation of DDR1.3.CollagenⅠstimulation increased the activity and protein expression of MMP-2/9(P<0.05) and this effection could be blocked by NDDR1 and nilotinb.4.Invasiveness of primary cultured cells decreased after intervention by NDDR1 and nilotinib.
     Conclusions:CollagenⅠcould increase the invasiveness of pituitary adenomas by inducing autophosphorylation of DDR1 and up-regulating expression of MMP-2/9. blocking DDR1 could decrease the invasiveness of adenomas efficiently.Our results demonstrated that activation of circuit loop of collagenⅠ-DDR1-MMP-2/9 maybe an important factor and mechanism of action in cavernous sinus invasion by pituitary adenomas.Prominent deposition of collagenⅠin cavernous sinus could be one of pathology foundation in cavernous sinus invasion by pituirary adenomas.
引文
1.Meiji BP,Lopes MS,Ellegala DB,Alden T,Laws Jr ER:The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery.J Neurosurg 2002,96:195-208
    2.Naganuma H,Satoh E,Nukui H.Technical considerations oftranssphenoidal removal of fibrous pituitary adenomas and evaluation of collagen content and subtype in the adenomas.Neurol Med Chit(Tokyo) 2002 42:202-212;discussion 213
    3.Peker S,Kurtkaya-Yapicier O,Kilic T,Pamir MN.Microsurgical anatomy of the lateral walls of the pituitary fossa.Acta Neurochir(Wien) 2005 147:641-648:discussion 649
    4.Liu W,Kunishio K,Matsumoto Y,Okada M,Nagao S.Matrix metalloproteinase-2 expression correlates with cavernous sinus invasion in pituitary adenomas.J Clin Neurosci 2005 12:791-794
    5.Turner HE,Nagy Z,Esiri MM,Hams AL,Wass JA.Role of matrix metalloproteinase 9 in pituitary tumor behavior.J Clin Endocl-inol Metab 2000 85:2931-2935
    6.Hussaini IM,Trotter C,Zhao Y,Abdel-Fattah R,Amos S,Xiao A,Agi CU,Redpath GT,Fang Z,Leung GK,Lopes MB,Laws ER Jr.Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line.Am J Pathol.2007 Jan;170(1):356-65.
    7.Liu W,Matsumoto Y,Okada M,Miyake K,Kunishio K,Kawai N.Tamiya T,Nagao S.Matrix metalloproteinase 2 and 9 expression correlated with cavernous sinus invasion of pituitary adenolnas.J Med Invest.2005 Aug;52(3-4):151-8
    8.Agarwal G,Mihai C,Iscru DE Interaction of discoidin domain receptor 1 with collagen type 1.J Mol Biol.2007 Mar 23;367(2):443-55.
    9.Heinzelmann-Schwarz,V.A.,Gardiner-Garden,M.,Henshall,S.M.,Scurry,J.,Scolyer,R.A.,Davies,M.J.et al..Overexpression of the cell adhesion molecules DDR1,Claudin 3 and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer.Clin.Cancer Res.2004 10,4427-4436.
    10 Weiner,H.L.,Huang,H.,Zagzag,D.,Boyce,H.,Lichtenbaum,R.& Ziff;E.B.Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors.Neurosurgery,2000 47,1400-1409.
    11 Nemoto,T.,Ohashi,K.,Akashi,T.,Johnson,J.D.& Hirokawa,K.Overexpression of proteintyrosine kinases in human esophageal cancer.Pathobiology,1997 65,195-203.
    12.Hou G,Vogel W,Bendeck MP:The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair.J Clin Invest 2001107:727-735,
    13.Ferri,N.,Carragher,N.O.& Raines,E.W.Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling:potential implications in atherosclerosis and lymphangioleiomyomatosis.Am.J.Pathol.2004 164,1575-1585.
    14.Hou,G.,Vogel,W.F.& Bendeck,M.P.Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell lnigration and matrix metalloproteinase expression.2002 Circ.Res.90,1147-1149.
    15.Yoshida D,Teramoto A.Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1.J Neurooncol.2007 Mar;82(1):29-40.
    16.Rix U,Hantschel O,Durnberger G,Remsing Rix LL,Planyavsky M,Fernbach NV,Kaupe I,Bennett KL,Valent P,Colinge J,Kocher T,Superti-Furga G.Chemical proteomic profiles of the BCR-ABL inhibitors imatinib,nilotinib,and dasatinib reveal novel kinase and nonkinase targets.Blood.2007 Dec 1;110(12):4055-63.
    1 Al-Shraim M,Asa SL.The 2004 World Health Organization classification of pituitary tumors:what is new?.Acta Neuropathol JT - Acta neuropathologica,2006,111(1):1-7.
    2 Knosp E,Steiner E,Kitz K,et al.Pituitary adenomas with invasion of the cavernous sinus space:a magnetic resonance imaging classification compared with surgical findings.Neurosurgery,1993,33(4):610-7;discussion 617-8.
    3 Shimizu M,Saitoh Y,Itoh H.Immunhistochemical staining of Ha-ras oncogene product in nonnal,benign,and malignant hurnan pancreatic tissues.Hum Pathol JT-Humanpathology,1990,21(6):607-12.
    4 Davis JR,Fanell WE,Clayton RN.Pituitary tumours.Reproduction JT-Reproduction (Cambridge,England),2001,121(3):363-71.
    5 Sano T,Rayhan N,Yamada S.[Pathology of pituitary incidentaloana].Nippon Rinsho JT Nippon rinsho.Japanese journal of clinical medicine,2004,62(5):940-5.
    6 Minematsu T,Miyai S,Kajiya H,et al.Recent progress in studies of pituitary' rumor pathogenesis.Endocrine JT-Endocrine,2005,28(1):37-41.
    7 Ezzat S,Asa SL.Mechanisms of disease:The pathogenesis of pituitary tumors.Nat Clin Pract Endocrinol Metab JT-Nature clinical practice.Endocrinology & metabolism,2006,2(4):220-30.
    8 Meij BP,Lopes MB,Ellegala DB,et al.The long-term siguificance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery.J Neurosurg,2002,96(2):195-208.
    9 Scheithauer BW,Kovacs KT,Laws ER Jr,et al.Pathology of invasive pituitary minors with special reference to functional classification.J Neurosurg JT-Journal of neurosurgery,1986,65(6):733-44.
    10 Johnson JD,Edman JC,Rutter WJ.A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin l-like domain.Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America,1993,90(12):5677-81.
    11 Leitinger B.Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2.Identification of collagen binding sites in DDR2.J Biol Chem,2003 278(19):16761-9.
    12 Vogel W,Brakebusch C,Fassler R,et al.Discoidin domain receptor 1 is activated independently of beta(1)integrin.J Biol Chem JT-The Journal of biological chemistry,2000,275(8):5779-84.
    13 Weiner HL,Huang H,Zagzag D,et al.Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors.Neurosurgery,2000,47(6):1400-9.
    14 Ford CE,Lau SK,Zhu CQ,et al.Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-slnall cell lung carcinoma.Br J Cancer,2007,96(5):808-14.
    15 Vogel WF,Abdulhussein R,Ford CE.Sensing extracellular matrix:an update on discoidin domain receptor function.Cell Signal JT-Cellular signalling,2006,18(8):1108-16.
    16 Yoshida D,Teramoto A.Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1.J Neurooncol JT-Journal of neuro-oncology,2007,82(1):29-40.
    17 Naganuma H,Satoh E,Nukui H.Technical considerations of transsphenoidal removal of fibrous pituitary adenomas and evaluation of collagen content and subtype in the adenomas.Nenrol Med Chir(Tokyo) JT-Neurologia medico-chirurgica,2002,42(5):202-12;discussion 213.
    18 Ongusaha PP,Kim JI,Fang L,et al.p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop.EMBO J JT-The EMBO journal,2003,22(6):1289-301.
    19 Gurlek A,Karavitaki N,Ansorge O,et al.What are the markers of aggressiveness in prolactinomas?Changes in cell biology,extracellular matrix components,angiogenesis and genetics.Eur J Endocrinol JT-European journal of endocrinology/European Federation of Endocrine Societies,2007,156(2):143-53.
    20 Ludwig T.Local proteolytic activity in tumor cell invasion and metastasis.Bioessays JT-BioEssays:news and reviews in molecular,cellular and developmental biology,2005,27(11):1181-91.
    21 Liu W,Matsumoto Y,Okada M,et al.Matrix metalloproteinase 2 and 9 expression correlated with cavernous sinus invasion of pituitary adenolnas.J Med Invest JT-The journal of medical investigation : JMI, 2005,52(3-4):151-8.
    
    22 Hussaini 1M, Trotter C, Zhao Y, et al. Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol JT - The American journal of pathology, 2007,170(1):356-65.
    
    23 Liu W, Kunishio K, Matsumoto Y, et al. Matrix metalloproteinase-2 expression correlates with cavernous sinus invasion in pituitary adenomas. J Clin Neurosci JT - Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia, 2005,12(7):791-4.
    
    24 Hou G, Vogel WF, Bendeck MP. Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression. Circ Res JT - Circulation research, 2002,90(11): 1147-9.
    
    25 Ferri N, Carragher NO, Raines EW. Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol JT - The American journal of pathology, 2004,164(5): 1575-85.
    
    26 Hou G, Vogel W, Bendeck MP. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest JT - The Journal of clinical investigation, 2001,107(6):727-35.
    1 Bansal V,Roychoudhury PK.Production and purification of urokinase:a comprehensive review.Protein Expr PurifJT-Protein expression and purification,2006,45(1):1-14.
    2 郭广君,吕素芳,王荣富.外源基因表达系统的研究进展.科学技术与工程,2006,6(5):582-592.
    3 Nilsson J,Stahl S,Lundeberg J,et al.Affinity fusion strategies for detection,purification,and immobilization of recombinant proteins.Protein Expr Purif JT-Protein expression and purification,1997,11(1):1-16.
    4 刘忠渊,张富春,毛新芳,王芸.利用毕赤酵母表达外源蛋白的研究.生物技术,2004,14(1):56-58.
    5 彭毅,步威.甲醇酵母表达系统.生物技术通报,2000,(1):38-41.
    6 Lee DF,Chen CC,Hsu TA,et al.A baculovirus superinfection system:efficient vehicle for gene transfer into Drosophila S2 cells.J Virol JT-Journal of virology,2000,74(24):11873-80.
    7 Hunt I.From gene to protein:a review of new and enabling technologies for multi-parallel protein expression.Protein Expr Purif JT-Protein expression and purification,2005,40(1):1-22.
    8 Abdulhussein R,McFadden C,Fuentes-Prior P,et al.Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor.J Biol Chem JT The Journal of biological chemistry,2004,279(30):31462-70.
    9 Matsuyama W,Mitsuyama H,Ono M,et al.Discoidin domain receptor 1 contributes to eosinophil survival in an NF-kappaB-dependent manner in Churg-Strauss syndrome.Blood JT-Blood,2007,109(1):22-30.
    10 Leitinger B.Molecular analysis of collagen binding by the human discoidin domain receptors,DDRI and DDR2.Identification of collagen binding sites in DDR2.J Biol Chem JT-The Journal of biological chemistry,2003,278(19):16761-9.
    11 Abdulhussein R,Koo DH,Vogel WF.Identification of disulfide-linked dimers of the receptor tyrosine kinase DDRI.J Biol Chern,2007.
    12 Arnau J,Lauritzen C,Petersen GE,et al.Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins.Protein Expr Purif JT-Protein expression and purification,2006,48(1):1-13.
    13 Zhang W,Ding T,Zhang J,et al.Fusion expression of DDR2 extracellular domain in insect cells and its purification and function characterization.J Cell Biochem JT-Journal of cellular biochemistry,2007,102(1):41-51.
    14 Zhang W, Ding T, Zhang J, et al. Expression of discoidin domain receptor 2 (DDR2) extracellular domain in pichia pastoris and functional analysis in synovial fibroblasts and NIT3T3 cells. Mol Cell Biochem JT - Molecular and cellular biochemistry, 2006,290(1-2):43-53.
    1 THOMPSON KW,VINCENT MM,JENSEN FC,et al.Production of hormones by human anterior pituitary cells in serial culture.Proc Soc Exp Biol Med JT-Proceedings of the Society for Experimental Biology and Medicine.Society for Experimental Biology and Medicine(New York,N.Y.),1959,102:403-8.
    2 Fuller P J,Lira AT,Barlow JW,et al.A pituitary tumor producing high molecular weight adrenocorticotropin-related peptides:clinical and cell culture studies.J Clin Endocrinol Metab JT -The Journal of clinical endocrinology and metabolism,1984,58(1):134-42.
    3 Missale C,Boroni F,Losa M,et al.Nerve growth factor suppresses the transforming phenotype of human prolactinomas.Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America,1993,90(17):7961-5.
    4.Jin L,Kulig E,Qian X,Scheithauer BW,Eberhardt NL,Lloyd RV.a human pituitary adenoma cell line proliferates and maintains some differential functions following expression of SV40 large T-antigen.Endocr Pathol,1998,(9):168-184.
    5 Fujimoto N,Maruyama S,Ito A.Establishment of an estrogen responsive rat pituitary cell sub-line MtT/E-2.Endoci-J JT-Endocrine journal,1999,46(3):389-96.
    6 徐伟光,王海军,黄锦桃,刘爱军,李海标,朱永红.人垂体腺瘤细胞原代培养的纯化.中国神经肿瘤杂志,2006,4(1):44-47.
    7 Liotta LA.Tumor invasion and metastases:role of the basement membrane.Warner-Lambert Parke-Davis Award lecture.Am J Pathol JT-The American journal of pathology,1984,117(3):339-48.
    8 Kleinman HK,McGarvey ML,Hassell JR,et al.Basement membrane complexes with biological activity.Biochemistry JT-Biochemistry,1986,25(2):312-8.
    9 万锋,雷霆,舒凯,薛德麟.垂体瘤的体外侵袋模型—Boyden小室法的建立和特点.中华神经外科杂志,2005,21(3):149-152.
    10 Spady T J,McComb RD,Shull JD.Estrogen action in the regulation of cell proliferation,cell survival,and tumorigenesis in the rat anterior pituitary gland.Endocrine JT-Endocrine,1999,11(3):217-33.
    11 Bourdoulous S,Orend G,MacKenna DA,et al.Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression.J Cell Biol JT-The Journal of cell biology,1998,143(1):267-76.
    12 Paez-Pereda M, Kuchenbauer F, Arzt E, et al. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix. Braz J Med Biol Res JT - Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica . [et al.], 2005,38(10): 1487-94.
    13 Farnoud MR, Veirana N, Derome P, et al. Adenomatous transformation of the human anterior pituitary is associated with alterations in integrin expression. Int J Cancer JT - International journal of cancer. Journal international du cancer, 1996,67(1):45-53.
    14 Pereda MP, Goldberg V, Chervin A, et al. Interleukin-2 (IL-2) and IL-6 regulate c-fos protooncogene expression in human pituitary adenoma explants. Mol Cell Endocrinol JT -Molecular and cellular endocrinology, 1996, 124(1-2):33-42.
    15 Farnoud MR, Farhadian F, Samuel JL, et al. Fibronectin isoforms are differentially expressed in normal and adenomatous human anterior pituitaries. Int J Cancer JT - International journal of cancer. Journal international du cancer, 1995,61(1):27-34.
    16 Kuchenbauer F, Hopfner U, Stalla J, et al. Extracellular matrix components regulate ACTH production and proliferation in corticotroph tumor cells. Mol Cell Endocrinol JT - Molecular and cellular endocrinology, 2001,175(1-2): 141-8.
    17 Asa SL, Kelly MA, Grandy DK, et al. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology JT -Endocrinology, 1999,140(11):5348-55.
    18 Kuchenbauer F, Theodoropoulou M, Hopfner U, et al. Laminin inhibits lactotroph proliferation and is reduced in early prolactinoma development. Mol Cell Endocrinol JT - Molecular and cellular endocrinology, 2003,207( 1 -2): 13-20.
    19 Paez Pereda M, Ledda MF, Goldberg V, et al. High levels of matrix metalloproteinases regulate proliferation and hormone secretion in pituitary cells. J Clin Endocrinol Metab JT - The Journal of clinical endocrinology and metabolism, 2000,85(1):263-9.
    20 de Carvalho DF, Silva KL, de Oliveria DA, et al. Characterization and distribution of extracellular matrix components and receptors in GH3B6 prolactin cells. Biol Cell JT - Biology of the cell / under the auspices of the European Cell Biology Organization, 2000,92(5):351-62.
    21 Tamura M, Gu J, Tran H, et al. PTEN gene and integrin signaling in cancer. J Natl Cancer Inst JT - Journal of the National Cancer Institute, 1999,91(21): 1820-8.
    22 Schaller MD. The focal adhesion kinase. J Endocrinol JT - The Journal of endocrinology, 1996,150(1):1-7.
    23 Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol JT - Nature cell biology, 2002,4(4):E83-90.
    24 Matsuyama W, Watanabe M, Shirahama Y, et al. Discoidin domain receptor 1 contributes to the survival of lung fibroblast in idiopathic pulmonary fibrosis. Am J Pathol JT - The American journal of pathology, 2006,168(3):866-77.
    25 Hou G, Vogel W, Bendeck MP. The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest JT - The Journal of clinical investigation, 2001,107(6):727-35.
    26 Ram R, Lorente G, Nikolich K, et al. Discoidin domain receptor-la (DDRla) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. J Neurooncol JT - Journal of neuro-oncology, 2006,76(3):239-48.
    27 Chaidarun SS, Eggo MC, Sheppard MC, et al. Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology JT -Endocrinology, 1994,135(5):2012-21.
    28 LeRiche VK, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab JT -The Journal of clinical endocrinology and metabolism, 1996,81(2):656-62.
    29 Rix U, Hantschel O, Dumberger G, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood JT - Blood, 2007,110(12):4055-63.
    30 Bantscheff M, Eberhard D, Abraham Y, et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol JT - Nature biotechnology, 2007,25(9): 1035-44.
    1 Johnson JD,Edman JC,Rutter WJ.A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain[J].Proc Natl Acad Sci U S A,1993,90(12):5677-81.
    2 Vogel W,Gish GD,Alves F,et al.The discoidin domain receptor tyrosine kinases are activated by collagen[J].Mol Cell,1997,1(1):13-23.
    3 Playford MP,Butler R J,Wang XC,et al.The genomic structure of discoidin receptor tyrosine kinase[J].Genome Res,1996,6(7):620-7.
    4 Leitinger B.Molecular analysis of collagen binding by the human discoidin domain receptors,DDR1 and DDR2..Identification of collagen binding sites in DDR2[J].J.Biol Chem,2003,278(19):16761-9.
    5 Abdulhussein R,McFadden C,Fuentes-Prior P,et al.Exploring the collagen-binding site of the DDRI tyrosine kinase receptor[J].J Biol Chem,2004,279(30):31462-70.
    6 Leitinger B,Hohenester E.Mammalian collagen receptors[J].Matrix Biol,2007,26(3):146-55.
    7 Agarwal G,Kovac L,Radziejewski C,et al.Binding of discoidin domain receptor 2 to collagen Ⅰ:an atomic three microscopy investigation[J].Biochemistry,2002,41(37):11091-8.
    8 Matsuyama W,Wang L,Fanar WL,et al.Activation of discoidin domain receptor 1 isofonn b with collagen up-regulates chemokine production in human macrophages:role of p38mitogen-activated protein kinase and NF-kappa B[J].J Immunol,2004,172(4):2332-40.
    9 Koo DH,McFadden C,Huang Y,et al.Pinpoiuting phosphotyrosine-dependent interactions downstream of the collagen receptor DDRI[J].FEBS Lett,2006,580(1):15-22.
    10 Faraci-Orf E,McFadden C,Vogel WF.DDRI signaling is essential to sustain Stats function during lactogenesis[J].J Cell Biochem,2006,97(1):109-21.
    11 De,jmek J,Leandersson K,Manjer J,et al.Expression and signaling activity of Wnt-Sa/discoidin dolnain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival[J].Clin Cancer Res,2005,11(2 Pt 1):520-8.
    12 Faraci E,Eck M,Gerstmayer B,et al.An extracellular matrix-specific microanay allowed the identification of target genes downstream of discoidin domain receptors[J].Matrix Biol JT,2003,22(4):373-81.
    13 Miranti CK,Brugge JS.Sensing the environment:a historical perspective on integrin signal transduction[J]. Nat Cell Biol, 2002,4(4):E83-90.
    14 Vogel W, Brakebusch C, Fassler R, et al. Discoidin domain receptor 1 is activated independently of beta(1) integrin[J]. J Biol Chem, 2000,275(8):5779-84.
    15 D'Abaco GM, Kaye AH. Integrins: molecular detenninants of glioma invasion[J]. J Clin Neurosci JT, 2007,14(11):1041-8.
    16 Vogel WF, Abdulhussein R, Ford CE. Sensing extracellular matrix: an update on discoidin domain receptor function[J]. Cell Signal, 2006,18(8): 1108-16.
    17 Ongusaha PP, Kim JI, Fang L, et al. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop[J]. EMBO J, 2003,22(6):1289-301.
    18 Ford CE, Lau SK, Zhu CQ, et al. Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-small cell lung carcinoma[J]. Br J Cancer, 2007,96(5):808-14.
    19 Das S, Ongusaha PP, Yang YS, et al. Discoidin Domain Receptor 1 Receptor Tyrosine Kinase Induces Cyclooxygenase-2 and Promotes Chemoresistance through Nuclear Factor-{kappa}B Pathway Activation[J]. Cancer Res, 2006,66(16):8123-30.
    20 Weiner HL, Rothman M, Miller DC, et al. Pediatric brain tumors express multiple receptor tyrosine kinases including novel cell adhesion kinases[J]. Pediatr Neurosurg, 1996,25(2):64-71; discussion 71-2.
    21 Weiner HL, Huang H, Zagzag D, et al. Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors[J]. Neurosurgery, 2000,47(6): 1400-9.
    22 Ram R, Lorente G, Nikolich K, et al. Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2[J]. J Neurooncol, 2006,76(3):239-48.
    23 Yamanaka R, Arao T, Yajima N, et al. Identification of expressed genes characterizing long-term survival in malignant glioma patients[J]. Oncogene. 2006,25(44):5994-6002.
    24 Yoshida D, Teramoto A. Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1[J]. J Neurooncol, 2007,82(1):29-40.
    1 Philippon J.Brain tumors in the elderly.Psychol Neuropsychiatr Vieil.2004;2:29-33.
    2 Minniti G,Esposito V,Piccirilli M,Fratticci A,Santoro A,Jaffrain-Rea ML.Diagnosis and management of pituitary turnouts in the elderly:a review based on personal experience and evidence of literature.Eur J Endocrinol,2005;153:723-35.
    3 Turner HE,Adams CB,Wass JA.Pituitary tumours in the elderly a 20 year experience.Eur J Endocrinol.1999;140:383-9.
    4 Ferrante L,Trillo G,Ramundo E,et al.Surgical treatment of pituitary tumors in the elderly:clinical outcome and long-term follow-up.J Neurooncol.2002:60:185-91.
    5 Barzaghi LR,Losa M,Giovanelli M,et al.Complications of transsphenoidal surgery in patients with pituitary adenoma:experience at a single centre.Acre Neurochir(Wien),2007,149:877-85.
    6 Wilson CB.Surgical management of pituitary tumors.J Clin Endocrinol Metab.1997;82:2381-5.
    7 Van der Lely AJ,Harris AG,Lamberts SW.The sensitivity of growth hormone secretion to medical treatment in acromegalic patients influence of age and sex.Clin Endocrinol(Oxf).1992;37:181-5.
    8 Losa M,Franzin A,Mangili F,et al.Proliferation index of nonfunctioning pituitary adenomas correlations with clinical characteristics and long-term follow-up results.Neurosurgery.2000;47:1313-8..
    9 Nemergut EC,Dumont AS,Barry UT,Laws ER.Perioperative management of patients undergoing transsphenoidal pituitary surgery.Anesth Analg.2005;101:1170-81.
    10 Harris PE,Afshar F,Coates P,et al.The effects of transsphenoidal surgery on endocrine function and visual fiends in patients with functionless pituitary turnouts.Q J Med.1989;71:417-27.
    11 Ferrari CI,Abs R,Bevan JS,et al.Treatment of macroprolactinoma with cabergoline:a study of 85patients.Clin Endocrinol(Oxf) 1997;46:409-413.
    12 Arafah BM,Kailani SH,Nekl KE,Gold RS,Selman WR.Immediate recovery of pituitary function after transsphenoidal resection of pituitary macroadenomas.J Clin Endocrinol Metab. 1994;79:348-54.
    13 Kurosaki M,Ludecke DK,Flitsch J,Saeger W.Surgical treatment of clinically nonsecreting pituitary adenomas in elderly patients.Neurosurgery.2000;47:843-8;discussion 848-9.
    14 Mooradian AD,Morley JE,Korenman SG.Endocrinology in aging.Dis Mon.1988;34:393-461.
    15 Tayal SC,Bansal SK,Chadha DK.Hypopituitarism:a difficult diagnosis in elderly people but worth a search.Age and Aging 1994;23;320-322.
    16 Benbow SJ,Foy P,Jones B,Sh,aw D,MacFarlane IA.Pituitary tumours presenting in the elderly:management and outcome.Clin Endocrinol(Oxf).1997;46:657-60.
    17 Fraioli B,Pastore FS,Signoretti S,De Caro GM,Giuffre R.The surgical treatment of pituitary adenomas in the eighth decade.Surg Neurol.1999;51:261-6;discussion 266-7.
    18 Barker FG 2nd,Klibanski A,Swearingen B.Transsphenoidal surgery for pituitary tumors in the United States,1996-2000 mortality,morbidity,and the effects of hospital and surgeon volume.J Clin Endocrinol Metab.2003;88:4709-19.
    19 Shou XF,Li SQ,Wang YF,et al.Treatment of pituitary adenomas with a transsphenoidal approach.Neurosurgery,2005,56:249-56;discussion 249-56.
    20 Singer PA,Sevilla LJ.Postoperative endocrine management of pituitary tumors.Neurosurg Clin N Am,2003,14:123-38.
    21 Jaffe CA.Clinically non-functioning pituitary adenoma.Pituitary.2006;9:317-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700