卵携带的微生物对亮斑扁角水虻产卵行为和生长发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亮斑扁角水虻(Hermetta illucens L.,简称水虻)可以可持续地处理动植物有机废弃物。水虻幼虫能够在大幅减少畜禽粪便等废弃物累积量的同时,消除废弃物携带的多种病原菌类、除臭及抑制家蝇滋生。通过转化废弃物营养得到的水虻虫体可以作为畜禽、水产动物等的优质蛋白饲料来源。
     本研究较全面地调查了水虻种群携带的细菌群落结构及其多样性,卵携带的微生物在水虻聚集产卵行为中的作用及其对水虻生长发育的重要性,最后对水虻虫体油脂作为生物柴油生产的新型生物质原料进行了初步探索,主要结果如下:
     (1)亮斑扁角水虻各连续生命阶段的细菌种群多样性
     利用16SrDNA-454焦磷酸测序技术,调查了水虻各个连续生命阶段的细菌多样性:从水虻各生命阶段一共获得了4852个PCR产物,从第一代卵、幼虫、预蛹、蛹、成虫和次代卵样品获得的序列数目分别为37、517、1181、2106、883和128。在≥80%自引支持度(bootstrap support)下,分类到门、纲、目、科、属水平的序列百分比分别为99.65%、97.34%、85.84%、69.31%和31.55%。各生长阶段完成分类的(99.67%)综合细菌多样性跨越了6个细菌门。拟杆菌门和变形菌门占到了所鉴定类群的三分之二,是最具优势的菌门。在水虻卵阶段发现的细菌中有大约15%为第一代卵和次代卵所共有,暗示着世代垂直传递的可能性。
     (2)卵表细菌介导亮斑扁角水虻的聚集产卵行为
     通过产卵地点选择测试(OSP),在室内考察了各潜在因素在水虻产卵行为中的作用。结果表明,收卵基质对水虻具有长距离吸引作用,同种新生虫卵可以刺激怀卵雌性聚集产卵;而后通过对消毒虫卵进行OSP测试,发现卵表细菌是产卵刺激效果的主要来源。在对卵分离细菌进行OSP测试后,确定起关键作用的是一个细菌复合体(BSF-4),其中有4株菌,分别属于戈登氏菌属(Gordonia sp.)、纤维单胞菌属(Cellulomonas sp.)、微杆菌属(Microbacterium sp.)和微球菌属(Micrococcus sp.),它们对水虻产卵都具有吸引作用,戈登氏菌作用最显著,但BSF-4复合体作用效果强于任何单株细菌,4株菌可能具有协同作用。另外,部分水虻虫卵分离细菌和异种昆虫(自然界潜在竞争者)源细菌对水虻产卵行为表现出抑制排斥作用。
     (3)卵表微生物对亮斑扁角水虻生长发育特性的影响
     通过对虫卵进行表面消毒获得了无菌幼虫,然后测定了在喂食相同无菌人工饲料条件下无菌幼虫与正常幼虫生活史特性的差异,并通过向无菌幼虫回接虫卵洗液和卵表分离细菌混合液验证微生物对于水虻生长发育的重要性。结果显示,无菌幼虫预蛹率和存活到成虫阶段的比率均显著低于正常幼虫,仅有57.5%能够成功羽化;无菌幼虫发育出现延迟,发育时间延长了50%以上,需近30d才能预蛹,预蛹重量降低;无菌幼虫的预蛹需更长时间才能羽化,得到的成虫均重显著低于正常幼虫,成虫平均寿命只有9d左右,显著短于正常幼虫。在回接卵洗液和混合菌液后,无菌幼虫各项指标均向正常幼虫靠拢,部分得到了显著改善,证实卵表细菌对于水虻幼虫生长发育至关重要。
     (4)亮斑扁角水虻虫体脂肪成分作为新型生物能源材料
     综合地评测了利用水虻幼虫降解转化固态餐厨剩余物来再次生产生物柴油的潜力。结果显示,1000头水虻幼虫(8d)接种到1kg固态餐厨剩余物中,经过7d的生长消化,最后可以生产得到大约23.6g的水虻基生物柴油,使得利用餐厨剩余物生产生物柴油的产率提高了近一倍(回收油脂:2.7%:水虻油脂:2.4%)。此水虻基生物柴油的大多数性能参数均已达到了欧盟关于生物柴油的标准(EN14214),其中包括密度(860kg/m3)、粘度(4.9mm2/s)、闪点(128℃)、十六烷值(58)、酯含量(96.9%)等。
Black soldier fly (BSF), Hermetia illucens (L.), has been considered as a sustainable method for reducing animal and plant wastes. Larvae reduce dry matter, bacteria, offensive odor and house fly populations. The prepupae can be self-harvested and used as feedstuff for livestock and poultry.
     While some bacteria species have been cultured and identified from BSF, a true appreciation of fly associated bacterial diversity is not known. On the other hand, the significance of egg-associated bacteria on BSF larval development and what roles they play in the oviposition aggregation behaviour of gravid females are seldom reported up to now. Such information will provide insight into BSF biology and is needed to improve the current waste management system. To address these issues, this study was conducted accordingly. The potential of BSF larval grease to be used as a novel biomass feedstock for biodiesel production was also evaluated in the last chapter.
     The main results are as follows:
     (1) Bacterial diversity from successive life stages of black soldier fly.
     Using16S rDNA454pyrosequencing, we examined bacterial diversity associated with successive life stages of the BSF reared on a Gainesville diet. We obtained4852PCR products from the different life stages of the BSF. The number of sequences obtained from the first generation egg, larva, prepupa, pupa, adult, and second generation egg stages were37,517,1181,2106,883, and128, respectively. The percent of sequences which classified at the phylum, class, order, family, and genus levels were99.65%,97.34%,85.84%,69.31%, and31.55%, respectively, with≥80%bootstrap support. The combined diversity of bacteria classified (99.67%) across all life stages spanned six bacterial phyla with≥80%bootstrap support. Bacteroidetes and Proteobacteria were the most dominant phyla associated with the BSF accounting for two-thirds of the fauna identified. Of the bacteria found associated with the egg stage of development,15%were shared by first and second generation samples suggesting the possibility of vertical transmission and retention of bacteria through successive developmental stages.
     (2) Egg-associated bacteria-mediated oviposition aggregation by black soldier flies.
     Oviposition sites preference (OSP) tests were conducted under laboratory conditions to evaluate the roles of different potential factors in the oviposition aggregation behaviour of gravid female BSF. It is indicated that ovipositional substrates acted as a long distance attractant during oviposition site detection and fresh conspecific eggs had an effect of stimulation on oviposition behaviour. Further OSP tests of sterile eggs showed that egg-associated bacteria were the major source of this aggregation stimulus. Interestingly, among the bacteria isolated from BSF eggs, dramatical oviposition stimulation was only detected from BSF-4which is not a sole stain but a bacteria assemblage. Four stains of bacteria were identified as Gordonia sp., Cellulomonas sp., Micrococcus sp., and Microbacterium sp., respectively, by pyrosequencing and16S rDNA sequencing individually. The assemblage showed much stronger stimulation effect than individual ones in comparison OSP tests, although these four bacteria all can enhance oviposition separately. This suggests that synergy may exist in the bacteria assemblage. In addition, some bacteria off the BSF eggs or isolated from competitor insect species exhibited a repellent effect on oviposition of gravid females.
     (3) Effects of egg associated bacteria on the development of black soldier fly.
     Growth study with sterile BSF larvae obtained by egg surface sterilization was conducted to determine the changes of their life history traits compared with normal larvae provided with identical sterile artificial diet. The significance of bacteria to the development of BSF was further confirmed by bacteria replenishment to sterile larvae. The results demonstrated that percentage survivorship to prepupal and adult stages of sterile larvae were significantly lower than that of normal larvae. Only57.5%of sterile larvae successfully reached adult stage. Developmental delay was detected with sterile larvae; they took50%longer to develop to prepupal stage (30d). Additionally, sterile larvae also took longer to reach adult stage. Adults resulting from sterile larvae (9d) lived2d less than those from normal larvae. Prepupa and adults resulting from sterile larvae weighed significantly lighter. After bacteria replenishment by adding egg wash or mixed egg-associated bacteria suspension, some of the life history traits of sterile larvae were significantly improved, drawing close to that of normal larvae. It is shown that egg-associated bacteria are very important to the development of BSF larvae.
     (4) Exploring the potential of black soldier fly larval grease as a novel biomass feedstock for biodiesel production.
     This study was conducted to evaluate the potential of a secondary biodiesel production from the solid residual fraction of restaurant waste after typical grease extraction (SRF). About23.6g larval grease-based biodiesel was produced from approximately1000larvae grown on1kg of SRF. The weight of SRF was reduced by about61.8%after being fed by the black soldier fly larvae for7d. The amount of biodiesel yield from restaurant waste was nearly doubled (original restaurant waste grease, 2.7%; larval grease,2.4%). Most of the properties of this biodiesel met the specifications of the standard EN14214, including density (860kg/m3), viscosity (4.9mm2/s), flash point (128℃), cetane number (58) and ester contents (96.9%).
引文
1.刘文琪.黑水虻幼虫血淋巴抗菌肽的诱导、分离纯化及特性研究.[硕士学位论文].武汉:华中农业大学图书馆,2010.
    2.平磊.利用亮斑扁角水虻转化畜禽粪便工艺条件的优化及应用.[硕士学位论文].武汉:华中农业大学图书馆,2010.
    3.张茂新,凌冰,庞雄飞.非嗜食植物中的昆虫产卵驱避物及其利用.昆虫天敌,2003,25:28-36.
    4.徐红星,郑许松,刘淑平,叶恭银,吕仲贤.昆虫内共生菌在昆虫防御中的作用.昆虫知识,2009,46:350-354.
    5.工荫长.昆虫生物化学.北京:中国农业出版社,2001.
    6.相辉,黄勇平.肠道微生物与昆虫的共生关系.昆虫知识,2008,45:687-693.
    7.蒋先芝,杨恩策,刘杏忠.真菌和昆虫的互作关系及协同进化.前沿科学,2009,3:12-21.
    8. Adams M D, Celniker S E, Holt R A, Evans C A. The genome sequence of drosophila melanogaster. Science,2000,287:2185-2195.
    9. Ahmad A, Broce A, Zurek L. Evaluation of significance of bacteria in larval development of cochliomyia macellaria (diptera:Calliphoridae). Journal of Medical Entomology,2006,43:1129-1133.
    10. Ahmed I I, Gupta A K. Pyrolysis and gasification of food waste:Syngas characteristics and char gasification kinetics. Applied Energy,2010,87:101-108.
    11. Amatya P. Economics of black soldier fly (hermetia illucens) in dairy waste management. Master's thesis.,2009, Tarlton State University. USA.
    12. Anbutsu H, Togashi K. Oviposition deterrence associated with larval frass of the japanese pine sawyer, monochamus alternatus (coleoptera:Cerambycidae). Journal of Insect Physiology,2002,48:459-465.
    13. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz G M. Conversion of sewage sludge into lipids by lipomyces starkeyi for biodiesel production. Bioresource Technology,2008,99:3051-3056.
    14. Araujo V K W S, Hamacher S, Scavarda L F. Economic assessment of biodiesel production from waste frying oils. Bioresource Technology,2010,101:4415-4422.
    15. Ashworth J R, Wall R. Response of the sheep blow flies lucilia sericata and l. Cuprina to odour and the development of semiochemical baits. Medical and Veterinary Entomology,1994,8:303-309.
    16. Banjo A D, Lawai O A, Adeduji O O. Bacteria and fungi isolated from housefly (musca domestica l.) larvae. African Journal of Biotechnology,2005,4:780-784.
    17. Barnes K M, Gennard D E, Dixon R A. An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using lucilia sericata meigen as the marker species. Bulletin of Entomological Research First View,2010:1-6.
    18. Barry T. Evaluation of the economic, social, and biological feasibility of bioconverting food wastes with the black soldier fly (hermetia illucens). Doctoral dissertation,2004, University of North Texas. USA.
    19. Beckage N E. The parasitic wasp's secret weapon. Sci. Am.,1997,272:82-87.
    20. Behar A, Yuval B, Jurkevitch E. Gut bacterial communities in the mediterranean fruit fly (ceratitis capitata) and their impact on host longevity. Journal of Insect Physiology, 2008,54:1377-1383.
    21. Ben-Yosef M, Behar A, Jurkevitch E, Yuval B. Bacteria-diet interactions affect longevity in the medly-ceratitis capitata. Journal of Applied Entomology,2008, 132:690-694.
    22. Birkle L M, Minto L B, Douglas A E. Relating genotype and phenotype for tryp tophan synthesis in an aphid-bacterial symbiosis. Physiological Entomology,2002, 27:1-5.
    23. Boatright S A, Tomberlin J K. Effects of temperature and tissue type on the development of cochliomyia macellaria (diptera:Calliphoridae). Journal of Medical Entomology,2010,47:917-923.
    24. Bondari K, Sheppard D C. Soldier fly, hermetia illucens 1., larvae as feed for channel catfish, ictalurus punctatus (rafinesque), and blue tilapia, oreochromis aureus (steindachner). Aquaculture and Fisheries Management,1987,18:209-220.
    25. Bowen M F. Sensory aspects of host location in mosquitoes. Ciba Foundation Symposia,1996,200:197-211.
    26. Bowman J S, Rasmussen S, Blom N, Deming J W, Rysgaard S, Sicheritz-Ponten T. Microbial community structure of arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S rna gene. The ISME Journal,2000,6:11-20.
    27. Bradley S W, Sheppard D C. House fly oviposition inhibition by larvae of hermetia illucens, the black soldier fly. Journal of Chemical Ecology,1984,10:853-859.
    28. Braendle C, Miura T, Bickel R, Shingleton A W, Kambhampati S, Stern D L Developmental origin and evolution of bacteriocytes in the aphid-buchnera symbiosis. PLoS Biology,2003,1:70-76.
    29. Bright M, Bulgheresi S. A complex journey:Transmission of microbial symbionts. Nature Review Microbiology,2010,8:218-230.
    30. Briones A M, Shililu J, Githure J, Novak R, Raskin L. Thorsellia anophelis is the dominant bacterium in a kenyan population of adult anopheles gambiae mosquitoes. The ISME Journal,2008,2:74-82.
    31. Burkepile D E, Parker J D, Woodson C B, Mills H J, Kubanek J, Sobecky P A, et al. Chemically mediated competition between microbes and animals:Microbes as consumers in food webs. Ecology,2006,87:2821-2831.
    32. Canakci M. The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource Technology,2007,98:183-190.
    33. Canakci M, Gerpen J V. A pilot plant to produce biodiesel from high free fatty acid feedstocks. Transactions of the ASABE,2003,46:945-954.
    34. Chaudhury M, Skoda S, Sagel A, Welch J. Volatiles emitted from eight would-isolated bacteria differentially attracted gravid screwworms (diptera: Cliporidae) to oviposit. Journal of Medical Entomology 2010a,47:349-354.
    35. Chaudhury M F, Welch J B, Alvarez L A. Response of fertile and sterile screwworm (diptera:Calliphoridae) flies to bovine blood inoculated with bacteria originating from screwworm infested animal wounds. Journal of Medical Entomology,2002, 39:130-134.
    36. Chaudhury M F, Skoda S R, Sagel A, Welch J B. Volatiles emitted from eight wound-isolated bacteria differentially attract gravid screwworms (diptera: Calliphoridae) to oviposit. Journal of Medical Entomology,2010b,47:349-354.
    37. Cheung Y F, Fung C, Walsh C. Stereochemistry of propionyl-coenzyme a and pyruvate carboxylations catalyzed by transcarboxylase. Biochemistry 1975, 14:2981-2989.
    38. Christensen P, Cook F. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. International Journal of Systematic and Evolutionary Microbiology, 1978,28:367-393.
    39. Cole J R, Wang Q, Cardenas E, Fish J, Chai B, Farris R J, et al. The ribosomal database project:Improved alignments and new tools for rrna analysis. Nucleic Acids Research,2009,37:D141-145.
    40. Costello E K, Lauber C L, Hamady M, Fierer N, Gordon J I, Knight R. Bacterial community variation in human body habitats across space and time. Science,2009, 326:1694-1697.
    41. Coupland J B. Oviposition response of simulium reptans (diptera:Simuliidae) to the presence of conspecific eggs. Ecological Entomology,1991,16:11-15.
    42. Crippen T L, Sheffield C. External surface disinfection of the lesser mealworm (coleoptera:Tenebrionidae). Journal of Medical Entomology,2006,43:916-923.
    43. Crippen T L, Sheffield C L, Esquivel S V, Droleskey R E, Esquivel J F. The acquisition and internalization of salmonella by the lesser mealworm, alphitobius diaperinus (coleoptera:Tenebrionidae). Vector-Borne and Zoonotic Diseases,2009, 9:65-71.
    44. Dale C, Moran N A. Molecular interactions between bacterial symbionts and their hosts. Cell,2006,126:453-465.
    45. Dale C, Plague G R, Wang B, Ochman H, Moran N A. Type iii secretion systems and the evolution of mutualistic endosymbiosis. Proceedings of the National Academy of Sciences USA,2002,99:12397-12402.
    46. Deborde C, Boyaval P. Interactions between pyruvate and lactate metabolism in propionibacterium freudenreichii subsp. Shermanii:In vivo 13c nuclear magnetic resonance studies. Applied Environmental Microbiology,2000,66:2010-2020.
    47. Devault T L, Rhodes J, Shivik J A. Scavenging by vertebrates:Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos,2003,102:225-234.
    48. Dickschat J S, Reichenbach H, Wagner-Dobler I, Schulz S. Novel pyrazines from the myxobacterium chondromyces crocatus and marine bacteria. European Journal of Organic Chemistry,2005,19:4141-4153.
    49. Diener S, Zurbrugg C, Tockner K. Conversion of organic material by black soldier fly larvae:Establishing optimal feeding rates. Waste Management & Research,2009, 27:603-610.
    50. Diener S, Solano N M S, Gutie'rrez F R, Zurbru'gg C, Tockner K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valor,2011,2:357-363.
    51. Dillon R J, Vennard C T, Charnley A K. Exploitation of gut bacteria in the locust. Nature,2000,403:851.
    52. Dillon R J, Vennard C T, Charnley A K. A note:Gut bacteria produce components of a locust cohesion pheromone. Journal Applied Microbiology,2002,92:759-763.
    53. Douglas A E. Mycetocyte symbiosis in insects. Biology Review,1989,64:409-434.
    54. Dowd S, Sun Y, Secor P, RHoads D, Wolcott B. Survey of bacterial diversity in chronic wounds using pyrosequencing, dgge, and full ribosome shotgun sequencing. BMC Microbiology,2008a,8:43.
    55. Dowd S E, Sun Y, Secor P R. Evaluation of the bacterial diversity in the feces of cattle using 16S rdna bacterial tag-encoded flx amplicon pyrosequencing (btefap). BMC Microbiology,2008b,8:125.
    56. Dowd S E, Sun Y, Secor P R. Bacterial tag-encoded flx amplicon pyrosequencing (btefap) for microbiome studies:Bacterial diversity in the ileum of newly weaned salmonella infected pigs. Foodborne Pathogens and Disease,2008c,5:1-14.
    57. Engelstadter J, Telschow A. Cytoplasmic incompatibility and host population structure. Heredity,2009,103:196-207.
    58. Epsky N D, Heath R R, Dueben B D, Lauzon C R, Proveaux A T, MacCollum G B. Attraction of 3-methylbutanol and ammonia identified from enterobacter agglomerans to anastrepha suspensa. J Chemical Ecology,1998,24:1867-1880.
    59. Erickson M C, Islam M, Sheppard D C, Liao J, Doyle M P. Reduction of escherichia coli o157:H7 and salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. Journal of Food Protection,2004,67:685-690.
    60. Falcon A P M. Bacteria associated with copestylum (diptera, syrphidae) larvae and their cactus host isolatocereus dumortieri. PLoS ONE,2011,6:e27443.
    61. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science,2008,319:1235-1238.
    62. Favia G, Ricci I, Damiani C. Bacteria of the genus asaia stably associate with anopheles stephensi, an asian malarial mosquito vector. Proceedings of the National Academy of Sciences USA,2007,104:9047-9051.
    63. Felizardo P, Correia M J N, Paposo I, Mendes J F, Berkemeier R, Bordado J. Production of biodiesel from waste frying oils. Waste Management,2006,26:487-94.
    64. Ferguson A W, Solinas M, Ziesmann J. Identification of the gland secreting oviposition-deterring pheromone in the cabbage seed weevil, ceutorhynchus assimilis, and the mechanism of pheromone deposition. Journal of Insect Physiology,1999, 45:687-699.
    65. Fitt G P, O'Brien R W. Bacteria associated with four species of dacus (diptera: Tephritidae) and their role in the nutrition of the larvae. Oecologia,1985,67:447-454.
    66. Forster M, Sievert K, Messler S, Klimpel S, Pfeffer K. Comprehensive study on the occurrence and distribution of pathogenic microorganisms carried by synanthropic flies caught at different rural locations in germany. Journal of Medical Entomology, 2009,46:1164-1166.
    67. Futerman A H. Intracellular trafficking of sphingolipids:Relationship to biosynthesis. Biochimica Biophysica Acta,2006,1758:1885-1892.
    68. Gaio A d O, Gusmao D S, Santos A V, Berbert-Molina M A, Pimenta P F, Lemos F J. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera:Culicidae) (1.). Parasites & Vectors,2011,4:105.
    69. Georgogianni K G, Kontominas M G, Tegou E, Avlonitis D, Vergis V. Biodiesel production:Reaction and process parameters of alkali-catalysed transesterification of waste frying-oils. Energy Fuels,2007,21:3023-7.
    70. Gerpen J V. Biodiesel processing and production. Fuel Processing Technology,2005, 86:1097-1107.
    71. Ghadge S V, Raheman H. Biodiesel production from mahua (madhuca indica) oil having high free fatty acids. Biomass Bioenergy,2005,28:601-605.
    72. Gouinguene S P, Buser H-R, Stadler E. Host-plant leaf surface compound sinflueneing oviposition in delia anrique. Chemoeeology,2005,15:243-249.
    73. Gouinguene S P D, Poiger T, Stadler E. Eggs of cabbage root fly stimulate conspecific oviposition:Evaluation of the activity and determination of an egg-associated compound. Chemoecology,2006,16:107-113.
    74. Graf J, Kikuchi Y, Rio R V M. Leeches and their microbiota:Naturally simple symbiosis models. Trends Microbiology,2006,14:365-371.
    75. Green T R, Popa R. Enhanced ammonia content in compost leachate processed by black soldier fly larvae. Applied Biochemistry and Biotechnology,2012,166 (6):1381-1387
    76. Griffiths G W, Beck S D. Intracellular symbiotes of the pea aphid, acyrthosiphon pisum Journal of Insect Physiology,1973,19:75-84.
    77. Gui M M, Lee K T, Bhatia S. Feasibility of edible oil vs. Non-edible oil vs. Waste edible oil as biodiesel feedstock. Energy,2008,33:1646-1653.
    78. Gunawan S, Maulana S, Anwar K, Widjaja T. Rice bran, a potential source of biodiesel production in indonesia. Industrial Crops and Products,2011,33:624-628.
    79. Gupta A, Dharne M, Rangrez A, Verma P, Ghate H, Rohde M, et al. Ignatzschineria indica sp. Nov. And ignatzschineria ureaclastica sp. Nov., isolated from adult flesh fly (diptera:Sarcophagidae). International Journal of Systemic and Evolutionary Microbiology 2011,61:1360-1369.
    80. Hail D, I.Lauziere, Dowd S E, Bextine B. Culture independent survey of the microbiota of the glassy-winged sharpshooter(homalodisca vitripennis) using 454 pyrosequencing. Environmental Entomology 2011,40:23-29.
    81. Haine E R, Siva-Jothy M T, Rolff J. Antimicrobial defense and persistent infection in insects. Science,2008,322:1257-1259.
    82. Hald B, Skovgard H, Pedersen K, Bunkenborg H. Influxed insects as vectors for campylobacter jejuni and campylobacter coli in danish broiler houses. Poultry Science 2008,87:1428-1434.
    83. Hale O M. Dried hermetia illucens larvae (stratiomyidae) as a feed additive for poultry. Journal of the Georgia Entomological Society,1973,8:16-20.
    84. Han M V, Zmasek C M. Phyloxml:Xml for evolutionary biology and comparative genomics. BMC Bioinformatics,2009,10.
    85. Haynes S, Darby A C, Daniell T J, Webster G, Veen F J V. Diversity of bacteria associated with natural aphid populations. Applied Environmental Microbiology, 2003,69:7216-7223.
    86. Hem S, Toure S, Sagbla C, Legendre M. Bioconversion of palm kernel meal for aquaculture:Experiences from the forest region (republic of guinea). African Journal of Biotechnology,2008,7:1192-1198.
    87. Hilaire S S, Sheppard C, Tomberlin J K, Irving S, McGuire M A, Mosley E E, et al. Fly prepupae as a feedstuff for rainbow trout, oncorhynchus mykiss. Journal of the World Aquaculture Society 2007,38:59-67.
    88. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences USA,2006,103:11206-11210.
    89. Hill P, Campbell J A, Petrie I A. Rhodonius prolixus and its symbiotic actinomycete: A microbiological physiological and behavioural study. Proceedings of the Royal Society of Biological Sciences,1976,194:501-525.
    90. Hinde R. The fine structure of the mycetome symbiotes of the aphids brevicoryne brassicae, myzus persicae, and macrosiphum rosae. Journal of Insect Physiology, 1971a,17:2035-2045.
    91. Hinde R. The control of the mycetome symbiotes of the aphids brevicoryne brassicae, myzus persicae and macrosiphum rosae. Journal of Insect Physiology,1971b, 17:1791-1800.
    92. Hogsette J A. New diets for production of house flies and stable flies (diptera: Muscidae) in the laboratory. Journal of Economic Entomology,1985,85:2291-2294.
    93. Holdaway F G. Field population and natural control of lucilia sericata. Nature,1930, 126:648-649.
    94. Hongoh Y, Ohkuma M, Kudo T. Molecular analysis of bacteria microbiota in the gut of termite reticulitermes speratus (isoptera:Rhinotermitidae). Applied Environmental Microbiology,2003,71:6590-6599.
    95. Hosokawa T, Kikuchi Y, Meng X Y, Fukatsu T. The making of symbiont capsule in the plataspid stinkbug megacopta punctatissima. FEMS Microbiology Ecology,2005, 54:471-477.
    96. Houk E J, Griffiths G W. Intracellular symbiotes of the homoptera. Annual Review of Entomology,1980,25:161-187.
    97. Huang J, Miller J R, Chen S C, Vulule J M, Walker E D. Anopheles gambiae (diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles. Journal of Medical Entomology,2006,43:498-504.
    98. Huber J A, Welch D B M, Morrison H G, Huse S M, Neal P R, Butterfield D A, et al. Microbial population structures in the deep marine biosphere. Science,2007, 318,:97-100.
    99. Inoue J, Noda S, Hongoh Y, Ui S, Ohkuma M. Idetification of endosymbiotic methanogen and ectosymbiotic spirochetes of gut protists of the termite coptotermes formosanus. Microbes Environment,2008,23:94-97.
    100.Janzen D H. Why fruits rot, seeds mold, and meat spoils. American Naturalist 1977, 111:691-713.
    101.Janzen D H. What is coevolution? Evolution,1980,34:311-312.
    102.Jeon H, Park S, Choi J, Jeong G, Lee S-B, Choi Y, et al. The intestinal bacterial community in the food waste-reducing larvae of hermetia illucens. Current Microbiology,2011,62:1390-1399.
    103.Jiggins F M, Hurst G D D, Jiggins C D, Schulenburg J H G v d, Majerus M E N. The butterfly danaus chrysippus is infected by a male-killing spiroplasma bacterium. Parasitology,2000,120:439-446.
    104.Johansson D, Azar C. A scenario based analysis of land competition between food and bioenergy production in the us. Climatic Change,2007,82.
    105.Ju Y-H, Vali S R. Rice bran oil as a potential resource for biodiesel:A review. Journal of Scientific and Industrial Research,2005,64:866-882.
    106.Judd G J R, Borden J H. Aggregated oviposition in delia antiqua (meigen):A case for mediation by semiochemicals. Journal of Chemical Ecology,1992,18:621-635.
    107.Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B. Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology,2009,81:1001-1012.
    108.Kikuchi Y. Endosymbiotic bacteria in insects:Their diversity and culturability. Microbes Environment,2009,24:195-204.
    109.Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission:A stinkbug acquires a beneficial gut symbiont from the environment every generation. Applied Environmental Microbiology,2007,73:4308-4316.
    110.Kikuchi Y, Hosokawa T, Nikoh N, Meng X-Y, Kamagata Y, Fukatsu T. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biology,2009,7:2.
    111.Kim W, Bae S, Park K, Lee S, Choi Y, Han S, et al. Biochemical characterization of digestive enzymes in the black soldier fl y, hermetia illucens (diptera:Stratiomyidae). Journal of Asia-Pacific Entomology,2011,14:11-14.
    112.Klepzig K D, Adams A S, Handelsman J, Raffa K F. Symbioses:A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology,2009,38:67-77.
    113.Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology,2005,86:1059-1070.
    114.Knothe G. "Designer" Biodiesel:Optimizing fatty ester composition to improve fuel properties. Energy& Fuels,2008,22:1358-1364.
    115.Kopper B J, Klepzig K D, Raffa K F. Components of antagonism and mutualism in ips pini-fungal interactions:Relationship to a life history of colonizing highly stressed and dead trees. Environmental Entomology,2004,33:28-34.
    116.Kuchkina A Y, Gladyshev M I, Sushchik N N, Kravchuk E S, b G S K. Biodiesel production from sediments of a eutrophic reservoir. Biomass and Bioenergy,2011, 35:2280-2284.
    117.Kulkarni M G, Dalai A K. Waste cooking oil-an ecomomical source for biodiesel:A review. Industrial and Engineering Chemistry Research,2006,45:2901-13.
    118.Kuwahara H, Takaki Y, Yoshida T, Shimamura S, Takishita K. Reductive genome evolution in chemoautotrophic intracellular symbionts of deep-sea calyptogena clams. Extremophiles,2008,12:365-374.
    119.Lam K, Geisreiter C, Gries G. Ovipositing female house flies provision offspring larvae with bacterial food. Entomologia Experimentalis et Applicata,2009a, 133:292-295.
    120.Lam K, Thu K, Tsang M, Moore M, Gries G. Bacteria on housefly eggs, musca domestica, suppress fungal growth in chicken manure through nutrient depletion or antifungal metabolites. Naturwissenschaften 2009b,9:1127-1132.
    121.Lam K, Babor D, Duthie B, Babor E M, Moore M, Gries G. Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour of adult flies. Animal Behaviour,2007,74:81-92.
    122.Lard G. Recyccling of coffee pulp by hermetia illucens larvae. Biological Wastes, 1990,33:307-310.
    123.Lefevre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A. Encosymbiont phylogenesis in the dryophthoridae weevils:Evidence for bacterial replacement. Molecular Biology and Evolution,2004,21:965-973.
    124.Leufven A, Bergstrom G, Falsen E. Oxygenated monoterpenes produced by yeasts, isolated from ips typographus (coleoptera:Scolytidae) and grown in phloem medium. Journal of Chemical Ecology,1988,14:353-362.
    125.Li G-Q, Han Z-J, Mu L-L. Natural oviposition-deterring chemicals in female cotton bollworm, helicoverpa armigera (hubner). Journal of Insect Physiology,2001, 47:951-956.
    126.Li Q, Zheng L, Qiu N, Cai H, Tomberlin J K, Yu Z. Bioconversion of dairy manure by black soldier fly (diptera:Stratiomyidae) for biodiesel and sugar production. Waste Management,2011a,31:1316-1320.
    127.Li Q, Zheng L, Cai H, Garza E, Yu Z, Zhou S. From organic waste to biodiesel: Black soldier fly, hermetia illucens, makes it feasible. Fuel,2011b,90:1545-1548.
    128.Liu Q, Tomberlin J K, Brady J A, Sanford M R, Yu Z. Black soldier fly (diptera: Stratiomyidae) larvae reduce escherichia coli in dairy manure. Environmental Entomology,2008a,37:1525-1530.
    129.Liu T P. The influence of juvenile hormone on the plasma membrane of symbiotic bacteria. Protoplasma,1974,79:409-412.
    130.Liu Z, DeSantis T Z, Andersen G L, Knight R. Accurate taxonomy assignments from 16S rrna sequences produced by highly parallel pyrosequencers. Nucleic Acids Research,2008b,36:e120.
    131.Liu Z, Lozupone C, Hamady M, Bushman F D, Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research, 2007,35:e120.
    132.Login F H, Balmand S, Vallier A, Vincent-Monegat C, Vigneron A, Weiss-Gayet M, et al. Antimicrobial peptides keep insect endosymbionts under control. Science,2011, 334:362-365.
    133.Lord W D, Goff M L, Adkins T R, Haskell N H. The black soldier fly hermetia illucens (diptera:Stratiomyidae) as a potential measure of human postmortem interval:Observations and case histories Journal of Forensic Sciences,1994, 39:215-222.
    134.Lysyk T J, Kalischuk-Tymensen L, Selinger L B, Lancaster R C, Wever L, Cheng K J. Rearing stable fly larvae (diptera:Muscidae) on an egg yolk medium. Journal of Medical Entomology,1999,36:382-388.
    135.Ma F, Hanna M A. Biodiesel production:A review. Bioresource Technology,1999, 70:1-15.
    136.Ma Q, Fonseca A, Liu W, Fields A T, Pimsler M L, Tarone A M, et al. Proteus mirabilis interkingdom swarming signals attract blow flies. The ISME Journal, In press 2012.
    137.Martindale W, Trewavas A. Fuelling the 9 billion. Nature Biotechnology,2008, 26:1068-1070.
    138.Martinez A J, Robacker D C, Garcia J A, Esau K L. Laboratory and field olfactory attraction of the mexican fruit fly (diptera:Tephritidae) to metabolites of bacterial species. Fla Entomology,1994,77:117-126.
    139.Mattson W J. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics,1980,11:119-161.
    140.McFall-Ngai M. Are biologists in 'future shock'? Symbiosis integrates biology across domains. Nature Reviews Microbiology,2008,6:789-792.
    141.Miki T, Ushio M, Fukui S, Kondoh M. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model. Proceedings of the National Academy of Sciences USA,2010,107:14251-14256.
    142.Moran N A. Symbiosis. Current Biology,2006,16:866-871.
    143.Moran N A, McCutcheon J P, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics,2008,42:165-190.
    144.Moya A, Pereto J, Gil R, Latorre A. Learning how to live together:Genomic insights into prokaryote-animal symbioses. Nature Reviews Genetics 2008,9:218-229.
    145.Myers H M, Tomberlin J K, Lambert B D, Kattes D. Development of black soldier fly (diptera:Stratiomyidae) larvae fed dairy manure. Environmental Entomology, 2008,37:11-15.
    146.Newton G L, Booram C V, Barker R W, Hale O M. Dried hermelia illucens larvae meal as a supplement for swine. Journal of Animal Science,1977,44:395-400.
    147.Newton G L, Sheppard D C, Watson D W, Burtle G J, Dove C R, Tomberlin J K, et al. The black soldier fly, hermetia illucens, as a manure management/resource recovery tool. State of the Science, Animal Manure and Waste Managmenen. January 5-7, San Antonio, TX.,2005.
    148.Newton I L G, Woyke T, Auchtung T A, Dilly G F, Dutton R J. The calyptogena magnifica chemoautotrophic symbiont genome. Science,2007,315:998-1000.
    149.Nolte D J, Eggers S H, May I R. A locust pheromone:Locustol. Journal of Insect Physiology,1973,19:1547-1554.
    150.Oliver K M, Moran N A, Hunter M S. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences USA,2005,102:12795-12800.
    151.Patt T E, Cole G C, Hanson R S. Methylobacterium, a new genus of facultatively methylotrophic bacteria. International Journal of Systematic and Evolutionary Microbiology,1976,26:226-229.
    152.Pavlovich S G, Rockett C L. Color, bacteria, and mosquito eggs as ovipositional attractants for aedes aegypti and aedes albopictus (diptera:Culicidae). Great Lakes Entomology,2000,33:141-153.
    153.Peng B, Shu Q, Wang J, Wang G, Wang D, Han M. Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environment Protection, 2008,86:441-447.
    154.Perlman S J, Hunter M S, Zchori-Fein E. The emerging diversity of rickettsia. Proceedings of the Royal Society of Biological Sciences,2006,273:2097-2106.
    155.Peterson C L, Reece D L, Hammond B J, Thompson J, Beck S M. Processing, characterization and performance of eight fuels from lipids. ASAE Paper,1994, 94:6531.
    156.Phan A N, Phan T M. Biodiesel production from waste cooking oils. Fuel,2008, 87:3490-3496.
    157.Plas M J A, Jukema G N, Wai S W, Dogterom-Ballering H C M, Lagendijk E L. Maggot excretions/secretions are differentially effective against biofilms of staphylococcus aureus and pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy,2008,61:117-122.
    158.Ponnusamy L, Wesson D M, Arellano C, Schal C, Apperson C S. Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microbial Ecology,2010,59:158-173.
    159.Ponnusamy L, Xu N, Nojima S, Wesson D M, Schal C, Apperson C S. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by aedes aegypti. Proceedings of the National Academy of Sciences USA, 2008,105:9262-9267.
    160.Poonam S, Paily K P, Balaraman K. Oviposition attractancy of bacterial culture filtrates response of culex quinquefasciatus. Mem Inst Oswaldo Cruz,2002, 97:359-362.
    161.Prado S S, Almeida R P P. Role of symbiotic gut bacteria in the development of acrosternum hilare and murgantia histrionica. Entomologia Experimental et Applicata,2009,132:21-29.
    162.Pujol-Luz J R, Francez P A d C, Ururahy-Rodrigues A, Constantino R. The black soldier-fly, hermetia illucens(diptera., stratiomyidae), used to estimate the postmortem interval in a case in amapa state, brazil. Journal of Forensic Science,2008, 53:476-478.
    163.Rajagopal R. Beneficial interactions between insects and gut bacteria. Indian Journal of Microbiology,2009,49:114-119.
    164.Ramadhas A S, Jayaraj S, Muraleedharan C. Biodiesel production from high ffa rubber seed oil. Fuel,2005,84:335-340.
    165.Rathmann R g, Szklo A, Schaeffer R. Land use competition for production of food and liquid biofuels:An analysis of the arguments in the current debate. Renewable Energy,2010,35:14-22.
    166.Relman D A.'til death do us part':Coming to terms with symbiotic relationships. Nature Review Microbiolgy,2008,6:721-724.
    167.Robacker D C, Lauzon C R, He X. Volatiles production and attractiveness to the mexican fruit fly of enterobacter agglomerans isolated from apple maggot and mexican fruit flies. Journal of Chemical Ecology,2004,30:1329-1347.
    168.Roesch L F W, Fulthorpe R R, Riva A, Casella G, Hadwin A K M, Kent A D, et al. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 2007,1:283-290.
    169.Rohlfs M, Hoffmeister T S. Maternal effects increase survival probability in drosophila subobscura larvae. Entomologia Experimentalis Et Applicata 2005, 117:51-58.
    170. Romero A, Broce A, Zurek L. Role of bacteria in the oviposition behaviour and larval development of stable flies. Medical and Veterinary Entomology,2006,20:115-121.
    171.Roux O, Van J B, Gers C. Antennal structure and oviposition behavior of the plutella xylostella specialist parasitoid:Cotesia plutellae. Microscopy Research and Technique,2005,68:36-44.
    172.Rozen D E, Engelmoer D J P, Smiseth P T. Antimicrobial strategies in burying beetles breeding on carrion. Proceedings of the National Academy of Sciences USA,2008, 105:17890-17895.
    173.Sanderson M W, Sargeant J M, Shi X, Nagaraja T G, Zurek L, Alam M J. Longitudinal emergence and distribution of escherichia coli o157 genotypes in a beef feedlot. Applied Environmental Microbiology,2006,72:7614-7619.
    174.Sawabe K, Hoshino K, Isawa H, Sasaki T, Hayashi T, Tsuda Y, et al. Detection and isolation of highly pathogenic h5nl avian influenza a virus from blow flies collected in the vicinity of an infected poultry farm in kyoto, japan,2004. The American Journal of Tropical Medicine and Hygiene,2006,75:327-332.
    175.Schmitt S, Weisz J B, Lindquist N, Hentschel U. Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge ircinia felix. Applied Environmental Microbiology,2007,73:2067-2078.
    176.Schroder R, Hilker M. The relevance of background odor in resource location by insects:A behavioral approach. BioScience,2008,58:308-316.
    177.Sealey W M, Gaylord T G, Barrows F T, Tomberlin J K, McGuire M A, Ross C, et al. Sensory analysis of rainbow trout, oncorhynchus mykiss, fed enriched black soldier fly prepupae, hermetia illucens. Journal of the World Aquaculture Society,2011, 42:34-45.
    178.Seddon H R. Conditions which predispose sheep to blowfly attack. Agricultural Gazette, New South Wales,1931,42:581-594.
    179.Sharp K H, Davidson S K, Haygood M G. Localization of 'candidatus endobugula sertula' and the bryostatins throughout the life cycle of the bryozoan bugula neritina. The ISME J,2007,1:693-702.
    180.Sheppard C. House fly and lesser fly control utilizing the black soldier fly in manure management systems for caged laying hens. Environmental Entomology,1983, 12:1439-1442.
    181.Sheppard D C, Newton G L. Black soldier fly may produce nutritious feedstuff. Feedstuffs,1999,71:21.
    182.Sheppard D C, Newton G L, Thompson S A, Savage S. A value added manure management system using the black soldier fly. Bioresource Technology,1994, 50:275-279.
    183.Sheppard D C, Tomberlin J K, Joyce J A, Kiser B, Sumner S M. Rearing methods for the black soldier fly (diptera:Stratiomyidae). Journal of Medical Entomology,2002, 39:695-698.
    184.Shoemaker D D, Katju V, Jaenike J. Wolbachia and the evolution of reproductive isolation between drosophilla recens and drosophila subquinaria. Evolution,1999, 53:1157-1164.
    185.Skorpil P, Broughton W. Molecular interactions between rhizobium and legumes. Progress in Molecular and Subcellular Biology,2006,41:143-164.
    186.Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. Journal of Biological Chemistry,2002,277:25851-25854.
    187.Stouthamer R, Breeuwer J A J, Hurst G D D. Wolbachia pipientis:Microbial manipulator of arthropod reproduction. Annual Review of Microbiology,1999, 53:71-102.
    188.Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. Mega5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution,2011, 28:2731-2739.
    189.Taylor M J, Bandi C, Hoerauf A. Wolbachia bacterial endosymbionts of filarial nematodes. Advances in Parasitology,2005,60:245-284.
    190.Thibout E, Guillot J F, Auger J. Microorganisms are involved in the production of volatile kairomones affecting the host seeking behaviour of diadromus pulchellus, a parasitoid of acrolepiopsis assectella. Physiological Entomology,1993,18:176-182.
    191.Thibout E, Guillot J F, Ferary S, Limouzin P, Auger J. Origin and identification of bacteria which produce kairomones in the frass of acrolepiopsis assectella (lep., hyponomeutoidea). Experientia,1995,51:1073-1075.
    192.Thomas R S, Glen D M, Symondson W O C. Prey detection through olfaction by the soil-dwelling larvae of the carabid predator pterostichus melanarius. Soil Biology and Biochemistry,2008,40:207-216.
    193.Toh H, Weiss B L, Perkin S A H, Yamashita A, Oshima K, Hattori M, et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of sodalis glossinidius in the tsetse host. Genome Research,2006, 16:149-156.
    194.Tomberlin J K, Sheppard D C. Factors influencing mating and oviposition of black soldier flies (diptera:Stratiomyidae) in a cology. Journal of Entomological Sciences, 2002a,37:345-352.
    195.Tomberlin J K, Sheppard D C, Joyce J A. Selected life-history traits of black soldier flies (diptera:Stratiomyidae) reared on three artificial diets. Annals of the Entomological Society of America,2002b,95:379-386.
    196.Tomberlin J K, Sheppard D C, Joyce J A. Black soldier fly (diptera:Stratiomyidae) colonization of pig carrion in south georgia. Journal of Forensic Sciences 2005, 50:152-153.
    197.Tomberlin J K, Adler P H, Myers H M. Development of the black soldier fly (diptera: Stratiomyidae) in relation to temperature. Environmental Entomology,2009, 38:930-934.
    198.Toth E M, Borsodi A K, Euzeby J P, Tindall B J, Marialigeti K. Proposal to replace the illegitimate genus name schineria toth et al.2001 with the genus name ignatzschineria gen. Nov. And to replace the illegitimate combination schineria larvae toth et al.2001 with ignatzschineria larvae comb. Nov. International Journal of Systematic and Evolutionary Microbiology,2007,57:179-180.
    199.Trexler J D, Apperson C S, Zurek L, Gemeno C, Schal C, Kaufman M, et al. Role of bacteria in mediating the oviposition responses of aedes albopictus (diptera: Culicidae). Journal of Medical Entomology,2003,40:841-8.
    200.Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, acyrthosiphon pisum. Molecular Ecology,2002,11:2123-2135.
    201.Vass A A, Barshick S A, Sega G, Caton J, Skeen J T. Decomposition chemistry of human remains:A new methodology for determining the postmortem interval. Journal of Forensic Sciences,2002,47:542-553.
    202.Veljkovic V B, Lakicevic S H, Stamenkovic O S, Todorovic Z B, Lazic M L. Biodiesel production from tobacco(nicotiana tabacum 1.) seed oil with a high content of free fatty acids. Fuel,2006,85:2671-2675.
    203.Verhulst N O, Andriessen R, Groenhagen U, Kiss G B, Schulz S, Takken W, et al. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. Plos One,2010,5:e15829.
    204.Vilhelmsen L, lsidoro N, Romani R. Host location and oviposition in a basal group of parasitic wasps:The subgenual organ, ovipositor apparatus and associated struetures in the orussidae (hymenoptera, insecta). Zoomorphology,2001,121:63-84.
    205.Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson T H, Stege J T, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature,2007,450:560-565.
    206. Watson D W, Martin P A, Schmidtmann E T. Egg yolk and bacteria growth medium for musca domestica (diptera:Muscidae). Journal Medical Entomology,1993, 30:820-823.
    207. Watts J E, Merritt G C, Goodrich B S. The ovipositional response of the australian sheep blowfly, lucilia cuprina, to fleece-rot odours. Australian Veterinary Journal, 1981,57:45045-45044.
    208.Webb B A, Strand M R, Deborde S E, Beck M, Hilgarth R S, Kadash K, et al. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology, 2006,347:160-174.
    209.Wernegreen J J. Genome evolution in bacterial endosymbionts of insects. Nature Reviews Genetics,2002,3:850-861.
    210.Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L. Spirochete and protist symbionts of a termite (mastotermes electrodominicus) in miocene amber. Proceedings of the National Academy of Sciences USA,2002,99:1410-1413.
    211.Will C, Thurmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, et al. Horizon-specific bacterial community composition of german grassland soils, as revealed by pyrosequencing-based analysis of 16S rrna genes. Applied Environmental Microbiology,2010,76:6751-6759.
    212. Yan S, Li J, Chen X, Wu J, Wang P, Ye J, et al. Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renewable Energy,2011, 36:1259-1265.
    213.Yang X, Cox-Foster D. Effects of parasitization by varroa destructor on survivorship and physiological traits of apis mellifera in correlation with viral incidence and microbial challenge. Parasitology,2007,134:405-412.
    214.Yu G, Cheng P, Chen Y, Li Y, Yang Z, Chen Y, et al. Inoculating poultry manure with companion bacteria influences growth and development of black soldier fly (diptera: Stratiomyidae) larvae. Environmental Entomology,2011,40:30-35.
    215.Zhang J, Huang L, He J, Tomberlin J K, Li J, Lei C, et al. An artificial light source influences mating and oviposition of black soldier flies, hermetia illucens. Journal of Insect Science,2010,10:1-7.
    216.Zhang Y, Dube M A, McLean D D, Kates M. Biodiesel production from waste cooking oil:Economic assessment and sensitivity analysis. Bioresource Technology, 2003,90:229-40.
    217.Zilkowski B W, Bartelt R J, Blumberg D, James D G, Weaver DKJ. Identification of host-related volatiles attractive to pineapple beetle carpophilus humeralis. Journal of Chemical Ecology,1999,25:229-252.
    218.Zong W, Yu R, Zhang P, Fan M, Zhou Z. Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass and Bioenergy,2009,33:1458-1463.
    219.Zurek L, Schal C, Watson D W. Diversity and contribution of the intestinal bacterial community to the development of musca domestica (diptera:Muscidae) larvae. Journal of Medical Entomology,2000,37:924-928.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700