电气化铁路接触网体系环境荷载下动力可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接触网体系担负着把从牵引变电所获得的电能直接供给电力机车使用的重要任务,它的质量和工作状态将直接影响着电气化铁道的运输能力。因此要求接触网无论在任何气象条件下,都能处于良好的工作状态,满足电力机车安全、高速运行的要求。接触网是一种特殊形式的空间架空线结构,具有高耸、跨度大,悬挂结构与支持结构在不同量级的动力特性下的偶联作用等特征。接触网结构在风、沙以及悬挂结构覆冰等随机环境荷载作用下的动力响应复杂,敏感性强,具有高度的不确定性,是近几年接触网故障频发的主要原因。又因接触网结构线长点多无备用,一旦出现故障将导致列车停驶,严重影响着接触网的安全可靠性,因此其安全问题已经成为兰新线铁路电气化改造的难点。由于南疆线、兰新线电气化改造需要,对环境荷载作用下的接触网结构体系动力响应、稳定性及可靠性等展开研究具有重要的理论意义及工程实用价值。
     本文以兰新线强风地区某段接触网为研究对象,针对风、沙等环境荷载的随机不确定性及接触网结构具有的高、大、细、长等柔性结构的特点,从概率和时域角度出发,在广泛借鉴国内外同行研究成果的基础上,对接触网结构环境致振、抗风动力稳定性及抗风动力可靠性等相关问题进行了研究。研究主要内容包括以下几方面:
     1.分析了新疆强风地区大风的形成原因及大风统计规律,基于现有文献资料获得的数据分别采用最小误差逼近方法和矩法获得了兰新线强风地区平均风速和年最大平均风速的概率分布;根据新疆强风地区的环境特点和接触网结构体系的特征,在考虑风荷载梯度剖面分布、湍流脉动相关性、湍流强度和功率谱密度的基础上,采用谐波叠加法建立了基于davenport风速谱的脉动风场数值模拟适合接触网结构的风场模拟简化方法,并通过该模拟方法计算了接触网结构不同特征点的风速时程,结果表明模拟的风速时程的功率谱与目标谱非常吻合,该模拟方法生成的脉动风场可以表征随机风场在时域上的随机特性;为了描述风沙的基本特性及其对接触网结构的影响,结合风沙的自然属性、荷载形成规律和接触网体系的结构特征采用CFD计算流体力学风沙二相流数学模型分析了风沙荷载对接触网结构的影响。
     2.考虑了接触网支持结构与悬挂结构间的耦合作用、接触线和承力索的垂度效应和几何非线性及支持结构的材料非线性,借助有限元软件ansys,建立了基于二维模型的三维接触网体系精细化有限元模型。从风荷载单独作用到风沙共同作用等不同角度分析了接触网结构体系的动力响应规律,结果表明:接触网结构的固有频率与独立进行支持结构和悬挂结构分析的固有频率相比,支持结构和悬挂结构的固有频率均略有减小,支持结构与悬挂结构的耦合作用十分显著,仅把承力索、接触线等受到的荷载等效为静力荷载加在支持结构上,对于接触网结构的设计是不合理的;随着沙子体积比的增加,风沙荷载对接触网结结构特征点响应量的影响逐渐加大,表明,沙子荷载对特征点响应具有明显的激励贡献。
     3.针对接触网的结构特点,基于特征响应点的风振响应时程,将动态增量法引入至Budiansky-Roth稳定性判定准则,提出了适合接触网结构的抗风动力稳定性判定准则,并基于该准则分析比较了不同结构参数对接触网动力稳定性的影响,结果表明:通过增加张力、减小跨距、降低接触线高度和适当增加吊线数能有效改善接触网结构的抗风稳定性。
     4.在系统分析接触网结构在环境荷载作用下疲劳损伤发生、发展的原因和破坏机理的前提下,基于有限元应力响应时程、接触网结构环境荷载效应的概率分布特性和疲劳损伤理论,建立了疲劳可靠度计算方法,并以接触线为例,分析了结构因素和环境因素对接触线疲劳可靠性的影响程度;实例分析表明:接触线的自重和冰荷载及沙荷载对接触线的疲劳可靠度影响较大,不容忽视。
     5.综合考虑了风速的概率分布、风沙等环境荷载效应的概率分布特性,应用首次超越理论分别从适用性和强度破坏两个方面建立了接触网结构的时域动力可靠性计算数学模型,该方法将有限元计算、RBF神经网络和蒙特卡罗模拟方法有机结合,不受随机变量分布形式和极限状态方程非线性的限制并且可以获得较高的计算精度。
Catenary system takes the responsibility of transmitting the electricity energy from transaction power supply system to electric locomotives, and its quality and working condition will directly affect the electric railway transport capacity. Therefore, catenary is request in good working condition under any weather condition, satisfing the safety and high-speed move requirement when the electric locomotives are on the line. Catenary is a special form of space overhead line structure, and has a tall and large span feature-its suspension and support structure has the coupling effect under the dynamic characteristic of different orders of magnitude. Catenary has complex dynamic responses, strong sensitive and high degree of uncertain feature under random load of sand and ice, which is the main reason of catenary failure in recent years. Also, catenary has long line, many points and no reserve, which may cause the train to stop and make serious impact on safety and reliability of the catenary. The safety problem is the main consideration of electric upgrading of Lanzhou to Xinjiang railway.Under the electric upgrading needs of Nanjiang and Lanxing railway, it's emergent to conduct research of wind protection and the influence of wind on catenary structure's stability and reliability, which serves the very magnificent theoritical meaning and engeering practical value.
     The research object of this paper is based on catenary of certain strong wind area of Lanxin line. The environment loads of wind and sand are in random uncertainty that the catenary has the characteristics of high, big, thin, long flexible structures. Owing to this, from the perspective of probability and time-domain, this paper is based on a wide range of home and abroad counterparts research results, focusing on catenary vibration which induced by catenary structure environment, and also studied wind-resistant stabilization and wind-resistant reliability issues. The thesis includes the following aspect:
     1. It was analyzed on the causes of strong winds in Xinjiang area and the statistical law of the winds, according to the documentation and data in hand, based on minimum error approximation and matrix method, resulting in the probability distribution of average wind speed and annual maximum average wind speed in Lanxin line's strong wind area.
     According to the Environmental and catenary structure characteristics, it was considered about the profile about the distribution of gradient wind load, turbulence pulsation correlation, turbulence intensity and power spectral density by adopting harmonic superposition method, establishing numerical simulation of fluctuation wind field by davenport wind speed spectrum and the simplified wind field simulation method suit for catenary structure. By calculating the wind speed of different catenary structure with the simplified wind field simulation method, the results shows that the simulated wind speed power spectrum is consistent with the target spectrum, and the simulation-generated wind fields can be characterized by random wind field in random nature of time domain.
     In order to describe the basic characteristics of sand and its influence on catenary structure, it is combined with the natural properties of sand, the load formation patterns and the structural characteristics of catenary system and analyzes the influence on wind loads to catenary structure by using sand-wind two-phase flow's mathematical model.
     2. By regarding the coupling effect between catenary support structures and its suspended structure; the sag effect of contact line and carrier cable and the geometric nonlinearity and the material nonlinearity of support structure through finite element software ansys, it is established three-dimensional finite element model of the catenary system based on its two-dimensional model. By verifing the validity of the model in experiment and determining the parameter and process methods of wind induced vibration response time domain analysis of catenary structure system, it is analyzed on dynamic response of catenary structural system from wind load and wind-sand load, etc.
     The result shows that when compared with the nature frequency of catenary with the nature frequency of independent support structure and suspension structure, the natural frequency of independent support structure and suspension structure are slightly decreased and the coupling effect between independent support structure and suspension structure are very significant. The design of catenary structure is unreasonable when it is only equivalent to the load of carrier cable and contact line to static load. With the increase volume ratio of sand, the influence on wind-sand load to catenary structure's feature point response comes to increase. This shows that, the sand load has obvious incentive contribution to the feature point response.
     3. On account of the characteristic of catenary structure, based on the process of wind-induced vibration response of feature response point, the dynamic incremental method is introduced to the Budiansky-Roth stability criteria, proposing dynamic stability criteria of wind-resistance by its compared with the influence on different structural characteristic of the dynamic stability of centenary. The result reflects that by increasing the tension, reducing the span, reducing the contact line height and appropriately increase the number of suspension lines, the wind-resistance stability of catenary structure can be effectively improved.
     4.In the premise of systematically analyzing the reason and failure mechanism of catenary structure fatigue damage which occurred and developed, based on the finite element stress response time-history,the probability distribution characteristic of catenary structure's environmental load effect and the fatigue damage theory's fatigue reliability analysis method are estabilished by taking the contact line as an example, analyzing the impact degree of the contact line fatigue reliability by structural factors and environmental factors. The case suggests that the weight of contact line, the load of ice and sand make large impact on the fatigue reliability of contact line, which can't be ignored.
     5. By considering the probability distribution of wind speed and the sand environmental characteristics, it is proposed time-domain dynamic reliability calculation method of catenary structure from applicability and strength failure aspect by using first time beyond theory. The calculation method is combined with the finite element method、 RBF neural network and Monte Carlo simulation, unrestrained from the form of random variable distribution, and also isolated from the non-linear restrict of limit state equation, resulting in more satisfied calculation accuracy.
引文
[1]林路.中国电气化铁路前景光明[J].铁道知识,2008(5):22-23.
    [2]冯晓芳.中国高速铁路的发展与展望[J].科技资讯,2009(1):129-130.
    [3]冯金柱.世界电气化铁路的发展[J].电气化铁道,2001(4):1-7.
    [4]白文亭.纵横高铁-电气化铁路中国速度[J].电气时代,2009(3):44-46.
    [5]国家发展和改革委员会.综合交通网中长期发展规划[Z].2007.
    [6]李会杰.接触网系统可靠性初探及接触线可靠度研究[D].成都:西南交通大学,2006.
    [7]蔡庆华.我国电气化铁路的发展及展望[J].中国铁路,1998(2):1-2.
    [8]李世斌.我国电气化铁路发展的历程与前景[J].郑铁科技通讯,2006(1):1-5.
    [9]冯金柱.中国电气化铁路50年[J].铁道知识,2008(5):7-11.
    [10]徐华林,赵威.中国广播网:我国电气化铁路建设五十年三成实现电气化[EB/OL]. http://www.cnr.cn/2004news/internal/200810/t20081031_505139633.html.
    [11]李志勇.新华网:中国电气化铁路总里程突破3三万公里居世界第二[EB/OL]. http://news.xinhuanet.com/society/2009-12/26/content_12706626.htm.
    [12]张建斌,冯锦俊.接触网结构与计算[M].北京:中国铁道出版社,1996.
    [13]刘凤华.不同类型挡风墙对列车运行安全防护效果的影响[J].中南大学学报(自然科学版),2006,37(1):176-182.
    [14]项海帆,葛耀君,朱乐东,等.现代桥梁抗风理论与实践[M].北京:人民交通出版社,2005.
    [15]胡文康.新疆大风[J].大自然探索,2007(8):44-47.
    [16]曾广勇.兰新线大风地区挡风墙的勘测与设计[J].路基工程,1998(6):24-29.
    [17]王旭,王健,马禹.新疆大风天气过程的特点[J].新疆气象,2002,25(2):4-6.
    [18]王白石.为什么新疆的大风能吹翻火车[J].民防苑,2007(5):21-22.
    [19]康克勤.百里风区[J].新疆地方志,1994(3):57-58.
    [20]李斌.兰新线风区段铁路大风气象灾害及防风措施[J].大陆桥,2007(6):88-89.
    [21]葛盛昌.新疆铁路风区大风天气列车安全运行办法研究[J].铁道运输与经济,2009,31(8):32-34.
    [22]王旭,马禹.新疆大风的时空统计特征[J].新疆气象,2002,25(1):1-3.
    [23]白虎志,董安祥,李栋梁,等.青藏高原及青藏铁路沿线大风沙尘日数时空特征[J].高原气象,2005,24(3):311-315.
    [24]高银峰,王智军.兰新线西段风沙危害特征及治沙经验[J].甘肃铁道,2007(S1):78-81.
    [25]刘家强.兰新线百里风区沙害分析[J].中国西部科技,2008,7(4):43-45.
    [26]田志军.电气化铁路防风技术研究[J].建设机械技术与管理,2007(7):100-103.
    [27]白天玉.接触网风载故障的探讨[J].铁道机车车辆,2002(1):49-52.
    [28]李长春.新疆的风为什么这么厉害[J].地理教育,2009(1):66.
    [29]颜昕,张辉.中国气象:蒲福风级表[EB/OL]. (2010-09-13)http://baike.weather.com. cn/index.php?doc-view-979.php.
    [30]尹永顺.砺漠大风地区风沙流研究[J].中国沙漠,1989,9(4):27-36.
    [31]兹门纳斯基.沙地风蚀的实验研究和沙堆防止问题(中译本)[M].上海:科学出版社,1960.
    [32]A Bagnold Ralph. The physics of blown sand and desert dunes [M]. New York: Dover Publications,2005.
    [33]刘贤万.颗粒运动及其数理简析[J].中国沙漠,1993(2):44-49.
    [34]刘长庆.沙尘暴中沙粒跃移和悬移的数值模拟[D].长沙:国防科学技术大学,2002.
    [35]贺大良,高有广.沙粒跃移运动的高速摄影研究[J].中国沙漠,1988(8):18-29.
    [36]李振山,倪晋仁.风沙流研究的历史、现状及其趋势[J].干旱区资源与环境,1998,12(3):89-97.
    [37]Anderson R. S., Haff P. K. Simulation of eolian saltation[J]. Science, 1988,241:820-823.
    [38]Xu B. H., Yu A. H. Numerical simulation of the Gas-Solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science,1997,52(16):2785-2809.
    [39]Mikami T., Kamiya H., Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed[J]. Chemical Engineering Science,1998,53(10):1927-1940.
    [40]Zhou Y. C., Xu B. H., Yu A. B. An experimental and numerical study of the single of repose of coarse spheres[J]. Powder Technology,2002,125(1):45-54.
    [41]Di Felice R. The voidadefunction for fluid-particle interaction systems[J]. Institution Journal Multiphase Flow,1994,20(1):153-159.
    [42]Anderson R. S., Haff P. K. Simulation of eolian saltation[J]. Science, 1988,241:820-823.
    [43]周咺毅,顾明,李雪峰.大跨屋盖表面风致雪压分布规律研究[J].建筑结构学报,2008,29(2):7-12.
    [44]Westphal Douglas L., Toon Owen B., Carlson Toby N. A two-dimension numerical investigation of the dynamics and microphysics of Saharan dust storms[J]. Journal of Geophysical Research,1987,92:3027-3049.
    [45]方宗义,朱福康,江吉喜.中国沙尘暴研究[M].北京:气象出版社,1997.
    [46]纪飞,秦瑜.东亚沙尘暴的数值模拟:(Ⅰ)模式建立[J].北京大学学报(自然科学版),1996,32(3):384-392.
    [47]纪飞,秦瑜.东亚沙尘暴的数值模拟:(Ⅱ)个例分析[J].北京大学学报(自然科学版),1998,34(5):639-645.
    [48]于涛,李萌堂,郭毅,等.悬移层风沙运动数值模拟[J].干旱区地理,2004,27(3):347-351.
    [49]张琳琳.随机风场研究与高耸_高层结构抗风可靠性分析[D].上海:同济大学,2006.
    [50]张相庭.结构风压和风振计算[M].上海:同济大学出版社,1985.
    [51]Zhang W., Ge Y. J. Flow-map mechanism of wind induced vibrations of H-shape bridge decks[J]. China Civil Engineering Journal,2009,42(5):90-95.
    [52]Davenport A. G. The application of statistical concepts to the wind loading of structures[J]. Proceedings Institution of Civil Engineers,1961,19(4):449-492.
    [53]张相庭.工程结构风荷载理论和抗风设计手册[M].上海:同济大学出版社,1990.
    [54]郑哲敏,周恒,张涵信,等.21世纪初的力学发展趋势[J].力学进展,1999,25(4):433-441.
    [55]希缪埃米尔.,斯坎伦罗伯特.H.风对结构作用-风工程导论[M].刘尚培,项海帆,谢雾明,译.第二版.上海:同济大学出版社,1992.
    [56]刘智虎.汉江大跨越输电线路风振系数及风振响应研究[D].重庆:重庆大学,2007.
    [57]冯甦,金江.高耸钢塔结构的脉动风荷载模拟及结构风振响应分析[J].南通大学学报(自然科学版),2007,6(1):67-71.
    [58]Scanlan R. H., Beliveau J. G., Budlong K. S. Indicial aerodyneanic functions for bridge decks[J]. Journal of the Engineering Mechanics Division,ASCE,1996,100(4):657-672.
    [59]Miyata T., Yamada H. Coupled flutter estimate of a suspension bridge[J]. Journal of Wind Engineering & Industrial Aerodynamics,1990,33(1&2):341-348.
    [60]Kovacs I., Svensson H. S., Jordet E. Analytical aerodynamic investigation of the cable-- stayed Helgeland Bridge[J]. Journal Structural Engineering., ASCE, 1992,118(1):147-168.
    [61]蒋承仪,邓朝荣.结构可靠性分析中的模糊随机性[J].应用科学学报, 1998,16(2):234-242.
    [62]董安正.高层建筑结构抗风可靠性分析[D].大连:大连理工大学,2002.
    [63]#12
    [65]日比野有,石田弘明.车冈の転覆限界风速に関する静的解析法[J].铁道总研报告,2003,17(4):39-45.
    [66]Carrarini A. Reliability based analysis of the crosswind stability of railway vehicles [J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(7):493-509.
    [67]张卫东,贺威俊.电力牵引接触网系统可靠性模型研究[J].铁道学报,1993,15(1):31-38.
    [68]冷宏俊.接触网系统可靠性分析与设计[D].北京:铁道科学研究院,1998.
    [69]万毅.基于RBFNN的接触网系统可靠性设计方法研究[D].成都:西南交通大学,2006.
    [70]尚玉冰.大风情况下接触网-受电弓故障浅析[J].电气化铁道,2003(1):23-25.
    [71]贺亚卿.大风情况下接触网-受电弓故障分析[J].内蒙古科技与经济,2004(18):57-59.
    [72]毛克胜,杨丙林.风害地段接触网整治及存在问题的探讨[J].电气化铁道,1999(2):20-24.
    [73]中华人民共和国铁道部.TB10009-2005铁路电力牵引供电设计规范[S].北京:2005.
    [74]颜卫亨,李林.承力索对接触网硬横跨体系的抗风性能影响分析[J].工业建筑,2007(S1):1200-1205.
    [75]李宏男,白海峰.高压输电塔线体系抗灾研究的现状及发展趋势[J].土木工程学报,2007,40(2):39-46.
    [76]李丙文,周兴佳,黄丕振.兰新铁路沙泉子段风沙危害特点及防治[J].干旱区研究,1998,15(4).
    [77]吴太成.大跨屋面风荷载及其风振响应研究[D].成都:西南交通大学,2005.
    [78]Cook N. J. On simulating the lower third of the urban adiabatic boundary layer in a wind tunnel [J]. Atmospheric Environment,1973,7(7):691-705.
    [79]包能胜,刘军峰,倪维斗等.新疆达坂城风电场风能资源特性分析[J].太阳能学报,2006,27(11):1073-1077.
    [80]Pourzeynali Saeid, Datta T. K. Reliability analysis of suspension bridges against fatigue failure from the gusting of wind[J]. Journal of Bridge Engineering,ASCE, 2005,10(3):262-271.
    [81]李自应,王明,陈二永,等.云南风能可开发地区风速的韦布尔分布参数及风能特征值研究[J].太阳能学报,1998,19(3):248-253.
    [82]朱德臣,汪建文.风工况双参数威布尔分布k值影响研究[J].太阳能,2007(6):34-36.
    [83]王立治,章小平,杨富强,等.威布尔分布模型在风能资源评价中的应用[J].中国能源,1983(4):29-31.
    [84]吴学光,陈树勇,戴慧珠.最小误差逼近算法在风电场风能资源特性分析中的应用[J].电网技术,1998,22(7):69-74.
    [85]祁延录,王怀军.大风对新疆铁路的影响及防护[J].西部探矿工程,2009(6):161-163.
    [86]S. Murakami. Comutational wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990(36):517-538.
    [87]孙安健,刘小宁.极端风速分布模式在我国各气候区域的适用性[J].气象,1993,19(10):12-15.
    [88]侯瑞科.利用耿贝尔极值分布计算年最高水位[J].海洋通报,1993,12(3):126-129.
    [89]杨静.两种计算极值分布参数方法的对比分析[J].新疆气象,2002,25(4):28-29.
    [90]白泉,朱浮声,康玉梅.风速时程数值模拟研究[J].辽宁科技学院学报,2006,8(3):1-3.
    [91]张希黔,葛勇,严春风等.脉动风场模拟技术的研究与进展[J].地震工程与工程振动,2008,28(6):206-212.
    [92]曾宪武,韩大建.大跨度桥梁风场模拟方法对比研究[J].地震工程与工程振动,2004,24(1):135-140.
    [93]Mignolet Marc P., Spanos Pol D. MA to ARMA modeling of wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,36:429-438.
    [94]Li Yousun, Kareem A. ARMA representation of wind field[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,36:415-427.
    [95]Samaras Elias, Shinzuka Masanobu, Tsurui Akira. ARMA representation of random processes[J]. Journal Engineering Mechanics, ASCE,1985,111(3):449-461.
    [96]Okamura Toshinaga, Ohkuma Takeshi, Hongo Eijiro, etc. Wind response analysis of a transmission tower in a mountainous area[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(1&2):53-63.
    [97]Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. Acoustical Society of America Digital Library,1971,49(1B):357-368.
    [98]Shinozuka M., Jan C. M. Digital simulation of random processes and its applications[J]. Journal of Sound and Vibration,1972,25(1):111-128.
    [99]Shinozuka Masanobu, Yun C. B., Seya H. Stochastic methods in wind engineering [J]. Journal of Wind Engineering and Industrial Aerodynamics,1990,36:829-843.
    [100]曹映泓,项海帆,周颖.大跨度桥梁随机风场的模拟[J].土木工程学报,1998,31(3):72-78.
    [101]孙振.建筑结构风荷载的计算机模拟与分析[D].南京:南京航空航天大学,2007.
    [102]克莱斯.迪尔比耶,斯文.奥勒.汉森.结构风荷载作用[M].薛素铎,李雄彦,译.北京:中国建筑工业出版社,2006.
    [103]白海峰.输电塔线体系环境荷载致振响应研究[D].大连:大连理工大学,2007.
    [104]王兆印.大气边界层的风洞模拟[J].试验力学,1998,13(3):283-293.
    [105]Deodatis G. Simulation of ergodic multivariate stochastic process[J]. Journal of Engineering Mechanics,ASCE,1996,122(8):191-203.
    [106]Li Yongle, Liao Haili, Qiang Shizhong. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridges [J]. Computers & Structures, 2004,82(20-21):1591-1598.
    [107]DAVENPORT A. G. The Spectrum Of Horizontal Gustiness Near the Ground in High Winds[J]. Quarterly Journal of the Royal Meteorological Society, 1961,87(372):194-211.
    [108]Kaimal J. C., Wyngaard J. C., Izumi Y., etc. Spectral characteristics of surface-layer turbulence[J]. Quarterly Journal of the Royal Meteorological Society, 1972,98(417):563-589.
    [109]祝贺,王金岭,裴延学.修正Von—karman谱输入的输电塔结构脉动风数值模拟[J].吉林电力,2009,37(5):12-15.
    [110]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52.
    [111]Cao Yinghong, Xiang Haifan, Zhou Ying. Simulation of stochastic wind welocity field on long-span ridges[J]. Journal of Engineering Mechanics,2000,126(1):1-6.
    [112]罗俊杰,韩大建.大跨度结构三维随机脉动风场的模拟方法[J].振动与冲击,2008,27(3):87-90.
    [113]韩大建,邹小江,苏成.大跨度桥梁考虑桥塔风效应的随机风场模拟[J].工程力学,2003,20(6):18-22.
    [114]Aas-Jakobsen K., Str?mmen E. Time domain buffeting response calculations of slender structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001,89(5):341-364.
    [115]Deodatis George. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics,1996,122(8):778-787.
    [116]吴世亮.风沙流中沙粒跃移规律研究[D].北京:北京大学,2001.
    [117]窦国仁.紊流力学[M].北京:高等教育出版社,1987.
    [118]阿列斯塔科A·萨卢哈尼扬.环形截面柱形管中粘性流体的研究[J].北京建筑工程学院学报,2010,26(2):20-25.
    [119]邹罗明,郭印诚.直方槽道内两相流动中颗粒的趋壁行为[J].清华大学学报(自然科学版),2007,47(8):1384-1388.
    [120]邹罗明,郭印诚.直方槽道中重力对颗粒相二次流的影响[J].计算机与应用化学,2007,24(4):429-432.
    [121]黄社华,李炜,程良骏.任意流场中稀疏颗粒运动方程及其性质[J].应用数学和力学,2000,21(3):265-276.
    [122]S Rubinow, J Kelleer. The lift on a small sphere in a slow shere flow[J]. Journal of Fluid Mechanics,1965,22(2):385-400.
    [123]王维.颗粒流体两相流模型研究进展[J].化学进展,2000,12(2):208-217.
    [124]张默.基于FLUENT的建筑物风沙两相流场数值模拟[D].哈尔滨:哈尔滨工业大学,2008.
    [125]陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社,2004.
    [126]M. J. Pang, J. J. Wei. Analysis of drag and lift coefficient models of bubbly flow system for low to median Reynolds number: 7th International Conference on Multiphase Flow, Tampa,Florida,2010[C].
    [127]M. Manninen, V. Taivassalo, S. Kallio. On the mixture model for multiphase flows[M]. Espoo,Finland:VTT Publications 288:Technical Research Centre of Finland, 1996.
    [128]J. Gimbun, Rielly C. D., Nagy Z. K. Modelling of mass transfer in Gas-Liquid stirred tanks agitated by rushton turbine and CD-6 impeller: 13th European Conference on Mixing, London,2009[C].
    [129]王福军.计算流体动力学分析[M].北京:清华大学出版社,2005.
    [130]白桦,胡兆同,胡庆安.塔桅结构三维定常风场风洞试验及数值模拟[J].建筑科学与工程学报,2008,25(1):60-64.
    [131]高延龙,杜平安,杜强.天线风洞试验阻塞比的仿真计算与分析[J].现代雷达,2010,32(5):79-83.
    [132]梅葵花,吕志涛.CFRP斜拉索的静力特性分析[J].中国公路学报,2004,17(2):43-45.
    [133]刘怡.接触网动应力研究[D].成都:西南交通大学,2007.
    [134]胡晓伦.大跨度斜拉桥颤抖振响应及静风稳定性分析[D].上海:同济大学,2006.
    [135]刘怡,张卫华,黄标.高速铁路接触网动力学响应实验及仿真[J].中国铁道科学,2005,26(2):106-109.
    [136]黄标.基于虚拟样机技术的受电弓/接触网系统的研究[D].成都:西南交通大学,2004.
    [137]杨晓红,葛海涛.基于有限元的风力发电机转子系统动特性分析[J].机械设计与制造,2010(9):163-165.
    [138]郭志全,徐燕申,杨江天.基于FEM的新型运煤敞车的结构模态分析[J].机械强度,2006,28(6):919-922.
    [139]邓洪洲,朱松晔,陈晓明.大跨越输电塔线体系气弹模型风洞试验[J].同济大学学报,2003,31(2):132-137.
    [140]Salvatori L., Borri C. Frequency-and time-domain methods for the numerical modeling of full-bridge aeroelasticity[J]. Journal of Computers and Structures, 2007,85(11-14):675-687.
    [141]丁泉顺.大跨度桥梁耦合颤抖振响应分析[D].上海:同济大学,2001.
    [142]李宏男,白海峰.输电塔线体系的风(雨)致振动响应与稳定性研究[J].土木工程学报,2008,41(11):31-38.
    [143]董保童,施荣明,朱广荣.随机振动载荷作用下的结构疲劳寿命估算[J].飞机设计,2001(3):36-41.
    [144]王福天.车辆系统动力学[M].北京:中国铁道出版社,1996.
    [145]阳光武.机车车辆零部件的疲劳寿命预测仿真[D].成都:西南交通大学,2005.
    [146]王玉环.兰新线嘉乌段接触网设计风速探讨[J].西铁科技,2009(1):2-4.
    [149]李忠学,沈祖炎,邓长根.杆系钢结构非线性动力稳定性识别与判定准则[J].同济大学学报,2004,28(2):148-151.
    [150]LI Zhong-xue, SHEN Zu-yan, DENG Chang-gen. Nonlinear dynamic stability analysis of frames under earthquake loading: Proceedings of the 3rd international conference on nonlinear mechanics, Shanghai,1998[C]. Shanghai University Press.
    [151]Budiansky B., Roth R. S. Axisymmetric dynamic behaviour of clamped shallow spherical shells[J]. NASA TND 1510,1962:597-606.
    [152]Finley A. Charney. Applications in incremental dynamic analysis[J]. American Society of Civil Engineers,Conf,Proc,2005:171-183.
    [153]Behrouz Asgarian, Arezoo Sadrinezhad, Pejman Alanjari. Seismic performance evaluation of steel moment resisting frames through incremental dynamic analysis[J]. Journal of Constructional Steel Research,2010,66(2):178-190.
    [154]Dimitrios Vamvatsikos, C. Allin Cornell. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information[J]. Earthquake Engineering and Structural Dynamics, 2005,34(13):1573-1600.
    [155]John B. Mander, Rajesh P. Dhakal, Naoto Mashiko, etc. Incremental dynamic analysis applied to seismic financial risk assessment of bridges [J]. Engineering Structures,2007,29(10):2662-2672.
    [156]Vamvatsikos D., Cornell CA. Applied incremental dynalic analysis[J]. Earthquake Spectra,2004,20(2):523-553.
    [157]张卫华,沈志云.接触网动态研究[J].铁道学报,1991,13(4):26-33.
    [158]程育仁,缪龙秀,侯炳麟.疲劳强度[M].北京:中国铁道出版社,1990.
    [159]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [160]曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1990.
    [161]L. E. Granda Marroquin, L. H. Hernadez-Gomez, G. Urriolagoitia-Calderon, etc. Cumulative damage evaluation under fatigue loading[J]. Applied Mechanics and Materials,2008,13-14:141-150.
    [162]姚卫星Miner理论的统计特性分析[J].航空学报,1995,16(5):601-604.
    [163]郑立春,姚卫星.疲劳裂纹形成寿命预测方法综述[J].力学与实践,1996,18(4):9-15.
    [164]Nastar Navid, Anderson James, Brandow Gregg, etc. An Analysis of Low-Cycle Fatigue in Steel Moment Frames [J]. American Society of Civil Engineers,2010:3560-3571.
    [165]马建伟.发射器关键零件疲劳可靠性分析[D].大连:大连理工大学,2009.
    [166]Miller K. J. Metal fatigue-past,current and future[J]. Journal of Mechanical Engineering Science,1991,205(c5):291-304.
    [167]Miner M. A. Cumulative Damage in Fatigue[J]. Journal of Applied Mechanics, 1945,12(67):A159-A164.
    [168]Saisho Motoo. Steel Bar Fracture of Reinforced Concrete Frame under Extremely Strong Seismic Load[J]. American Society of Civil Engineers,2009:1417-1428.
    [169]Zhu Jin-Song, Gao Chang-E, Song Yu-Pu. Fatigue behavior and cumulative damage rule of concrete under cyclic compression with constant confined stress[J]. Journal of Harbin Institute of Technology(New Series),2005,12(5):528-535.
    [170]赵少汴,王忠保.抗疲劳设计-方法与数据[M].北京:机械工业出版社,1997.
    [171]刘惟信.机械可靠性设计[M].北京:清华大学出版社,1996.
    [172]徐宜,刘云鹏,卜树峰.基于雨流法的机械疲劳分析[J].2008.
    [173]李怀林.用雨流法计算核电站部件材料在随机荷载下的疲劳损伤[D].北京:中国原子能科学研究院,2001.
    [174]张振淼,沈浙,胡永生.雨流计数法在车钩载荷-时间历程统计分析中的应用[J].铁道车辆,1988(5):1-7.
    [175]阎楚良,王公权.雨流计数法及其统计处理程序研究[J].农业机械学报,1982(4):88-101.
    [176]王德俊,崔广椿,黄雨华,等.用雨流计数法研究水轮机的疲劳[J].东北工学院学报,1981(1):47-54.
    [177]Khosrovanch A. K., Dowling N. E. fatigue loading history reconstruction based on the rain-flow technique[J]. international journal of fatigue,1990,12(2):99-106.
    [178]粱红琴.随机荷载作用下的货车车轴疲劳可靠性研究[D].成都:西南交通大学,2001.
    [179]库德里亚弗采夫.大型机器零件的疲劳[M].赵少汴,译.北京:机械工业出版社,1986.
    [180]谢伟平,曹宏,李桂青.抗风结构疲劳损伤分析[J].武汉工业大学学报,1992,14(1):56-60.
    [181]李桂青,曹宏,李秋胜.结构动力可靠性理论及其应用[M].北京:地震出版社,1993.
    [182]周希沅.国产材料疲劳寿命分布参数α的初步估计[J].航空学报,1990(10):488-491.
    [183]Murty A. S. R., Gupta U. C., Krishna A. Radha. new approach to fatigue strength distribution for fatigue reliability evaluation[J]. International Journal of Fatigue, 1995,17(2):85-89.
    [184]Avakov V. A. fatigue strength distributions[J]. international journal of fatigue, 1993,15(2):85-91.
    [185]中华人民共和国铁道部.TB/T 2809-2005电气化铁道用铜及铜合金接触线[S].北京:中国铁道出版社,2005.
    [186]Y. J. Ge, Xiang H. F., Tanaka H. Application of a reliability analysis model to bridge flutter under extreme winds[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,86(2-3):155-167.
    [187]Gong Li, Jing Shi. Application of Bayesian modes averaging in modeling long-term wind speed distributions[J]. Renewable Energy,2010,35(6):1192-1202.
    [188]李秋胜,曹宏.风荷载作用下可连续化的高层建筑和高耸结构的动力可靠性分析[J].工程力学,1987,4(1):117-124.
    [189]M. J. Alam, A. R. Santhakumar. Probabilistic wind loadings on transmission line structures in India[J]. Engineering Structures,1994,16(3):181-189.
    [190]M. J. Alam, A. R. Santhakumar. system reliability analysis of transmission line towers[J]. Computers&Structures,1994,53(2):343-350.
    [191]R. S. Langley. Techniques for assessing the lifetime reliability of engineering structures subjected to stochastic loads[J]. Engineering Structures,1987,9(2):95-103.
    [192]Bennett R. M., Ang A. H-S. Investigation of Methods for Structural System Reliability[M]. Illinois:University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign,1983.
    [193]R. E. Melchers. Structural Reliability Analysis and Prediction[M]. Chichester:Ellis Horwood Limited,1987.
    [194]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [195]S. Engelund, R. Rackwitz. A benchmark study on importance sampling techniques in structural reliability [J]. Structural Safety,1993,12(4):255-276.
    [196]C. G. Bucher, U. Bourgund. A fast and efficient response surface approach for structural reliability problems [J]. Structural Safety,1990,7(1):57-66.
    [197]李继祥,谢桂华,刘建军.JC法在结构可靠度计算中的改进和应用[J].湖南科技大学学报(自然科学版),2005,20(3):33-36.
    [198]Shih-Jung Wang, Kuo-Chin Hsu. The application of the first-order second-moment method to analyze poroelastic problems in heterogeneous porous media [J]. Journal of Hydrology,2009,369(1-2):209-221.
    [199]M. Kmiecik, S. C. Guedes. Response surface approach to the probability distribution of the trength of compressed plates[J]. Marine Structures,2002,15(2):139-156.
    [200]李桂青,曹宏.高耸结构在风荷载作用下的动力可靠性分析[J].土木工程学报,1987,20(1):57-64.
    [201]朱川曲,张道兵,朱海燕.基于蒙特卡罗法的煤巷锚杆支护结构可靠性分析[J].中国安全科学学报,2008,18(4):146-150.
    [202]Joao B. Cardoso, Joao R. De Almeida, Etc. Structural reliability analysis using Monte Carlo simulation and neural networks[J]. Advances in Engineering Software, 2008,39(6):505-513.
    [203]Rubinstein R. Y., Kroese D. P. Simulation and the Monte-Carlo method[M].2nd edition. New York:Wiley,2007.
    [204]张明.结构可靠度分析-方法与程序[M].北京:科学出版社,2009.
    [205]F. Griosi, M Jones, T Poggoi. Regulation theory and neural networks architecture [J]. Neural Computation,1995,7(2):219-269.
    [206]高阳,白广忱,丁霖冲.基于RBF神经网络的涡轮盘疲劳可靠性分析[J].机械设计,2009,26(5):8-14.
    [207]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [208]Friedhelm Schwenker, Hans A Kestler. Three learning phases for radial-basis-function networks[J]. Neural Networks,2001,14:439-458.
    [209]陈玉红.RBF网络在时间序列预测中的应用研究[D].哈尔滨:哈尔滨工程大学,2009.
    [210]朱明星,张德龙.RBF网络基函数中心选取算法的研究[J].安徽大学学报(自然科学版),2000,24(1):72-78.
    [211]S. Chen, C. F. N. Cowan, P. M. Grant. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks, 1991,2(2):302-309.
    [212]李昆仲.基于RBF神经网络的边坡稳定性评价研究[D].西安:长安大学,2010.
    [213]方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.
    [214]张雷.基于神经网络技术的结构分析与优化设计[D].吉林:吉林大学,2004.
    [215]宫野.正态分布的抽样方法[J].计算物理,1997,14(4-5):566-568.
    [216]贡金鑫.工程结构可靠度计算方法[M].大连:大连理工大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700