中枢神经系统血管母细胞瘤的起源及致病关键因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     中枢神经系统血管母细胞瘤(Central Nervous System Hemangioblastoma,CNS HB)是目前神经外科领域治疗较为困难的疾病之一。常伴有其他部位的囊肿或肿瘤,称为VHL病(von Hippel Lindau Disease),危害更大。迄今为止其组织学起源及发病机制仍不清楚,2000年WHO将其归为来源未定肿瘤,而2007年WHO最新的中枢神经系统肿瘤分类中将其归类于脑膜肿瘤中的其他脑膜相关性肿瘤项目下,具体来源亦不明确。因此,我们对CNS HB进行细胞培养、组织病理学观察、分类功能基因芯片研究及蛋白质组学分析。
     目的
     建立CNS HB细胞体外培养的方法,在组织、细胞中筛选CNS HB致病关键因素,为明确其组织学起源、阐明发病机制提供依据。
     方法
     1.收集复旦大学附属华山医院神经外科2004年9月至2007年6月手术切除并经术后病理证实的CNS HB组织标本35例及正常脑组织15例,均经得患者本人或代理人的知情同意。
     2.第一部分研究中对其中13例CNS HB应用Ⅱ型胶原酶联合胰蛋白酶消化法进行原代及传代培养,并通过形态学观察、免疫荧光染色、细胞超微结构观察、培养液上清EPO及VEGF浓度测定对培养细胞进行鉴定。
     3.第二部分研究中对所有收集的CNS HB及正常脑组织标本进行病理切片、常规H.E.染色及选择性的免疫组化染色,比较HB与对照组各个组成细胞之间对每个抗体的染色阳性率及染色强度的差异以及VHL与NVHL(None-VHL Disease)组之间的染色差异。
     4.第三部分研究中根据前两部分研究结果,对6例VHL CNS HB、7例NVHL CNSHB及7例正常脑组织混合而成的3份样品以及VHL CNS HB、NVHL NS HB及正常神经细胞(共3株细胞)进行RNA抽提,与SuperArray公司(USA)Oligo GEArray(?)干细胞及缺氧信号通路功能基因芯片分别杂交,比较CNS HB组织与正常脑组织、CNSHB细胞与正常神经细胞、VHL与NVHL组之间的差异表达基因。应用Real-time PCR及RT-PCR对结果进行验证。
     5.第四部分(一)研究中应用2-DE联合MALDI-TOF-MS的蛋白质组学技术对5例CNS HB组织标本及4例正常脑组织标本进行蛋白质提取、双向凝胶电泳(2-DE)、快速银染、差异蛋白质点的选取和质控措施、切胶及蛋白质酶解、MALDI-TOF-MS质谱鉴定,获得与CNS HB致病相关的差异表达蛋白质,并应用免疫组化、RT-PCR及Western Blot自多个层次验证研究结果。
     6.第四部分(二)研究中应用2D-HPLC串联LTQ-Orbitrap MS的蛋白质组学技术对CNS HB细胞及正常神经细胞进行蛋白质提取、2D-HPLC色谱分离、LTQ-Orbitrap MS质谱鉴定、Shoutgun法定量,比较并筛选与CNS HB致病相关的差异表达蛋白质,并与CNS HB组织蛋白质组学研究结果比较。
     结果
     1.第一部分细胞培养研究中,13例CNS HB组织有11例培养成功。形态学观察细胞呈扁平状短梭形或不规则三角形,类似人骨髓基质细胞(MSCs)以集落方式生长。细胞免疫荧光染色显示CD133+、Nestin+、Vimentin+、VEGF+、EPO+、CD34-、SMA-、GFAP-,提示CNS HB具有干细胞的起源。培养液上清检测发现细胞具有向外分泌VEGF及EPO的能力。
     2.第二部分组织病理学研究中发现Vimentin、CD117、CD133、Nestin、EPO及EPO-R在CNS HB组织的基质细胞、血管内皮细胞、周细胞中均染色阳性,CD34、FVIIIRA及SMA在CNS HB组织的血管内皮细胞、周细胞中染色阳性,在基质细胞中染色阴性。GFAP在CNS HB三种组成细胞中均染色阴性。VEGF仅在基质细胞中染色阳性,而其受体Flt-1仅在血管内皮细胞中染色阳性。VHL则在CNS HB三种细胞中均染色阳性。VHL与NVHL组比较,EPO及EPO-R的染色强度(强阳性率)在VHL组明显高于NVHL组,差异有高度统计学意义。VHL染色阳性率及染色强度在VHL组均小于NVHL组,但差异无统计学意义。其余抗体的染色阳性率及染色强度在VHL组与NVHL组类似,均无统计学差异。Real-time PCR及RT-PCR验证结果与本研究一致。
     3.第三部分CNS HB组织与细胞的分类功能基因芯片研究中,人干细胞基因芯片的组织与细胞实验中分别发现8个及2个差异表达基因,其中具有相同趋势的差异表达基因有2个:上调1个ABCG2;下调1个RBPSUHL。VHL组与NVHL组之间均无表达差异。人缺氧信号通路基因芯片的组织与细胞实验中分别发现14个及11个差异表达基因,其中具有相同趋势的差异表达基因有6个:上调4个EPO、VEGF、HIF1α、CAⅨ;下调2个HIF1αI、KHSRP。EPO在VHL组较NVHL组明显上调。Real-time PCR及RT-PCR验证可以重复本研究结果。
     4.第四部分(一)中,首次应用2-DE联合MALDI-TOF-MS蛋白质组学技术建立了HB组与对照组9例组织样品的分辨率及重复性较好的非混合标本2-DE图谱,经ImageMaster 2D软件分析及质控措施后,确定有效差异蛋白质点共12个,HB组较对照组上调7个点,下调5个点。其中仅在HB组表达3个点,仅在对照组表达3个点,HB组较对照组表达增高4个点,下调2个点。12个有效差异蛋白质点在所有9张图谱上经质谱分析、检索MASCOT数据库及生物信息学分析后,全部鉴定成功。其中鉴定所得差异蛋白质Vimentin与CNS HB的干细胞起源有关;CAⅨ与缺氧信号通路有关;14-3-3可能通过抑制细胞凋亡而激活CNS HB细胞;DAAH的缺失加重了血管内皮细胞的功能障碍,最终导致异常血管网的形成,并可能参与CNS HB的囊变过程。而其他蛋白质亦与CNS HB发病密切相关,以往均未见报道。对鉴定的蛋白质点挑选Vimentin、14-3-3、CAⅨ进行免疫组化染色、RT-PCR及Western Blot验证,与本研究结果完全一致。
     5.在第四部分(二)中,应用2D-HPLC串联LTQ-Orbitrap MS蛋白质组学技术在CNS HB细胞及正常神经细胞株中分别分离了675及532个蛋白质,并全部鉴定成功。这些蛋白质的功能涉及生物学的多个方面。经过Shotgun法定量后发现差异表达蛋白质628个,占蛋白质总数的70.1%。其中仅在CNS HB细胞中表达358个,仅在正常神经细胞中表达215个,CNS HB细胞较正常神经细胞上调30个,下调25个。结果包括在组织实验中筛选获得的11个与CNS HB发病密切相关的差异蛋白质(Hemoglobin beta chain除外)。另外尚发现其他与CNS HB致病相关的蛋白质如PDGFA associated protein 1与干细胞分化有关;Annexin可能是一个新的临床诊断标志物,值得进一步深入研究。CNS HB细胞与正常神经细胞差异较大,可能具有不同的细胞起源。
     结论
     1.建立CNS HB细胞体外培养的方法。发现所培养的细胞是CNS HB基质细胞,具有中胚层间质组织干细胞的起源,可能是一种良性肿瘤的干细胞,在体内特定条件下向血管细胞分化并形成肿瘤实质,最终导致CNS HB的发生。
     2.揭示缺氧信号通路在CNS HB发病中的重要作用。HIF1α是缺氧信号通路最关键的环节。其在CNS HB中的上调导致其下游基因如EPO、VEGF、CAⅨ、KHSRP等表达异常,最终形成CNS HB。EPO及VEGF通过基质细胞的自分泌与旁分泌机制,促使CNS HB发生。
     3.首次发现EPO是VHL CNS HB与NVHL CNS HB组织细胞中最主要的差异表达因素,提示EPO在VHL病发病过程中起到更大作用,增加了患者罹患肿瘤的几率。
     4.应用2-DE联合MALDI-TOF-MS蛋白质组学技术对CNS HB肿瘤组织及正常脑组织进行分析,首次建立具有高分辨率及可重复性CNS HB的2-DE图谱,有效筛选并鉴定12个与CNS HB发病密切相关的蛋白质,其中Vimentin与CNS HB干细胞起源有关;CAⅨ则是缺氧信号通路的重要分子,通过直接损伤及局部缺氧导致CNS HB细胞异常分化;14-3-3可能通过抑制细胞凋亡而激活CNS HB细胞;DAAH的缺失加重了血管内皮细胞的功能障碍,最终导致异常血管网的形成。以往均未见报道。
     5.应用2D-HPLC串联LTQ-Orbitrap蛋白质组学技术对CNS HB细胞与正常神经细胞进行分析,分别分离675及572个蛋白质,且全部鉴定成功。这些蛋白质的功能涉及生物学的多个方面。包括在组织实验中筛选获得的11个与CNS HB发病密切相关的差异蛋白质(Hemoglobin beta chain除外)。在其他发现的与CNS HB发病相关的蛋白质中,PDGFA associated protein 1与干细胞分化有关,Annexin可能是一个新的临床诊断标志物,值得进一步研究。
     6.CNS HB的发病是多因素、多步骤参与的复杂过程,本研究发现了多个与其致病相关的基因或蛋白质,为深入研究其组织学起源及发病机制提供充分的依据及恰当的切入点。
     综合上述结论,本研究发现CNS HB可能具有中胚层间质组织干细胞的起源,EPO、VEGF、HIF1α、Vimentin、14-3-3、CAⅨ、DAAH等是其致病的关键因素。
Background
     At present Central Nervous System Hemangioblastoma(CNS HB) is one kind of the most difficult diseases to treat in the field of Neurosurgery.Sometimes CNS HB is accompanied with other cysts or tumors called VHL disease which has more harmfulness to people.Up to now the histological origin and pathogenesis of CNS HB still remain unclear. In 2000 it was classified into the tumor with an uncertain origin by WHO.In 2007 it was newly classified into the tumors of meninges—other neoplasms related to the meninges.In this research work we have used the methods of cell cultivation,histopathological observation,classified functional gene arrays and proteomics analysis to study CNS HB.
     Objective
     Our objective is to establish the approach of CNS HB cell cultivation and screen the key pathogenic factors of CNS HB from CNS HB tissues and cells,so as to provide the key factors and evidences for illuminating the histological origin and pathogenesis of CNS HB.
     Methods
     1.In this research work thirty-five CNS HB and fifteen normal brain tissues resected in operation and confirmed by pathological sections were collected from department of Neurosurgery,Huashan Hospital,Fudan University during 2004.9-2007.6.The research was informed consent by all the patients or their attorneys.
     2.In Part One of the research thirteen CNS HB tissues were primary and passaging cultured using typeⅡcollagenase combined with trypsin digestion.The cells were identified by morphological observation,immunofluorescence,ultramicrostructural observation,EPO and VEGF concentration measurement of culture fluid supernatant.
     3.In Part Two of the research all the specimen of CNS HB and normal brain tissues were carried out pathological section observation,routine HE stain and selective immunohistochemical stain.The staining positive rate and intensity discrepancy of every single antibody were compared between the composing cells of HB and control groups, VHL and NVHL groups.
     4.In Part Three of the research,according to the results of Part One and Part Two,six VHL CNS HB,seven VHL CNS HB,seven normal brain tissues which were admixed into three portions of samples and three cell strains of VHL CNS HB,NVHL CNS HB,normal neural cells were collected and carried out RNA extraction,then were hybridizated with Oligo GEArray(?) classified functional gene arrays(SuperArray,USA) of stem cell and hypoxia signal pathway.The differential expression genes were compared between CNS HB and normal brain tissues,CNS HB and normal neural cells,VHL and NVHL groups and were verified by Real-time PCR and RT-PCR.
     5.In Part Four(Ⅰ) of the research the total proteins from 5 CNS HB and 4 normal brain tissues were analyzed using 2-DE combined with MALDI-TOF-MS proteomics technology. The samples were progressed total proteins extraction,Two-Dimension Electrophoresis (2-DE),quickly silver staining,discrepant protein spots selection and quality control,spot cutting and protein enzymolysis and MALDI-TOF-MS.Then differential expression proteins were obtained and verified by immunohistochemistry,RT-PCR and Western Blot.
     6.In Part Four(Ⅱ) of the research the total proteins from CNS HB and normal neural cells were analyzed using 2D-HPLC combined with LTQ-Orbitrap MS proteomics technology.The samples were progressed total proteins extraction,Two Dimension-High Performance Liquid Chromatography(2D-HPLC),LTQ-Orbitrap MS,shotgun quantity. Then differential expression proteins were obtained and compared with those from CNS HB tissues experiments.
     Results
     1.In Part One of the research,eleven of thirteen CNS HB tissues were cultivated successfully.Morphological observation suggested CNS HB cells were flat,short fusiform shape or irregular triangle shape.The cells grew as a style of colony just like human mesenchymal stem cells(MSCs).The results of immunofluorescence showed CD133+, Nestin+,Vimentin+,VEGF+,EPO+,CD34-,SMA-,GFAP-,which suggested CNS HB cells had an origin of stem cells.EPO and VEGF concentrations measurement showed the cells had the ability of exocrining EPO and VEGF.
     2.In Part Two of the research,histological study showed Vimentin,CD117,CD133, Nestin,EPO,EPO-R staining in the stromal cells,endothelial cells and perithelial cells of CNS HB were positive.CD34,FVⅢRA,SMA staining in the endothelial cells and perithelial cells were positive and in the stromal cells were negative.GFAP staining in three kinds of CNS HB cells was negative.VEGF staining was positive only in the stromal cells. Its receptor,Fit-1,was positive only in the endothelial cells.VHL staining in three kinds of CNS HB cells was positive.The staining positive rate and intensity discrepancy of EPO and EPO-R in VHL group were higher than that in NVHL group with statistical significance. The staining positive rate and intensity discrepancy of VHL in VHL group were lower than that in NVHL group,but the difference had no statistical significance.Other antibodies had the same staining results between VHL and NVHL group without statistical significance. The results could be repeated by Real-time PCR and RT-PCR.
     3.In Part Three of the research,we had screened eight and two differential expression genes using human stem cells gene array from CNS HB tissues and cells.Two of the total differential expression genes had the same tendency both in CNS HB tissues and cells: up-regulated one gene,ABCG2;down-regulated one gene,RBPSUHL.No differences were found between VHL and NVHL groups.Fourteen and eleven differential expression genes had been found using human hypoxia signal pathway gene array from CNS HB tissues and cells.Six of the total differential expression genes had the same tendency both in CNS HB tissues and cells:up-regulated four genes,EPO,VEGF,HIF1α,CAⅨ;down-regulated two genes,HIF1αⅠ、KHSRP.EPO was distinctly up-regulated in VHL group compared with NVHL group.The results could be confirmed by Real-time PCR and RT-PCR.
     4.In Part Four(Ⅰ),the 2-DE gels of nine samples from HB and control groups with high resolution and reproducibility had been set up using 2-DE combined with MALDI-TOF-MS proteomics technology.After software analysis and quality control,twelve effective discrepant protein spots were selected.Of the total twelve proteins,seven protein spots were up-regulated and five proteins spots were down-regulated in HB group compared with the control group.Total effective discrepant protein spots were carried out MALDI-TOF MS, MASCOT database searching and bioinformatical analysis from all 2-DE gels.And total twelve effective discrepant protein spots were identified successfully.Among them, Vimentin was related to the stem cell origin of CNS liB.CA IX was an important element of hypoxia signal pathway.14-3-3 could induce the CNS HB cell by inhibiting the process of cell apoptosis.DAAH enhanced the functional dysfunction of vascular endothelial cells, led to the abnormal vascular net and participated the procedure of cyst formation.Other proteins were also related to the occurring of CNS HB.There were no reports about these before.The results could be verified by immunohistochemical stain,RT-PCR and Western Blot.
     5.In Part Four(Ⅱ),675 and 532 proteins were separated and identified from CNS HB and normal neural cells using 2D-HPLC combined with LTQ-Orbitrap MS proteomics technology.The function of identified proteins involved in lots of aspects of biology.After shotgun quantity,628 differential expression proteins(70.1%of total proteins) were found. Among them 358 proteins were exclusively found in CNS HB cells and 215 proteins found in normal neural cells.30 proteins were up-regulated and 25 proteins were down-regulated in CNS HB cells compared with normal neural cells.The proteins included eleven proteins simultaneously discovered from the experiments of CNS HB tissues and other newly found proteins.Of the total newly found proteins,PDFGA associated protein 1 was related with the stem cell differentiation.Annexin might be a new clinical diagnostic marker,which was worth of further study.The proteins of CNS HB cells had distinguished differences from those of normal neural cells which suggested CNS HB and normal neural cells had a distinct histological origin.
     Conclusions
     1.In this research work we have established the approach of CNS HB cell culture in vitro and found the stromal cell of CNS HB is the tumor cell indeed.The stromal cell of CNS HB has an origin of mesodermal mesenchymal stem cell and may be a kind of stem cell of benign tumors.It can differentiate towards the endothelial cell and perithelial cell in vivo which lead to the occurring of CNS HB.
     2.The hypoxia signal pathway plays an important role in CNS HB and the up-regulation of HIF1αleads to the abnormal expression of EPO,VEGF,CAⅨ,KHSRP,et al.The autocrine and paracrine mechanism of EPO and VEGF facilitates the formation of CNS HB.
     3.EPO is the most primary differential expression factor between VHL CNS HB and NVHL CNS HB and has a much more influence on VHL disease occurring.EPO increases the morbidity of CNS HB and VHL disease.
     4.In this research work we have firstly successfully set up the 2-DE gels from CNS HB tissues and cells with high resolution and reproducibility and effectively screened the proteins related with CNS HB occurring using 2-DE combined with MALDI-TOF-MS proteomics technology,including Vimentin,CAⅨ,14-3-3,DAAH,et al,which provide the sufficient evidences for the histological origin and pathogenesis of CNS HB.Among them,Vimentin was related to the stem cell origin of CNS HB.CAⅨwas an important element of hypoxia signal pathway.14-3-3 could induce the CNS HB cell by inhibiting the process of cell apoptosis.DAAH enhanced the functional dysfunction of vascular endothelial cells,led to the abnormal vascular net and participated the procedure of cyst formation.
     5.We have firstly analyzed the proteins from CNS HB and normal neural cells using 2D-HPLC combined with LTQ-Orbitrap MS proteomics technology.675 and 532 proteins were successfully separated and identified.The function of identified proteins involved in lots of aspects of biology.The proteins included eleven proteins simultaneously discovered from the experiments of CNS HB tissues and other newly tbund proteins.Of the total newly found proteins,PDFGA associated protein 1 was related with the stem cell differentiation. Annexin might be a new clinical diagnostic marker,which was worth of further study.
     6.CNS HB occurring is an intricate,multicomponent,multifactorial and multi-step process which is mediated by a variety of proteins.In this research work,partial genes and proteins related with CNS HB have been found which provide sufficient evidences and correct investigation directions for the histological origin and pathogenesis of CNS HB.
     Synthetizing the conclusions,this study suggests that CNS HB has an origin of mesodermal mesenchymal stem cell.EPO,VEGF,HIF1α,Vimentin,14-3-3,CAⅨ,DAAH, etc,are the key pathogenic factors of CNS HB.
引文
[1] Lindau A. Discussion on vascular tumors of the brain and spinal cord[J]. Proc R Soc Med, 1931, 24:363-370.
    [2] Ho VB, Sminiotopolos JG, Murphy FM, et al Radiologicpathologic correlation: hemangioblastoma[J]. AJNR, 1992, 13: 1343-1352.
    [3] Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classifica-tion of tumours of the central nervous system[J]. Acta Neuropathol, 2007, 114:97.
    [5] 杜固宏,周良辅.血管母细胞瘤[A].见:周良辅.现代神经外科学[M].上海:复旦大学出版社,2001:502-506.
    [4] Chauveau D, Duvic C, Chretien Y, et al. Renal involvement in Von Hippel-Lindau disease[J]. Kidney Int, 1996,50:944.
    [6] Arsdorp N, Elderson A, Wittebol-Post D, et al. Von Hippel-Lindau disease: new strategies in early detection and treatment[J]. Am J Med, 1994,97:158-68.
    [7] Crossey PA, Foster K, Richards FM, et al. Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease: analysis of allele loss in VHL tumours[J]. Human Genetics, 1994,93:53-58.
    [1]Ho VB,Sminiotopolos JG,Murphy FM,et al.Radiologicpathologic correlation:hemangioblastoma[J].AJNR,1992,13:1343-1352.
    [2]Arsdorp N,Elderson A,Wittebol-Post D,et aL Von Hippel-Lindau disease:new strategies in early detection and treatment[J].Am J Med,1994,97:158-68.
    [3]Latif F,Tory K,Gnarra J,Yao M,et al.Identification of the von Hippel-Lindau disease tumor suppressor gene[J].Science,1993,260:1317-1320.
    [4]杜固宏,周良辅.血管母细胞瘤[A].见:周良辅.现代神经外科学[M].上海:复旦大学出版社,2001:502-506.
    [5]胡颖川,庞宗国,王庆茹.68例血管母细胞瘤的组织病理及免疫组化研究[J].华西医科大学学报,2000,31:380-382.
    [6]Vortmeyer AO,Gnarra JR,Emmert-Buck MR,et al.Von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel-Lindau disease[J].Human Pathology,1997,28:540-543.
    [7]于士柱,张景全,谭郁彬.67例血管母细胞瘤的免疫组织化学观察[J].中华病理学杂志,1993,22:282.
    [8]Wizigmann VZ,Breier G,Risau W,et al.Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas[J].Cancer Res,1995,55:1358-1364.
    [9]Lach B,Gregor A,Rippstein P,et al.Angiogenic histogenesis of stromal cells in hemangioblastoma:ultrastructural and immunohistochemical study[J].Ultrastruct Pathol,1999,23:299-310.
    [10]Vortmeyer AO,Frank S,Jeong S,et al.Developmental arrest ofangioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease[J].Cancer Res,2003,63:7051-7055.
    [11]Wiesener MS,Eckardt KU.Erythropoietin,tumours and the von Hippel-Lindau gene:towards identification of mechanisms and dysfunction of oxygen sensing[J].Nephrol Dial Transplant, 2002. 17:356-359.
    [12] Marion K, Hugo HM, Karl HP. Coexpression of erythropoietin and Vascular Endothelial Growth Factor in nervous system tumors associated with von Hippel-Lindau tumor suppressor gene loss of function[J]. Blood, 1998, 92: 3388-3393.
    [13] Berkman RA, Merrill MJ, Reinhold WC, et al. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms[J]. J Clin Invest, 1993,91: 153.
    [14] Samato K, Ikezaki K, Ono M, et al. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors[J]. Cancer Res, 1995, 55: 1189.
    [15] Florek M, Haase M, Marzesco AM, et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer[J]. Cell Tissue Res, 2005, 319:15-26.
    [16] Koehl U, Zimmermann S, Esser R, et al. Autologous transplantation of CD133 selected hematopoietic progenitor cells in a pediatric patient with relapsed leukemia[J]. Bone Marrow Transplant, 2002, 29: 927-930.
    [17] Uchida N, Buck D W, He DP, et al. Direct isolation of human central nervous system stem cells[J]. Proc Natl Acad Sci USA, 2000, 97: 14720-14725.
    [18] Kay NE, Bone ND, Tschumper RC, et al. B2CLL cells are capable of synt hesis and secretion of bot h pro and anti2angiogenic molecules[J]. Leukemia, 2002, 16: 911.
    [19] Singh SK, Clarke ID, Terasaki M. Identification of a cancer stem cell in human brain tumors[J]. Cancer Res, 2003, 63: 5821-5828.
    [20] Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004, 432: 396-401.
    [21] Sabin FR. Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation[J]. Contrib Embryol, 1920, 9: 213-262.
    [22] Stein AA, Schilp AO, Whitfield RD. The histogenesis of hemangioblastoma of the brain. A review of twenty-one cases[J]. J Neurosurg, 1960, 17: 751-761.
    [23] Glasker S, Li J, Xia JB, et al. Hemangioblastomas share protein expression with embryonal hemangioblastoma progenitor cell[J]. Cancer Res, 2006,66: 4167-4172.
    [24] Ploplis VA, Balsara R, Sandoval-Cooper MJ, et al. Enhanced in vitro proliferation of aortic endothelial cells from plasminogen activator inhibitor-1-deficient mice[J]. J Biol Chem, 2004, 279:6143-6151.
    [1]Lindau A.Discussion on vascular tumors of the brain and spinal cord[J].Proc R Soc Med,1931,24:363-370.
    [2]Stein AA,Schilp AO,Whitfield RD.The histogenesis of hemangioblastoma of the brain.A review of twenty-one cases[J].J Neurosurg,1960,17:751-761.
    [3]Sabin FR.Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation[J].Contrib Embryoi,1920,9:213-262.
    [4]魏于全,杭振镳.九例小脑血管母细胞瘤的超微结构观察[J].中华病理学杂志,1989,18:62-63.
    [5]于士柱,张景全,谭郁彬.67例血管母细胞瘤的免疫组织化学观察[J].中华病理学杂志,1993,22:282.
    [6]Lach B,Gregor A,Rippstein P,et al.Angiogenic histogenesis of stromal cells in hemangioblastoma:ultrastructural and immunohistochemical study[J].Ultrastruct Pathol,1999,23:299-310.
    [7]Bleistein M,Geiger K,Franz K.Transthyretin and mmobilized in hemangioblastoma stromal cells[J].Pathol Res Pratt,2000,196:675-681.
    [8]Wizigmann VZ,Breier G,Risau W,et al.Up-regulation of vascular endothelial growth factor and its receptors in von Hippel-Lindau disease-associated and sporadic hemangioblastomas[J].Cancer Res,1995,55:1358-1364.
    [9]胡颖川,庞宗国,王庆茹.68例血管母细胞瘤的组织病理及免疫组化研究fJ].华西医科大学学报,2000,31:380-382.
    [10]Vortmeyer AO,Gnarra JR,Emmert-Buck MR,et al.Von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von HippeI-Lindau disease[J].Human Pathology,1997,28:540-543.
    [11]Choi K,Kennedy M,Kazarov A,et al.A common precursor for hematopoietic and endothelial cells[J].Development,1998,125:725-732.
    [12]Flamme I,Risau W.Induction of vasculogenesis and hematopoiesis in vitro[J].Development,1992,116:435-439.
    [13]Weiss MJ,Orkin SH.In vitro differentiation of murine embryonic stem cells.New approaches to old problems[J].Clin Invest,1996,97:591-595.
    [14]Vortmeyer AO,Frank S,Jeong S,et al.Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease[J].Cancer Res,2003,63:7051-7055.
    [15]Gage FH.Mammalian neural stem cells[J].Science,2000,287:1433-1438.
    [16]Mckay R.Stem cells in the central nervous system[J].Science,1997,276:66-71.
    [17]Muller AM,Nesslinger M,Skipka G,et al.Expression of CD34 in Pulmonary Endothelial Cells in vivo[J].Pathobiology,2002,70:11-17.
    [18]Muller AM,Hermanrls MI,Skrzynski C,et al.Expression of the endothelial markers PECAM-1,vWf,and CD34 in vivo and in vitro[J].Exp Mol Pathol,2002,72:221-229.
    [19]Anthony SL,Kum C,Joel WM,et al.Manual of Diagnostic Antibodies for Immunohistology[A].In:Oxford University Press,1999:107,121,153,167,326.
    [20]Kay NE,Bone ND,Tschumper RC,et al.B2CLL cells are capable of synthesis and secretion of both pro and anti2angiogenic molecules[J].Leukemia,2002,16:911.
    [21]Singh SK,Hawkins C,Clarke ID,et al.Identification of human brain tumour initiating cells[J].Nature,2004,432:396-401.
    [22]Marion K,Hugo HM,Karl HP.Coexpression of erythropoietin and Vascular Endothelial Growth Factor in nervous system tumors associated with von Hippel-Lindau tumor suppressor gene loss of function[J].Blood,1998,92:3388-3393.
    [23]Wiesener MS,Eckardt KU.Erythropoietin,tumours and the von Hippel-Lindau gene:towards identification of mechanisms and dysfunction of oxygen sensing[J].Nephroi Dial Transplant,2002,17:356-359.
    [24]Lin FK,Suggs S,Lin CH,et al.Cloning and expression of the human erythropoietin gene[J].Proc Natl Acad Sci USA,1985,82:7580-7584.
    [25]Lappin TR,Maxwell AP,Johnston PG.EPO's alter ego:erythropoietin has multiple actions[J].Stem Cells,2002,20:485-492.
    [26]Ferrara N,Herzel WJ.Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells[J].Biochem Biophys Res Commun,1989,161:851-855.
    [27]Criscuolo GR,Lelkes PI,Rotrosen D,et al.Cytosolic calcium changes in endothelial cells induced by a protein product ofhunan gliomas containing Vascular mmobilized factor activity[J].J Neurosurg,1989,71:884-891.
    [28]李爱冰,袁先厚,陈新军.VEGF、bFGF住血.管网织细胞瘤中的表达[J].中国临床神经外科杂志.2000.5:229-231.
    [29]Plate KH,Breier G,Welch HA,et al.Vascular endothelial factor is a potential tumor angiogenesis factor in human gliomas in vivo[J].Nature,1992,359:845.
    [30]林海泓,肖萍,朱军,等.重组人促红细胞生成素对骨髓间充质干细胞增殖及分泌功能的影响[J].复旦学报(医学版),2007,34:674-677.
    [31]刘飞德,陈凛,李基业.胃癌组织促红细胞生成素受体表达与血管生成的关系及意义[J].中华普通外科杂志,2006,21:130-132.
    [32]Latif F,Tory K,Gnarra J,et al.Identification of the von Hippel-Lindau disease tumor suppressor gene[J].Science,1993,260:1317-1320.
    [33]Kibel A,lliopoulos O,Dcaprio JA,et al.Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C[J].Science,1995,269:1444.
    [34]Crossey PA,Foster K,Richards FM,et al.Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease:analysis of allele loss in VHL tumours[J].Human Genetics;1994,93:53-58.
    [35]Lee JY,Dong SM,Park WS,et al.Loss of heterozygosity and somatic mutations of the VHL tumor suppressor gene in sporadic cerebellar hemangioblastomas[J].Cancer Res,1998,58:5049.
    [36]Tse JY,Wong G,Lo K W,et al.Molecular genetic analysis of the Von-Hippel-Lindau disease tumor suppressor gene in familial and sporadic cerebellar hemangioblastomas[J].Am J Clin Pathol,1997,107:459.
    [1]Derisi J,Penland 1,Brown PO,et al.Use of cDNA microarray to analyse gene expression patterns in human cancer[J].Nat Genet,1996,14:457-460.
    [2]Schena M,Shalon D,Davis RW,et al.Quantitative monitoring of gene expression pattern with a complementary DNA microarray[J].Science,1995,270:467-470.
    [3]Leung YF,Cavalieri D.Fundamentals of cDNA microarray data analysis[J].Trends Genet,2003,19:649-659.
    [4]Schofield D,Triche TJ.cDNA microarray analysis of global gene expression in sarcomas[J].Curr Opin Oncok 2002,14:406-411.
    [5]丁兴华,周良辅,毛颖.等.应用cDNA微阵列技术初步分析中枢神经系统血管母细胞瘤的基因表达谱[J],中华实验外科杂志,2006,23:251.
    [6]胡吉,王宣春,沈烨,等.采用cDNA微阵列杂交技术对垂体瘤基冈表达谱的研究[J].复旦学报(医学版),2005,32:565-570.
    [7]Saaristo A,Karpanen T,Alitalo K.Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis[J].Oncogene,2000,19:6122-6129.
    [8]Ohsawa R,Ohtsuka T,Kageyama R.Mash1 and Math3 are required for development of branchiomotor neurons and maintenance of neural progenitors[J].J Neurosci,2005,25:5857-5865.
    [9]Kageyama R,Ohtsuka T,Hatakeyama J,et al.Roles of bHLH genes in neural stem cell differentiation[J].Exp Cell Res 2005,306:343-348.
    [10]Emsley JG,Mitchell BD,Kempermann G,et al.Adult neurogenesis and repair of the adult CNS with neural progenitors,precursors,and stem cells[J].Progress in Neurobiology 2005,75:321-341.
    [11]Duggan DJ,Bittner M,Chert Y,et al.Expression profiling using eDNA microarray[J].Nature Genet,1999,21:10-14.
    [12]Yoon K,Gaiano N.Notch signaling in the mammalian central nervous system:insights from mouse mutants[J].Nat Neurosci 2005,8:709-715.
    [13]Shenkar R,Elliott JP,DienerK,et al.Differentialgene expression in human cerebrovascular malformations[J].Neurosurg,2003,52:465-478.
    [14]Duggan DJ,Bittner M,Chert Y,et al.Expression profiling using cDNA microarray[J].Nature Genet,1999,21:10-14.
    [15]Vortmeyer AO,Frank S,Jeong S,et al.Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease[J].Cancer Res,2003,63:7051-7055.
    [16]Marion K,Hugo HM,Karl HP.Coexpression oferythropoietin and Vascular Endothelial Growth Factor in nervous system tumors associated with von Hippel-Lindau tumor suppressor gene loss of function[J].Blood,1998,92:3388-3393.
    [17]Song G,Dhodda VK,Blei AT,et al.GeneChip analysis shows altered mRNA expression of transcripts of neurotransmitter and signal transduction pathways in the cerebral cortex of potacaval shunted rats[J].J Neurosci Res,2002,68:730-737.
    [18]Zhang HW,Gu XF.Alteration ofgene expression profiles of cultured embryo rat cortex induced by phenylalanine[J].Acta Physiologica Sinica,2004,56:183-191.
    [19]Thiery JP.The sage of adhension molecules[J].J Cell Bioehem,1996,61:489,
    [20]王伟铭,周同,姚建.钙粘着蛋白结构与功能研究进展[J].上海免疫学杂志,1998,18:247-249.
    [21]Vestweber D.Ligand-specificity of the selectins[J].J Cell Biochem,1996,61:585.
    [22]Frenette PS,Wagner DD.Adhesion molecules-Part l[J].New Eng J Med,1996,334:1526.
    [23]Chen S,Yin XL,Zong HL,et al.Driving Functional E2Cadherin onto Cell Surface by Elevation of PKB Activity in SMMC 7721 Hepato-carcinoma Cells[J].Prog Bioehem Biophys,2003,30:715-720.
    [24]王知秋,陈衔城.颅内生殖细胞肿瘤[A].见:周良辅.现代神经外科学[M].上海:复旦大学出版社,2001:468-476.
    [25]鲍君红,刘慧雯,王锦绣.昆明小鼠胚胎干细胞定向分化为神经干细胞的实验研究[J].哈尔滨医科大学学报,2007,41:299-302.
    [26]Nigel K,Craig BD,Keting C,et al.CD4 Function in Thymocyte Differentiation and T Cell[J].Biological Sciences,1993,342:25-34.
    [27]Luo W,Lin SC.Axin:a master scaffold for multiple signaling pathways[J].Neurosignals,2004,13:99-113.
    [28]Elena V,Diana C.Lenhard,et al.RBP-J(Rbpsuh) is essential to maintain muscle progenitor cells and to generate satellite cells[J].PNAS,2007,104:4443-4448.
    [29]Zhou S,Schuetz JD,Bunting KD,et al.The ABC transporter Bcrpl/ABCG2is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype[J].Nat Meal,2001,7:1028-1034.
    [30]Kim M,Turnquist H,Jackson J.The multidrug resistance transporter ABCG2(breast cancer resistance protein 1) effluxes Hoechst33342 and is overexpressed in hematopoietic stem cells[J].Clin Cancer Res,2002,8:22-28.
    [31]Rocchi E,Khodjakov A,Volk EL,et al.The product of the ABC half-transporter gene ABCG2(BCRP/MXR/ABCP) is expressed in the plasma membrane[J].Bioehem Biophys Res Commun,2000,271:42-46.
    [32]Scharenberg CW,Harkey MA,TorokStorb B.The ABCG2 transporter is an efficient Hoechst 33342 effiux pump and is preferentially expressed by immature human hematopoietic progenitors[J].Blood,2002,99:507-512.
    [33]Jackson KA,Majka SM,Wang H,et al.Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells[J].J Clin Invest,2001.107:1395-1402.
    [34]Gussoni E,Soneoka Y,Strickland CD,et al.Dystrophin expression in the mdx mouse restored by stem cell transplantation[J].Nature,1999,401:390-399.
    [35]Sutherland RM.Tumor hypoxia and gene expression[J].Acta Oncol,1998,37:567-574.
    [36]Hockel M,Schlenger K,Aral B,et al.Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix[J].Cancer Res,1996,56:4509-4515.
    [37]Sundfor K,Lyng H,Rofstad EK.Turnout hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix[J].Br J Cancer,1998,78:822-827.
    [38]Brizel DM,Scully SP,Harrelson JM,et al.Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma[J].Cancer Res,1996,56:941-943.
    [39]Beavon IR.Regulation of E-cadherin:does hypoxia initiate the metastatic cascade[J]? Mol Pathol,1999,52:179-188.
    [40]Dachs GU,Tozer GM.Hypoxia modulated gene expression:angiogenesis,metastasis and therapeutic exploitation[J].Eur J Cancer,2000,36:1649-1660.
    [41]Jogi A,Ora I,Nilsson H,et al.Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crestlike phenotype[J].Proc Natl Acad Sci,2002,99:7021-7026.
    [42]Semenza GL,Nejfelt MK,Chi SM,et al.Hypoxiainducible nuclear factors bind to an enhancer element located 3/to the human erythropoietin gene[J].Proc Natl Acad Sci,1991,88:5680-5684.
    [43]Zbar B,Kaelin W,Maher E,et al.Third International Meeting.On von Hippel-Lindau disease[J].Cancer Res,1999,59:2251.
    [44]Kibel A,Iliopoulos O,DeCaprio JA,et al.Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C[J].Science,1995,269:1444-1446.
    [45]Kallio PJ,Wilson WJ,O'Brien S,et al.Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitinproteasome pathway[J].J Biol Chem,1999,274:6519-6525.
    [46]Bertges D J,Fink MR Delude RL.Hypoxic signal transduction in critical illness[J].Crit Care Med,2000,28:N78-N86.
    [47]Levy AP,Levy NS,Wegner S,et al.Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia[J].J Biol Chem,1995,270:13333-13340.
    [48]Raval RR,Lau KW,Tran MG,et al.Contrasting properties of hypoxia-inducible factor 1(HIF-1)and HIF-2 in von HippelLindau-associated renal cell carcinoma[J].Mol Cell Biol,2005,25:5675-5686.
    [49]Kunz M,Hartmann A,Flory E,et al.Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma:a potential mechanism for high tumor aggressiveness[J].Am J Pathol,1999, 155:753-763.
    [50] Griffiths L. Dachs GU, Bicknell R, et al. The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/ thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo[J]. Cancer Res, 1997, 57: 570-572.
    [51] Melillo G. Taylor LS, Brooks A, et al. Functional requirement of the hypoxia responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine[J]. J Biol Chem, 1997,272: 12236-12243.
    [52] Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J].Circ Res,2003,93: 1074-1081.
    [53] Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O_2 homeostasis by hypoxia-inducible factor 1 alpha[J]. Genes Dev, 1998, 12: 149-162.
    [54] Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1[J]. Cancer Res, 2003, 63: 1138-1143.
    [55] Niizeki H, Kobayashi M, Horiuchi I, et al. Hypoxia enhances the expression of autocrine motiiity factor and the motiiity of human pancreatic cancer cells[J]. Br J Cancer, 2002, 86: 1914-1919.
    [56] Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor lalpha[J]. Genes Dev, 2000, 14: 34-44.
    [57] Stoeltzing O, McCarty MF, Wey JS, et al. Role of hypoxia-inducible factor lalpha in gastric cancer cell growth, angiogenesis, and vessel maturation[J]. J Natl Cancer Inst, 2004, 96: 946-956.
    [58] Berra E, Milanini J, Richard DE, et al. Signaling angiogenesis via p42/p44 MAP kinase and hypoxia[J]. Biochem Pharmacol, 2000, 60: 1171-1178.
    [59] Sotsios Y, Ward SG. Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines[J]. Immunol Rev, 2000, 177: 217-235.
    [60] Cheolju L, Seung JK, Dae GJ, et al. Structure of human FIH1 reveals a unique active site pocket and interaction sites for HIF1 and von HippelLindau[J]. J Biol Chem, 2003, 278: 7558-7563.
    [61] Marion K, Hugo HM, Karl HP. Coexpression of erythropoietin and Vascular Endothelial Growth Factor in nervous system tumors associated with von Hippel-Lindau tumor suppressor gene loss of function[J]. Blood, 1998, 92: 3388-3393.
    [62] Cheolju L, Seung JK, Dae GJ, et al. Structure of human FIH1 reveals a unique active site pocket and interaction sites for HIF1 and von HippelLindau[J]. J Biol Chem, 2003, 278: 7558-7563.
    [63] Crossey PA, Foster K, Richards FM, et al. Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease: analysis of allele loss in VHL tumours[J]. Human Genetics, 1994,93:53-58.
    [64]Martin AP,Christina M,Marion K,et al.Expression ofhypoxia-inducible carbonic anhydrases in brain tumors[J].Neuro-Oncology.2005,7:465-475.
    [65]Brown MD,Sacks DB.IQGAP1 in cellular signaling:bridging the GAP[J].Trends Cell Biol,2006,16:242-249.
    [66]Cheng JK,Kang XL,Zhang S,et al.SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia[J].Cell,2007,131:584-595.
    [67]Ma J.Advances in management of acute promyelocytic leukemia witharsenic trioxide[J].Chin J Integr Med.2007,13:92-94.
    [1]Corbett JM,Dunn MJ,Posch A,et al.Positional reproducibility of protein spots in two -dimensional polyacrylamide gel electrophoresis using mmobilized pH gradient isoelectric focusing in the first dimension:An interlaboratory comparison[J].Eleetrophoresis,1994,15:1205-1211.
    [2]Wasinger VC,Cordwell S J,Anne CD,et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J].Eleetrophoresis,1995,16:1090-1094.
    [3]O'Farrell PH.High resolution two-dimensional electrophoresis of proteins[J].J Bio Chem,1975,250:4007-4021.
    [4]Rabilloud T.Solubilization of Proteins in 2-D electrophoresis:An outline[J].Methods Moi Biol,1999,112:9-19.
    [5]G6rg A,Obermaier C,Boguth G,et al.The current state of two-dimensional electrophoresis with immobilized pH gradients[J].Electrophoresis,2000,21:1037-1053.
    [6]Pasquali C,Fialka I,Huber LA.Preparative two-dimensional gel electrophoresis of membrane proteins[J].Electrophoresis,1997,18:2573-2581.
    [7]Yah JX,Wait R,Berkelman,et al.A modified silver staining Protocol for visualization of Proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry[J].Eiectrophoresis,2000,21:3666-3672.
    [8]Gage FH.Mammalian neural stem cells[J].Science,2000,287:1433-1438.
    [9]Mckay R.Stem cells in the central nervous system[J].Science,1997,276:66-71.
    [10]Takamiya,Kohsaka S,Toya S,et al.Limmunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats[J].Devel Brain Res,1998,38:201-210.
    [11]Vortmeyer AO,Frank S,Jeong S,et al.Developmental arrest of angioblastic lineage initiates tumorigenesis in von Hippel-Lindau disease[J].Cancer Res,2003,63:7051-7055.
    [12]Maren TH.Carbonic anhydrase:chemistry,physiology and inhibition[J].Physiol Rev.1967,47:595-781.
    [13]Smith KS,Ferry JG.A Plant-Type(beta -Class) Carbonic Anhydrase in the Thermophilic Methanoarchaeon Methanobacterium thermoautotrophicum[J].Bacteriol,1999,181:6247-6253.
    [14]Lehtonen JM,Parkkila S,Vullo D,et al.Carbonic anhydrase inhibitors.Inhibition of cytosolic isozyme Ⅷ with aromatic and heterocyelic sulfonamides:A novel target for the drug design[J].Bioorg Med Chem Lett,14:3757-3762.
    [15]Tripp BC,Bell CB,Cruz F,et al.A role for iron in an ancient carbonic anhydrase[J].J Biol Chem, 2004,279:6683-6687.
    [16]Tripp BC,Smith K,Ferry JG.Carbonic anhydrase:New insights for an ancient enzyme[J].J Biol Chem,2001,276:48615-48616.
    [17]Raval RR,Lau KW,Tran MG,et al.Contrasting properties of hypoxia-inducible factor 1(HIF-1)and HIF-2 in von HippelLindau-associated renal cell carcinoma[J].Mol Cell Biol,2005,25:5675-5686.
    [18]Bonapace G,luliano F,Molica S,et al.Cytosolic carbonic anhydrase activity in chronic myeloid disorders with different clinical phenotype[J].Biochim Biophys Acta,2004,1689:179-181.
    [19]Kuo WH,Chiang WL,Yang SF,et al.The differential expression of cytosolic carbonic anhydrase in human hepatocellar[J].Life Sci,2003,73:2211-2223.
    [20]Shu YL,Aurelion ON,Jan K,et al.Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney[J].Cancer Res,1997,57:2827-2831.
    [21]Martin AP,Christina M,Marion K,et al.Expression of hypoxia-inducible carbonic anhydrases in brain tumors[J].Neuro Oncology,2005,7:465-475.
    [22]Martin H,Rostas I,Pael Y,et al.Subcellular Localisation of 14-3-3 lsoforms in Rat Brain Using Specific Antibodies[J].J Neurochem,1994,63:2259-2265.
    [23]Wen B,Wang XJ.Advancement of 14-3-3 Protein[J].Chinese Bulletin of Life Science,2004,16:226-230.
    [24]Rubio MP,Geraghty KM,Wong BH,et al.14-3-3-Affinity purification of cover 200 human phosphoproteins reveals new links to regulation of cellular metabolism,proliferation,and trafficking[J].Biochem J,2004,379:395-408.
    [25]Masters SC,Fu H.Survival-promoting functions of 14-3-3 proteins[J].Biochem Soc Trans,2002,30:360-365.
    [26]Achan V,Broadhead M,Malaki M,et al.Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase[J].Arterioscler Thromb Vase Bioi,2003,23:1455-1459.
    [27]Kielstein JT,lmpraim B,Simmel S,et al.Cardiovascular effects of systemic NO synthase inhibition with asymmetric dimethylarginine in humans[J].Circulation,2004,109:172-177.
    [28]Hughes JA,Cooke-Yarborough CM,Chadwick NC,et al.High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors[J].Gila,2003,42:25-35.
    [29]Camello C,Pariente JA,Salido GM,et al.Role of proton gradients and vacuolar H+-ATPases in the refilling of intracellular calcium stores in exocrine cells[J].Curt Biol,2000,10:161-164.
    [30]Karwatowska-Prokopczuk E,Nordberg JA,Li HL,et al.Effect of vacuolar ATPase on phi,Ca2+, and apoptosis in neonatal cardiomyocytes during metabolic inhibition/recovery[J].Cire Res,1998,82:1139-1144.
    [31]谢嵘,朱剑虹,刘杭,等.中枢神经系统血管母细胞瘤的蛋白质组学研究[J].中国神经肿瘤杂志,2006,4:192-199.
    [32]Liu H,Xie R,Yao J,et al.Proteomics analysis of central nervous system hemangioblastoma[J].Molecular and Cellular Proteomies,2006,5:S245.
    [33]Ranish JA,Hahn S,Lu Y,et al.Identification of TFBS,a new component of general transcription and DNA repair factor ⅡH[J].Nat Genet,2004,36:707-713.
    [34]Rout MR Aitchison JD,Suprapto A,et al.They yeast nuclear pore complex:Composition,architecture,and transport mechanism[J].J Cell Biol,2000,148:631-651.
    [1]Washlbum MP,Wolters D,Yates JR.Large-Scale analysis of the yeast proteome by multidimensional protein identification technology[J].Nature Bioteehnology,2001,19:242-247.
    [2]Lu P,Vogel C,Wang R,et al.Absoloute protein expression profiling estimates the relative contributions of transcriptional and translational regulation[J].Nature Bioteehnology,2007,25:117-124.
    [3]Romijn EP,Krijgsveld J,Heck AJ.Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics[J].J Chromatogr A,2003,1000:589-608.
    [4]Chelius D,Zhang T,Wang G,et al.Global protein identification and qualification technology using two-dimensional liquid chromatography nanospray mass spectrometry[J].Analytical Chemistry 2003,75:6658-6665.
    [5]Old W.Meyer-Arend K,Aveline-Wol L,et al.Comparison of label-free methods got quantifying human proteins by shotgun proteomics[J].Molecular and Cellular Proteomics,2005,4:1487-1502.
    [6]谢嵘,朱剑虹,刘杭,等.中枢神经系统血管母细胞瘤的蛋白质组学研究[J].中国神经肿瘤杂志,2006,4:192-199.
    [7]Liu H,Xie R,Yao J,et al.Proteomics analysis of central nervous system hemangioblastoma[J].Molecular and Cellular Proteomics,2006,5:S245.
    [8]Masters SC,Fu H.Survival-promoting functions of 14-3-3 proteins[J].Biochem Soc Trans,2002,30:360-365.
    [9]Achan V,Broadhead M,Malaki M,et al.Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase[J].Arterioscler Thromb Vase Biol,2003,23:1455-1459.
    [10]Shu YL,Aurelion ON,Jan K,et al.Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney[J].Cancer Res,1997,57:2827-2831.
    [11]杨胜利.系统生物学研究进展[J].中国科学院院刊,2004,19:31-34.
    [1]Wasinger VC,Cordwell SJ,Anne CD,et al.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium[J].Eleetrophoresis,1995,16:1090-1094.
    [2]Dove A.Proteomics:translation genomics into products[J].Nat Bioteehnal,1999,17:233-236.
    [3]Kahn P.From genome to proteome:looking at a cell's proteins[J].Science,1995,270:369-370.
    [4]Aebersold R,Mann M.Mass spectrometry-based proteomics[J].Nature,2003,422:198-207.
    [5]Pandey A,Mann M.Proteomics to study genes and genomes[J].Nature,2000,405:837-846.
    [6]Hochstrasser DF.Proteome in perspective[J].Clin Chem Lab Meal,1998,36:825-836.
    [7]Washburn MP,Wolters D,Yates JR.Large-scale analysis of the yeast proteome by multidimensional protein identification technology[J].Nat Bioteehnol,2001,19:242-247.
    [8]Wu CC,MacCoss M J,Hwoell KE,et al.A method for 532the comprehensive proteomic analysis of membrane proteins[J].Nat Biotechnol,2003,21:538.
    [9]Hanash S.Disease proteomics[J].Nature,2003,422:226-232.
    [10]Kraemer KH.From proteomics to disease[J].Nat Genet,2004,36:677-678.
    [11]Gorg A,Weiss W,Dunn MJ.Current two-dimensional electrophoresis technology for proteomics[J].Proteomics,2004,4:3665-3685.
    [12]Romijn EP,Krijgsveld J,Heck AJ.Recent liquid chromatographic-(tandem) mass spectrometric applications in proteomics[J].J Chromatogr A,2003,1000:589-608.
    [13]Belov ME,Anderson GA,Wingerd MA,et al.An automated high performance capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometer for high-throughput proteomics[J].J Am Soc Mass Spectrom,2004,15:212-232.
    [14]Malyarenko DI,Cooke WE,Adam BL,et al.Enhancement of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight mass spectrometric records for serum peptides using time-series analysis techniques[J].Clin Chem,2005,51:65-74.
    [15]Smolka M,Zhou H,Aebersold R.Quantitative protein profiling using two-dimensional gel electrophoresis,isotope-coded affinity tag labeling,and mass spectrometry[J].Mol Cell Proteomics,2002,1:19-29.
    [16]Sakai J,Kojima S,Yanagi K,et al.~(18)O-labeling quantitative proteomics using an ion trap mass spectrometer[J].Proteomics,2005,5:16-23.
    [17]Washlburn MP,Wolters D,Yates JR.Large-Scale analysis of the yeast proteome by multidimensional protein identification technology[J].Nature Biotechnology,2001,19:242-247.
    [18]Lu P,Vogel C,Wang R,et al.Absoloute protein expression profiling estimates the relative contributions of transcriptional and translational regulation[J].Nature Biotechnology,2007,25:117-124.
    [19]Chelius D,Zhang T,Wang G,et al.Global protein identification and qualification technology using two-dimensional liquid chromatography nanospray mass spectrometry[J].Analytical Chemistry,2003,75:6658-6665.
    [20]Old W,Meyer-Arend K,Aveline-Wol L,et al.Comparison of label-free methods gor quantifying human proteins by shotgun proteomics[J].Molecular and Cellular Proteomics,2005,4:1487-1502.
    [21]Seong SY.Microimmunoassay using a protein chip:optimizing conditions for protein immobilization[J].Clin Diagn Lab Immunol,2002,9:927-930.
    [22]Gould KL,Ren L,Feoktistova AS,et al.Tandem affinity purification and identification of protein complex components[J].Methods,2004,33:239-244.
    [23]Geisberg JV,Struhl K.Quantitative sequential chromatin immunoprecipitation,a method for analyzing co-occupancy of proteins at genomic regions in vivo[J]. Nucleic Acids Res, 2004, 32: e151.
    [24] Causier B. Studying the interactome with the yeast two-hybrid system and mass spectrometry[J]. Mass Spectrom Rev, 2004, 23: 350-367.
    [25] Yanagida M. Functional proteomics, current achievements[J]. Analyt Technol Biomed Life Sci, 2002,771:89-106.
    [26] Eillen TK, Thomas EF. Molecules to maps: tools for visualization and interaction in support of computational biology[J]. Bioinformatics, 1998, 14:764-771.
    [27] Andrew L. Bioinformatics in the pharmaceutical industry[J]. Bioinformatics, 1996, TIBTCH: 308-312.
    
    [28] Burkhard R. Bioinformatics in structural genomics[J]. Bioinformatics, 2002,18: 897-898.
    [29] Eric J. Current trends in bioinformatics[J]. TRENDS in Biotechnology, 2002, 20: 317-319.
    [30] Thomas DW. Bioinformatics in the post-genomicera[J].Trends in Biotechnology, 2001, 19: 479-480.
    [31] Atul J. Challenges in bioinformatics: infrastructure, models and analytics[J]. Trends in Biotechnology, 2001, 19: 159-160.
    [32] Gauss C, Kallum M, Lowe M, et al. Analysis of the mouse proteome. (I) Brain proteins separation by two-dimensional electrophoresis and identification by mass spectrometry and genetic variation[J]. Electrophoresis, 1999, 20: 575-600.
    [33] Fountoulakis M, Hardmaier R, SchullerE, et al. Differences in protein level between neonatal and adult brain[J]. Electrophoresis, 2000, 21: 673-678.
    [34] Langen H, Beindt P, Roder D, et al. Two-dimensional map of huaman brain proteins[J]. Electrophoresis, 1999, 20: 907-916.
    [35] Davidsson P, Puchades M, Blennow K. Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing[J]. Electrophoresis, 1999,20:431-437.
    [36] Fountoulakis M, Schuller E, Hardmeier R, et al. Rat brain proteins two-dimensional protein database and variations in the expression level[J]. Electrophoresis, 1999, 20: 3572-3579.
    [37] Tsugita A, Kawakami T, Uchida T, et al. Proteome analysis of mouse brain: two-dimensional electrophoresis profiles of tissue proteins during the course of aging[J]. Electrophoresis, 2000, 21: 1853-1871.
    [38] Yu LR, Conrads TP, Uo T, et al. Global analysis of the cortical neuron proteome[J]. Mol Cell Proteomics, 2004, 3: 896-907.
    [39] Edgar PF, Douglas JE, Knight C, et al. Proteome map of the human hippocampus[J]. Hippocampus,1999,9:644-650.
    [40]Chen W.Ji I,Xu X,et al.Proteomic comparison between human young and old brains by two-dimensional gel electrophoresis and identification of proteins[J].Int J Dev Neurosci.2003,21:209-216.
    [41]Dos CG,Thomas DD.An overview of actin structure and actin-binding proteins[J].Results Probl Cell Differ,2001,32:1-7.
    [42]Gulesserian T,Seidl R,Hardmeier R,et al.Superoxide dismutase SOD1,encoded on chromosome 21,but not SOD2 is overexpressed in brains of patients with Down syndrome[J].J Investig Med,2001,49:41-46.
    [43]Fratelli M,Demol H.Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human Tlymphocytes[J].Proc Natl Acad Sci USA,2002,99:3505-3510.
    [44]Verma R,Chert S,Feldman R,et al.Proteasomal proteomics identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes[J].Mol Biol Cell,2000,11:3425-3439.
    [45]Peyrl A,Weitzdoerfer R,Gulesserian T,et al.Aberrant expression of signaling-related proteins 14-3-3 gamma and RACK I in fetal Dwon Syndrome brain(trisomy 21)[J].Electrophoresis,2001,23:152-157.
    [46]Yanagida M,Shimamoto A,Nishikawa K,et al.Isolation and proteomic characterization of the major proteins of the nucleolin-binding ribonucleoprotein complexes[J].Proteomics,2001,1:1390-1404.
    [47]Krapfenbauer K,Berger M,Friedlein A,et al.Changes in the levels of low-abundance brain proteins induced by kainic acid[J].Eur J Biochem,2001,268:3532-3537.
    [48]Guo X,Ying W,Wan I,et al.Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro[J].Electrophoresis,2001,22:3067-3075.
    [49]Hashimoto R,Nakamura Y.Visual stimulation-induced Phosphorylation ofneurofilament-L in the visual cortex of dark-reared rats[J].Eur J Neuro Sci,2001,14:1237-1245.
    [50]Bicknese AR,Goodwin HS,Quinn CO,et al.Human umbilical cord blood cells can be induced to express markers for neurons and glia[J].Cell Transplant,2002,11:261-264.
    [51]Vlkolinsky R,Cairns N,Fountoulakis M,et al.Decreased brain levels of 2',3'-cyclic nucleotide-3'-phosphodiesterase in Down syndrome and Alzheimer's disease[J].Neurobiol Aging,2001,22:547-553.
    [52]Edgar PF,Douglas JE,Copper GI,et al.Comparative proteome analysis of the hippocampus implicates chromicsome 6q in schizophrenia[J].Moi Phychiatry,2000,5:85-90.
    [53] Edgar PF, Schonberger SI. A comparative proteome analysis of hippocampal tissue from schizophrenic and Alzheimer's disease individuals[J]. Mol Paychistry, 1999, 4: 173-178.
    [54] Cheon MS, Fountoulakis M, Dierssen M, et al. Expression profiles of proteins in fetal brain with Down syndrome[J]. J Neural Transm Suppl, 2001, 61: 311-319.
    [55] Schonberger SI, Edgar PE, Kydd R, et al. Proteomic analysis of the brain in Alzheimer's disease: molecular phenotype of a complex disease process[J]. Proteomics, 2001, 1: 1519-1528.
    [56] Boyd-Kimball D, Sultana R, Poon HF, et al. Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: Implications for Alzheimer's disease[J]. Neuroscience, 2005, 132: 313-324.
    [57] Newcombe I, Eriksson B, Otteivald I, et al. Extraction and proteomic analysis of proteins from normal and multiple sclerosis postmortem brain[J]. J ChromatogrB Analyt Technol Biomed Life Sci, 2005, 815: 191-202.
    [58] Beranova GS, Pabst JI, Russell TM, et al. Preliminary analysis of the mouse cerebellum proteome [J]. Brain Res, 2002, 98: 135-140.
    [59] D'AlIan B, Debra BK, Alessandra C. Proteomics in Alzheimer's disease insights into protential mechanisms of neurodegeneration [J]. J Neurochem, 2003, 86: 1313-1327.
    [60] Choi J, Malaowsky CA, Talent JM, et al. Identification of oxidized plasma proteins in Alzheimer's disease[J]. Biochem Biophys Res Commun, 2002, 293: 1566-1570.
    [61] Hensley K, Floyd RA, Zheng NY, et al. P38 kinase is activate in the activate in the Alzheimer's disease brain[J]. J Neurochem, 1999, 72: 2053-2058.
    [62] Xu J, Kao SY, Lee FJ, et al. Dopamine-dependent neurotoxicity of alpha-synuclein a mechanism for selective neurodegeneration in Parkinson disease[J]. Nat Med, 2002, 8: 600-606.
    [63] Iwadate Y, Sakaida T, Hiwasa T, et al. Molecular classification and survival prediction in human gliomas based on proteome analysis[J]. Cancer Res, 2004, 64: 2496-2501.
    [64] Senger DL, Tudan C, Guiot MC, et al. Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes[J]. Cancer Res, 2002, 62: 2131-2140.
    [65] Muracciole X, Romain S, Dufour H, et al. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification[J]. Int J Radiat Oncol Biol Phys, 2002, 52: 592-598.
    [66] Reeves SA, Chavez-Kappel C, Davis R, et al. Developmental regulation of annexin II (Lipocortin 2) in human brain and expression in high grade glioma[J]. Cancer Res, 1992, 52: 6871-6876.
    [67] Zhang R, Tremblay TL, Mcdermid A, et al. Identification of differentially expressed proteins in human glioblastoma cell lines and tumors[J]. Glia, 2003, 42: 194-208.
    [68] Hiratsuka M, Inoue T, Toda T, et al. Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene[J]. Biochemi Biophysi Res Commun, 2003,309:558-566.
    [69]Desiderio DM,Zhan X.The human pituitary proteome:the characterization of differentially expressed proteins in an adenoma compared to a control[J].Cell Mol Biol,2003,49:689-712.
    [70]Peyrl A,Krapfenbauer K.Slavc I,et al.Protein profiles of medulloblastoma cell lines DAOY and D283:identification of tumor-related proteins and principles[J].Proteomies,2003,3:1781-1800.
    [71]谢嵘,朱剑虹,刘杭,等.中枢神经系统向管母细胞瘤的蛋白质组学研究[J].中国神经肿瘤杂志,2006,4:192-199.
    [72]Liu H,Xie R,Yao J,et al.Proteomics analysis of central nervous system hemangioblastoma[J].Molecular and Cellular Proteomics,2006,5:S245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700