中国东部近海夏季环流特征及其动力机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用2008年夏季西南黄海3个航次的水文资料和一套潜标、2009年夏季的中科院海洋所开放航次水文资料和6个Argos表层漂流浮标资料,结合数值模拟与卫星遥感数据,研究了西南黄海夏季环流的结构与动力机制。研究表明,夏季江苏沿岸海流受风驱动向北流动,其流向与传统的观点截然相反。数值实验结果分析表明,江苏沿岸斜压海流比风海流要弱得多,夏季江苏至鲁南海域的西南黄海环流主要受西南季风系统支配。
     提出夏季青岛外海存在风生上升流现象,同时指出苏北浅滩外侧也存在风生上升流。进一步指出,苏北浅滩外侧的上升流由风场、潮混合及海表浮力通量共同作用生成。南风驱动的向北的苏北沿岸流造成向岸的底埃克曼输运,将次表层冷水带到近岸海域,形成上升流区的海面低温异常现象。苏北浅滩海区,强烈的潮和其它湍流混合造成上下埃克曼层重叠,从而使次表层冷水无法到达沿岸海域,而是于外海约30m等深线处上升到海面。
     研究还表明,夏季整个西南黄海西侧沿岸存在着一个统一的上升流系统。这个系统是由海岸阻挡表层埃克曼输运引起的,在淡水输入和海表热通量造成的浮力效应以及潮混合等效应的共同作用下形成一定的空间结构。在苏北浅滩以南,强烈的潮混合作用使上升流在约30m等深线处涌升至海表;在苏北浅滩之上,上升流由于射阳河等径流所带来的强烈的淡水输入被浮力关闭;在青岛外海,表层浮力抑止减弱,上升流再次出现。
     指出逆温是夏季黄海次表层经常出现的一种现象。多年平均的气候态以及2008年7月22日航次的水文资料都表明,在黄海海槽西侧约40m等深线的温跃层以下海区,经常出现较强的逆温现象,其形成机制在于温跃层下的低盐冷水与海槽中部近底层的高盐暖水发生相对移动所。逆温往往发生在夏季黄海冷水团内部,显示黄海冷水团内部存在着精细的温盐结构,其在所在海区的垂向混合应当较弱。该观点与传统的黄海冷水团内部垂向混合较强从而导垂直性质均一的观点不同。
     对漂流浮标运动轨迹和温盐分布的分析表明,台湾暖流夏季北上的范围可以到达长江口以北,并进入江苏沿岸流和黄海内部海域,这一现象在今后的研究中值得进一步关注。
     首次观测到了长江口外跨陆架穿刺锋面的三维结构,指出2006年10月16日长江口外的穿刺锋面是由跨陆架的射流从近岸携带富含营养盐、叶绿素和悬浮物的淡水横跨近岸平均锋面造成的。初步分析其动力机制与沿岸流的辐聚及平均锋面的不稳定性有关。
     利用MODIS/Aqua与SeaWiFs卫星图像对跨陆架穿刺锋面出现的频率进行了统计分析。分析了1998-2007十年中其季节内和年际变化规律,指出每年都有大约2至11个穿刺锋面出现,平均出现率占到了可辨识图像总数的25%以上,有超过40次的穿刺锋面其长度在100公里以上,最大长度超过300公里。穿刺锋面全年都可以发生,冬季和夏季较多,春季和秋季较少。穿刺锋面主要指向东、东南和东北三个方向,其中指向东或东北的穿刺锋面大都发生在西南季风期间,表明西南季风对穿刺锋面的生成有重要影响。
     进一步,提出跨陆架穿刺锋面是东中国海跨陆架物质输运的重要通道之一。
The structure and dynamics of the subtidal circulation in the southwestern Yellow Sea in summer are studied based on the hydrographic data of 4 cruises in the summers of 2008 and 2009, satellite-tracked trajectory data of six Argos floats, moored current-meter data of Acoustic Doppler Profilers (ADPs) measurements, satellite scatterometer wind data,, and numerical modeling. The coastal currents off the northern Jiangsu province are shown to flow northward in summer, against the traditional view of the southward Yellow Sea Coastal Current all year round in this area. Numerical experiments suggest that the coastal currents along the Jiangsu and Lunan coasts are dominated by the southeasterly monsoonal forcing, with the baroclinic currents much weaker than the wind-driven circulation.
     Associated with the northward flow in the southwestern Yellow Sea, coastal upwelling currents off the Jiangsu coast and off the city of Qingdao are indicated by areas of cold sea surface temperature (SST). The upwelling off Qingdao is discovered for the first time in history. Analysis of the modeling results suggests that the upwelling off the Jiangsu coast is induced by the blocking of the surface wind-driven Ekman transport at the coast and is modulated by the tidal mixing and buoyancy effects. The onshore bottom Ekman transport associated with the northward Jiangsu coastal current brings the subsurface cold water to the nearshore area, which is elevated to the sea surface by the upwelling current. The overlapping of the surface and bottom Ekman layers over the shallow and flat Subei Bank has resulted in the upwelling to surface in an offshore belt along roughly the 30 m isobath.
     The upwelling currents off the Jiangsu and Lunan coasts are further shown to be an unified upwelling system in the southwestern Yellow Sea driven by the southerly winds in summer. The upwelling system is modulated by tidal mixing and by the buoyancy effect produced by the river runoff from the Sheyang River and by surface heat flux, resulting in non-homogeneous distribution of the upwelling along the coasts: South of the Subei Bank, the upwelling front surfaces along roughly the 30 m isobath due to the strong vertical mixing in the nearshore area; Over the Subei Bank, the upwelling is shut down by the buoyancy flux from the Sheyang River runoff and from surface heating; The upwelling re-occurs further north off Qingdao because the surface flow and Ekman transport push the freshwater offshore.
     Significant temperature inversions are found in the bottom cold water near the 40 m isobath over the west flank of the Yellow Sea trough in summer. The temperature inversions are probably produced by the relative movement between the bottom warm and saline current near center of the Yellow Sea trough and the cold and fresh water to its west. The inversions, which occur frequently to produce rich stratification structure, suggest that the vertical mixing in the Yellow Sea Bottom Cold Water (YSCWM) is weak, countering the traditional view that the YSCWM is vertically well mixed by strong tidal mixing. The trajectories of the Argos floats indicate that the Taiwan Warm Current flow northward beyond the Changjiang mouth and join the Jiangsu coastal current and the central Yellow Sea circulation in summer.
     Satellite images and in situ hydrography and nutrient observations are used to study the three-dimensional structure of a penetrating front off the Changjiang mouth in the East China Sea. The in situ hydrography measured during the same time as the satellite images discloses that the surface layer of the front is occupied by low salinity waters from the nearshore area, which suggests a cross-shelf jet covering a distance of about 50 km. A counter intrusion underneath the surface offshore jet is indicated by an increase of the subsurface temperature and salinity during the offshore excursion of the front, which leads to a significant temperature inversion at the head of the front. It is speculated that the penetrating front is generated because an initial instability of the coastal mean front might have provided the strongly convergent coastal currents with a conduit of offshore transport.
     Images of 8-day mean chlorophyll-a concentration of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard of Aqua Satellite from 2002 to 2007 and of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite from 1998 to 2007 are used to study the variability of the Cross-shelf Penetrating Fronts (CPF) in the East China Sea. The analysis suggests that the generation of the CPFs has strong seasonal-to-interannual variations, with more CPFs in summer and winter than in spring and fall. Each CPF lasts for a few days to a month. The majority of the fronts are triangle-shaped with their broad bases nearby the coast and their sharp heads penetrating into the middle shelf. There are over 40 CPFs with penetrating distances exceeding 100 km over the East China Sea during the past ten years of the satellite era, with the maximum ones reaching the Kuroshio at the edge of the continental shelf. Of all the low cloud scenes of the satellite images, more than 25% contain at least one CPF. The high frequency occurrence of the CPFs suggests that the CPFs play an important role in cross-shelf transport of heat, effluent, and land-derived materials in the East China Sea.
引文
[1]白学智,王凡.夏季长江冲淡水转向机制的数值试验.海洋与湖沼,2003,34(6):593-603.
    [2]陈则实.黄海海流概况.海洋研究,1979,3:1-40.
    [3]丁宗信,胡敦欣,熊庆成.南黄海秋季温、盐剖面的垂直结构及其与黄流的关系.海洋科学集刊,1986,27:87-59.
    [4]丁宗信和兰淑芳.黄、东海秋季温盐垂直分布类型及其逆转现象成因的初步分析.海洋科学,1995,1:35-39.
    [5]管秉贤.渤、黄、东海表层海流图.1977
    [6]管秉贤.黄海冷水团的水温变化及环流特征的初步分析.海洋与湖沼,1963,5:255-284.
    [7]管秉贤.有关我国近海海流研究的若干问题.海洋与湖沼,1962,4:121-140.
    [8]郭炳火.黄海物理海洋学的主要特征.黄渤海海洋,1993,11:7-18.
    [9]郭炳火.中国近海及邻近海域海洋环境,北京,海洋出版社,2004,pp.32-101.
    [10]赫崇本,汪圆祥,雷宗友等.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼, 1959,11:11 -15.
    [11]胡敦欣,吕良洪,熊庆成等.关于浙江沿岸上升流的研究.科学通报,1980,3,pp:1-12.
    [12]兰淑芳.渤黄东海温度的垂直结构特征.海洋科学集刊,25,pp:11-25.
    [13]乐肯堂.长江冲淡水路径问题的初步研究Ⅱ:风场对路径的作用,海洋与湖沼,1989,20(2):139-147.
    [14]李惠卿,袁业立.黄海冷水团热结构及其环流解析研究.海洋与湖沼,1992,23(1):7-13.
    [15]李坤平.黄海冷水团对海洋变动的响应.海洋学报,1991,13(6):779-785.
    [16]廖启煜,郭炳火等.夏季长江冲淡水转向机制分析.黄渤海海洋,2001,19(3):19-25.
    [17]林金祥,宋万先.黄海冷水团的基本特征.海洋研究,1981,4:1-16.
    [18]林金祥,王宗山.关于长江冲淡水异常变化的分析.黄渤海海洋,1985,4:11-19.
    [19]林奎,汤毓祥,郭炳火.黄海、东海表、上层实测流分析.海洋学报,2002,24(2):9-19.
    [20]刘先炳和苏纪兰.浙江沿岸上升流和沿岸锋面的数值研究.海洋学报,1991,3,DOI:cnki:ISSN:0253-4193.0.1991-03-001
    [21]刘志亮,胡敦欣.黄海夏季近岸海区环流的初步分析及其与风速的关系.海洋学报,2009,2
    [22]毛汉礼,甘子均,蓝淑芳.长江冲淡水及其混合问题的初步研究.海洋与湖沼,1963,5(3):183-205.
    [23]毛汉礼,任允武,孙国栋.南黄海及东海北部夏季的水文特征及海水类型的初步分析,海洋科学集刊,1964,1:23-27.
    [24]缪经榜,刘兴泉,薛亚,北黄海冷水团形成机制的初步探讨I.模式解.中国科学B,1990,20(12):1311-13211.
    [25]缪经榜,刘兴泉,薛亚.北黄海冷水团形成机制的初步探讨Ⅱ.模式解的讨论,中国科学B,1991,21(1):75-81.
    [26]蒲永修,黄韦艮等.长江冲淡水扩展方向的周、旬时段变化.东海海洋,2002,20(2):1-5.
    [27]乔方利,渡边正孝,袁业立等.黄海和东海的环流数值模拟研究.水动力研究与进展A,1998,13(2):244-254.
    [28]乔方利,马德毅,朱明远,李瑞香,臧家业,于洪军.2008年黄海浒苔爆发的基本状况与科学应对措施.海洋科学进展,2008(3): 409-410.
    [29]乔方利,马建,夏长水,杨永增,袁业立.波和潮流混合对黄海、东海夏季温度垂直结构的影响研究.自然科学进展,2004,12.
    [30]沈育疆,叶安乐.东中国海三维半日潮流场数值计算.海洋湖沼通报,1984(1):1-26.
    [31]沈育疆.东中国海潮汐数值计算.山东海洋学院学报,1980(3):1-12.
    [32]苏纪兰,黄大吉.黄海冷水团的环流结构.海洋与湖沼,1998(5):1-7.
    [33]苏纪兰.中国近海的环流动力机制研究.海洋学报,2001, 23(4):1-16.
    [34]汤毓祥,邹娥梅,Henng-Jae Lie等.初春南黄海水文特征及环流状况的分析.海洋学报,1999,5:1-11.
    [35]汤毓祥,邹娥梅,李兴宰,李载学.南黄海环流的若干特征.海洋学报,2000,1:1-16.
    [36]唐晓晖,王凡.长江口邻近海域夏季水文特征分析.长江、黄河口及邻近海域陆海相互作用若干重要问题,北京,海洋出版社,2004, p83-98
    [37]万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟.海洋与湖沼,1998,6:16-28.
    [38]王凡,胡敦欣,白虹.东海西部海域海水分布循环的季节变化特征.长江、珠江口及临近海域陆海相互作用,海洋出版社,2001,p66-78,
    [39]王凯,方国洪等.渤海、黄海、东海M2潮汐潮流的三维数值模拟.海洋学报,1999,4:1-14.
    [40]王凯,冯士筰,施心慧.渤黄东海夏季环流的三维斜压模型.2001,32(5):551-560.
    [41]夏长水.基于POM模式的流耦合模式的建立及其在大洋和近海的应用.中国海洋大学博士毕业论文,2005.
    [42]叶安乐,梅丽明.渤黄东海潮波数值模拟.海洋与湖沼,1995,26(1):63-70.
    [43]袁业立,李惠卿.黄海冷水团的环流结构及生成机制研究—1.0阶解及黄海冷水团的环流结构.中国科学B,1993,1:93-103.
    [44]袁业立.黄海冷水团环流I.冷水中心部分的热结构和环流特征.海洋与湖沼,1979,3 :187-2131.
    [45]赵保仁,Limeberner R,胡敦欣等.黄海南部及东海北部夏季若干水文特征.海洋与湖沼,1991,22(2):132-139.
    [46]赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟.1994,16(5):1-10.
    [47]赵保仁.北黄海冷水团环流结构探讨—潮混合锋对环流结构的影响.海洋与湖沼,1996,4:429-435.
    [48]赵保仁.长江冲淡水的转向机制问题.海洋学报,1991,13(5):600-610.
    [49]赵保仁.黄海潮生陆架锋的分布.黄渤海海洋,1987b,5(2):16-23.
    [50]赵保仁.南黄海西部的陆架锋及冷水团锋区环流结构的初步研究.海洋与湖沼,1987a,18(3):217-226.
    [51]赵保仁.黄海冷水锋面与潮混合.海洋与湖沼,1985,16(6):451-460.
    [52]朱建荣,李永平等.夏季风场对长江冲淡水扩展的影响的数值模拟.海洋与湖沼,1997,28(1):72-78.
    [53]朱建荣,沈焕庭,周健.夏季苏北沿岸流对长江冲淡水扩展影响的数值模拟.华东大学学报,1997,2:1-26.
    [54]朱建荣,肖成猷等.黄海冷水团对长江冲淡水扩展的影响.海洋与湖沼,1998a,29(4):389-394.
    [55]朱建荣,丁平兴,朱首贤.黄海、东海夏季环流的数值模拟.海洋学报,2002,24(1):123-132.
    [56]朱耀华,方国洪.陆架和浅海环流的一个三维正压模式及其在渤、黄、东海的应用,海洋学报,1994,16(6):11-26.
    [57]邹娥梅,熊学军,郭炳火,林葵.黄、东海温盐跃层的分布特征及其季节变化.黄渤海海洋,2001,19(3):ISSN : 1000-7199(2001)03-0008-11
    [58] Allen, J. S., P. A. Newberger, and J. Federiuk. Upwelling circulation on the Oregon continental shelf, part I, Response to idealized forcing. J. Phys.Oceanogr., 1995, 25, 1843– 1866.
    [59] Austion J. A. and S.J.Lentz. The Inner Shelf Response to Wind-driven Upwelling andDownwelling. J. Phys. Oceanogr., 2002, 32(7):2171:2193.
    [60] Bath, J. A. (1994), Short-wavelength instabilities on coastal jets and fronts. J. Geophys. Res. 99, 16 095-16 115.
    [61] Beardsley. R., R. Limburner, H. Yu, et al. Discharge of the Changjiang(Yangze River) into the East China Sea. Cont.Shelf.Res.,1985,4: 57-76
    [62] Beardsley. R., R. Limburner, K.Kim and J. Candela .Lagrangian flow observations in the East China Sea, Yellow and Japan Seas. La mer,1992, 30:297-314
    [63] Choi B. H..Note on current driven by a steady uniform wind stress on the Huanghai Sea and the East China Sea. La mer, 1982, 20:65-74
    [64] da Silva, A., C.Young and S. Levitus. Atlas of Surface Marine Data 1994. vol. 1, Algorithms and Procedures, NOAA Atlas NESDIS 6, U.S.Dep. of Commer., Washington, D.C.,1994.
    [65] Ekman, V. W.. On the influence of the earth’s rotation on ocean currents. Arch. Math. Astron. Phys., 1905, 2 (11), 1–53.
    [66] Fang Guohong.Tide and tidal current charts for the marginal seas adjacent to China.Chinese Journal of Oceanology and Limnology,1986,4(1):1-16.
    [67] Feng, M., D. Hu and Y. Li. A theoretical solution for the thermohaline circulation in the Southern Yellow Sea. Chinese J. of Oceano. And Limnol.,1992, 10(4):289-300.
    [68] Guan B. and H. Mao. A note on circulation on the East China Sea. Chinese J. Oceanol and Limnol. 1982,1:5-16.
    [69] Garrett, C., P. MacCready and P. Rhines. Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary.Ann. Rev. Fluid Mech., 1993, 25, 291–323.
    [70] Guan B. Patterns and structures of the currents in Bohai, Huanghai and East China Seas, Oceanology of China Seas.1994,11:1126-1134.
    [71] Guo B.. The temperature and salinity structure and the circulation in the Yellow Sea. .Proceedings of the Japan and China Ocean Study Symposium. Oct .1981, Shimizu, 1982:174-197.
    [72] Guo, X. and T. Yanaji. Three-dimensional structure of tidal currents in the East China Sea and Yellow Sea. J. Oceano., 1998, 54:651-668.
    [73] Haidvogel, D. B., Beckmann, A., & Hedstr?m, K. Dynamical simulations of filament formation and evolution in the Coastal Transition Zone. J. Geophys. Res. 1991, 96, 15 017-15040.
    [74] Hsueh, Y. . Buoyant Ekman layer. Phys. Fluids.,1969,12, 1757-1762
    [75] Hsueh, Y., and D. Yuan, A numerical study of currents, heat advection and sea-level fluctuations in the Yellow Sea in winter of 1986. J. Phys. Oceanogr., 1997, 27, 2313–2326.
    [76] Hsueh, Y., Recent Current Observations in the Eastern Yellow Sea. J. Geophy. Res., 1988, 93:6875-6884.
    [77] Hu, C., and M. He .Origin and Offshore Extent of Floating Algea in Olympic Sailing Area. EOS, 2008, 89(33):302-303.
    [78] Hu, D., M.Cui, Y. Li and T. Qu .On the Yellow Sea Cold Watr Mass-related circulation. Yellow Sea Research, 1991, 4:9-88.
    [79] Hu, D..Some striking features of circulation in Huanghai Sea and East China Sea. Oceanology of China Seas, Volume1. Netherlands: Kluwer Acadamic Publishers, 1994, 27 -28.
    [80] Hu, J.Y., Kawamura, H., Hong, H.S., Suetsugu, M., Lin, M.. Hydrographic and satellite observations of summertime upwelling in the Taiwan Strait: A preliminary description. Terrestrial Atmospheric and Oceanic Sciences, 2001, 12 (2), 415–430.
    [81] Hunkins, K.. Mean and tidal currents in Baltimore Canyon. Journal of Geophysical Research. 1988, 93, pp. 6917–6929.
    [82] Janowitz, G.S., and L.J. Pietrafesa. The effects of alongshore variation in bottom topography on a boundary current—Topographically induced upwelling, Cont. Shelf Res., 1982,1, 123-141.
    [83] Jay A. Austin Steven J. Lents. The inner shelf Response to Wind-Driven upwelling and downwelling. J. Phys. Oceanogr., 2002,32, 2171-2193
    [84] Klinck, J.M.. The influence of narrow transverse canyon on initially geostrophic flow. Journal of Geophysical Research, 1988,93, 509-515.
    [85] Klinck, J.M.. Geostrophic adjustment over submarine canyons. Journal of Geophysical Research. 1989, 94, 6133-6144.
    [86] Klinck, J.M.. Circulation near submarine canyons: a modeling study. Journal of Geophysical Research, 1996, 101,1211-1223.
    [87] Le K., M. Feng and Y. Wang. A numerical study of the wintertime circulation in the Bohai and Huanghai Seas. Chinese J. Oceanol and Limnol., 1993,11:149-160
    [88] Lee H. C..A numerical simulation for the water masses and circulation of the Yellow Sea and the East China Sea, PhD Thesis, 1996, Kyushu Univ., pp150. Cited by Lie (1999)
    [89] Lee, C., Rosati A., Spelman, J. Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the Northern Atlantic. Ocean Modelling, 2005,11:464–477.
    [90] Lee, H. J., R. C. Beardsley. Influence of stratification on residual tidal currents in the Yellow Sea. J.Geophys.Res, 1999, 104:15679-15701.
    [91] Lee, H. J., K. T. Jung, M. G. Foreman, et al. A three dimensional mixed finite-difference Galerkin fuction model for the oceanic circulation in the Yellow Sea and East China Sea in the presence of M2 tide. Cont. Shelf Res., 2002, 22:67-91.
    [92] Levitus, S. Climatological Atlas of the World Ocean, NOAA Prof. Pap. 13, 1982:173 pp. plus 17 microfiche, U.S. Govt. Print. Off., Washington, D. C.
    [93] Li, C., Nelson, J. R., Koziana, J. V.. Cross-shelf passage of coastal water transport at the south Atlantic Bight observed with MODIS Ocean Color/SST. Geophysical Research Letters, 2003,30(5), 1257, doi:10.1029/ 2002GL016496.
    [94] Lie, H.J.. On the Huanghai (Yellow) Sea circulation: a review by current measurements. Acat Oceanologica Sinica, 1999, 3:355-373.
    [95] Lie, H.J.. Summer time hydrographic features in the southern Huanghai (Yellow Sea). Prog.Oceanogr, 1991, 17:229-242.
    [96] Lie, H.J.. Tidal fronts in the southeasten Huanghai (Yellow Sea). Cont.Shelf. Res, 1989, 9:527-546.
    [97] Lie, H.J.. Wintertime temperature-salinity characteristics in the southeasten Huanghai (Yellow Sea). J Oceanogr Soc Japan, 1985, 41:291-298.
    [98] Liu, G.M., Wang, H., Sun S. et al.. Numerical study on the velocity structure around tidal fronts in the Yellow Sea, Advances in atmostheric sciences, 20(3):453-460..
    [99] Liu, Z., Hu, D., Chu, Z..Observation of Currents in the Southern Yellow Sea in the Summers of 2001 and 2003. Chin J Oceano and Limno, 2008, 1
    [100] Liu, Z., Hu, D., Tang, X..Tidal current observation in the southern Yellow Sea in the summers of 2001 and 2003.Chin J Oceano and Limno, 2008, 26(2) :121-129 .
    [101] Lü, X., Qiao, F., Xia, C., Zhu, J., Yuan, Y., Upwelling off Yangtze River estuary in summer. Journal of Geophysical Research 111, 2006, C11S08, doi: 10.1029/2005JC003250.
    [102] Lü, X., Qiao, F., Xia, C., Yuan, Y.. Tidally induced upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. Science in China Series D: Earth Sciences, 2007, 50 (3), 462–473. Doi: 10.1007/s11430-007-2050-0.
    [103] Lü, X., Qiao, F., Wang, G., Xia, C., Yuan, Y. Upwelling off the west coast of Hainan Island in summer: Its detection and mechanisms. Geophysical Research Letters, 2008,35, L02604, doi:10.1029/2007GL032440.
    [104] Marchesiello, P., McWilliams, J. C., & Schepetkin, A. Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr.2003,33, 753-783.
    [105] Mao Hanli, Ren yunwu, Sun Guodong. The hydrological characteristics and water mass analysis of South yellow and East Chian Sea(28-37°N)in summer. Ocean Sciences, 1964,11:23-77.
    [106] McCready, P., and P. Rhines. Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J.Fluid Mech., 1991, 223: 631–661.
    [107] Mellor, G. L., T. Ezer, and L. Y. Oey. On the pressure gradient conundrum of sigma-cordinate ocean models. J. Atmos, Oceanic Technol, 1994, 11:1120–1129.
    [108] Naimie, C., Blain C.A. And Lynch D.R. Seasonal mean circulation in the Yellow Sea: a model-generated climatology. Continental shelf Research, 2001, 21, 667-695.
    [109] Nakao T. Oceanic variability in relation to fisheries in the East China Sea and the Yellow Sea. J Faculty Mar Sci and Techno, Special Number, 1977:199-234.
    [110] Niino H. and K. O. Emery. Sediments of shallow portions of the East China Sea and South China Sea, Geol. Soc. American Bull., 1961, 72,731-762
    [111] OKE, P. R., and J. H. MIDDLETON. Nutrient enrichment off Port Stephens: The role of the East Australian Current. Cont.Shelf Res., 2001 21: 587–606.
    [112] Pang C., J. Liang, D. Hu et al.. Surface circulation patterns observed by drifters in the Yellow Sea in summer of 2001, 2002 and 2003, Chin.J.Oceano. And Limno., 2004, 22(3):209-216
    [113] Qiao, F., Lü, X., Coastal upwelling in the South China Sea. In: Liu, A.K., Ho, C.R., Liu, C.T. (Eds.), Satellite Remote Sensing of South China Sea. Tingmao Publish Company, Taipei, Taiwan, 2008,pp. 135–158.
    [114] Qiu, B., & Imasato, N. Baroclinic instability of buoyancy-driven coastal density currents. J. Geophys. Res. 1988, 93(C5), 5037-5050.
    [115] Romanou, A., and G.L. Weatherly. Numerical simulation of buoyant Ekamn layers in the presence of variable stratification. J. Phys, Oceanogr., 2001, 31, 3096-3120
    [116] Song, Y. T., Haidvogel, D. B., & Glenn, S. M., Effects of topographic variability on the formation of upwelling centers off New Jersey: A theoretical model. J. Geophys. Res. 2001, 106, 9223-9240.
    [117] Stern, M.E., Whitehead, J. A., & Hua, B. L. The intrusion of a density current along the coast of a rotating fluid. J. Fluid Mech. 1982,123, 237-266.
    [118] Stern, M. E. Large-scale lateral wave breaking and shingle formation. J. Phys. Oceanogr. 1985,15, 1274-1283.
    [119] Su Jilan. Circulation dynamics of the China Seas: north of 18°N. In: "The Sea", Vol. 11, The Global Coastal Ocean: Regional Studies and Syntheses (eds. A. R. Robinson and K. Brink), John Wiley, 1998, 483-506
    [120] Takahashi, S., and T. Yanagi. A numerical study on the formation of circulations in the Yellow Sea during summer, La Mer, 1995,33:135– 147.
    [121] Tang, X., Wan F., Chen Y., et al.. Current observations in the southern Yellow Sea, Chin.J.Oceano. and Limno., 2004,22(3):317-223
    [122] Uda, M.. The results of simultaneous oceanographical investigations in the Japan Sea and its adjacent waters in May and June 1932. J Imp Fish Exp St (in Japanese), 1934, 5:138-190.
    [123] Walker, N. D., Wiseman, W. J., Rouse, L. J., and Babin, A. Effects of River Discharge, Wind Stress, and Slope Eddies on Circulation and the Satellite-Observed Structure of the Mississippi River Plume. J. Coast. Res. 2005, 21(6), 1228-1244
    [124] Xia, C., F. Qiao, M. Zhang, Y. Yang, and Y. Yuan. Simulation of double cold cores of the 35oN section in the Yellow Sea with a wave-tide-circulation coupled model. Chin. J. Oceanol. Limnol, 2004, 22, 292– 298.
    [125] Xia, C., F. Qiao, Q. Zhang, and Y. Yuan, Numerical modeling of the quasi-global ocean circulation based on POM, J. Hydrodyn., Ser. B, 2004, 16:537– 543.
    [126] Xia, C., Qiao, F., Yang, Y., et al. 2006. Three dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys.Res.VOL111, C11S03. Doi: 10.1029/2005JC003218, 2006.
    [127] Xu, D., Y. Yuan, and Y. Liu, The baroclinic circulation structure of Yellow Sea cold water mass,Sci. China, Ser. D., 2002, 46:117–126.
    [128] Yanagi, T., and S. Takahashi, Seasonal variation of the circulations in the East China Sea and the Yellow Sea, J. Oceanogr, 1993,49:503–520.
    [129] Yuan, D.. A numerical study of barotropicly forced intrusion in DeSoto Canyon. J. Geophys.Res. 2002,VOL 107, NO. C2, 3010, 10.1029/2001JC000793
    [130] Yuan, D., Qiao,F., Su, J., Cross-shelf penetrating front off the southeast coast of China observed by MODIS. Geophysical Research Letters, 2005, 32, L19603, doi: 10.1029/2005GL023815.
    [131] Yuan, D.. Dynamics of the Cold Water Events off the Southeast Coast of the United States in the summer of 2003. J. Phys. Oceanogr. , 2006, 36,pp:1912-1927.
    [132] Yuan, D., Zhu, J., Li, C., Hu, D., 2008. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations. Journal of Marine Systems, 70 (1-2), 134-149.
    [133] Yuan, D., Li Y., He, L., Li, R., Zhou, H., Wang, F., Hu, D., 2009. Observation of cross-shelf penetrating fronts off the Changjiang mouth. (accepted by Deep-Sea Research II)
    [134] Yuan, D., Hsueh, Y., 2010. Dynamics of the cross-shelf circulation in the Yellow and East China Seas in winter. Deep-Sea Research II, doi:10.1016/j.dsr2.2010.04.002
    [135] Zhang Fagao, Mao Hanli, Leng Yangui. Analysisi of drifter bottle and drift card experiments in Bohai Sea and Huanghai Sea(1975-1980), Chin J Oceanol Limnol, 1987,5:67-72.
    [136] Zhao Baoreng ,Xiong Q, Zhang F, The internal hydrographic structure of the Huanghai Cold Water Mass. J. Oceanol. Limnol, 1986,4 :28-40.
    [137] Zheng Q., G. Fang and Y. T. Song, 2006: Introduction to special section: dynamics and circulation of the Yellow, East and South China Seas, J. Geophys. Res., 111, C 11S01,doii:1029/2005JC003261
    [138] Zhu, J., Chen, C., Li, C., Lin, H., 2004. Does the Taiwan warm current exist in winter? Geophysical Research Letters, 31, L12302, doi:10.1029/2004GL019997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700