多柔体系统动力学拟变分原理及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多柔体系统动力学的发展,与航天技术的发展是密切相关的。从多体角度看,多柔体系统动力学是多刚体系统动力学的延伸,从动力学角度讲,刚体是柔性体的特殊情况。多柔体系统动力学考虑多体运动与柔性效应之间的交耦作用。最常见的多柔体系统为多柔体簇系统和多柔体链系统。本文研究多柔体簇系统。
     多柔体系统动力学的拟变分原理的研究涵盖了许多学科,需要一般力学、固体力学等多个学科。
     首先,研究了分析动力学含阻尼非保守系统的拟变分原理。从基本方程出发,应用变积方法推导了分析动力学含阻尼非保守系统的拟Hamilton原理,并给出了其它表达形式;建立了两类变量的广义拟势能原理和广义拟余能原理;建立了三类变量的广义拟势能原理和广义拟余能原理。建立了反映本构关系、几何条件和动态平衡方程的广义拟变分原理。应用分析动力学含阻尼非保守系统的拟Hamilton原理,研究二自由度系统的振动方程,并且得到随阻尼衰减解以及稳态解。
     其二,研究了弹性动力学拟变分原理和广义拟变分原理。建立非保守系统弹性动力学拟Hamilton原理、拟余Hamilton原理、第一、第二类两类变量广义拟变分原理和三类变量广义拟变分原理。
     其三,研究了单柔体动力学的拟变分原理。将变分方法推广应用到单柔体动力学问题中,推导了单柔体动力学的拟Hamilton原理,建立了两类变量的拟Hamilton原理。提出了单柔体动力学问题的拟驻值条件的概念,通过推导拟变分原理的拟驻值条件对拟变分原理进行了检验。以拦截器为例,说明了单柔体动力学两类变量的拟Hamilton原理的拟驻值条件和先决条件的物理意义;应用拟Hamilton原理的拟驻值条件建立了火箭垂直发射时的纵向振动方程,并且说明在单柔体动力学中“一力二用”的特性。
     其四,研究了多柔体系统动力学的拟变分原理。将变分方法推广应用到多柔体系统动力学问题中。考虑附件三种运动情况:可伸展平动、转动、既可伸展平动又转动。推导了附件三种运动情况时的多柔体系统动力学的拟Hamilton原理,建立了两类变量的拟Hamilton原理。提出了多柔体系统动力学问题的拟驻值条件的概念,通过推导拟变分原理的拟驻值条件对拟变分原理进行了检验。应用可伸展平动附件多柔体系统动力学拟Hamilton原理的拟驻值条件,建立空间飞行器可伸展平动柔性梁横向振动微分方程,得到横向振动圆频率;应用转动附件多柔体系统动力学拟Hamilton原理的拟驻值条件,建立空间飞行器转动柔性梁横向振动微分方程,得到横向振动圆频率。
The development of flexible multi-body system dynamics is closely related to the development of space technology. From the multi-body point of view, flexible multi-body system dynamics is an extension of multiple rigid body system dynamics and from the perspective of dynamics, rigid body is flexible in the special circumstances. Flexible multi-body system dynamics considers more cross-link roles between the multi-body movement and flexible effects. The most common flexible multi-body system is flexible multi-body cluster system and flexible multi-body linked system. In this paper, the flexible multi-body cluster system is researched.
     Quasi-variational principles of flexible multi-body system dynamics covers a lot of subjects, general mechanics, solid mechanics, and other disciplines are needed.
     Firstly, analysis dynamics which contains the quasi-variational principle of damping non-conservative system is studied. From the basic equation, variational integral method is applied to deduce the analysis dynamics which contains the quasi-Hamilton of damping non-conservative system and the other forms of expression are given. Generalized quasi-potential energy principle and generalized quasi-complementary energy principle which include two kinds of variables are established. Generalized quasi-potential energy principle and generalized quasi-complementary energy principle which include three kinds of variables are established. Generalized quasi-variational principle which reflects constitutive relations, geometric conditions and dynamic balance equation are also built up. Analysis dynamics which contains the quasi-Hamilton principle of damping non-conservative system is applied to research the two degree of freedom on the vibration equation. Meanwhile, the author also gets the decayed solution with the damper and the steady-state solution.
     Secondly, quasi-variational principle and generalized quasi-variational principle in elasto-dynamics is studied. Quasi-Hamilton, quasi-complementary Hamilton principle, the first and second types generalized quasi-variational principles with two kinds of variables, and generalized quasi-variational principle with three kinds of variables in non-conservative elasto-dynamics system are established.
     Thirdly, quasi-variational principle of single flexible body dynamics is studied. Variational methods are applied to deduce the problems of single flexible body dynamics. At the same time, quasi-Hamilton principle of single flexible body dynamics, the quasi-Hamilton principle which include two kinds of variables are established. The concept of quasi-stationary value condition of single flexible body dynamics is proposed. Through the deduction of the quasi-stationary value condition of quasi-variational principles, quasi-variational principles have been tested. Taking the interceptor as an example, the author has explained the physical meaning of the quasi-stationary value condition and prerequisite in the quasi-Hamilton principles of single flexible body dynamics with two kinds of variables. The quasi-stationary value condition of quasi-Hamilton principles are applied to establish the vertical vibration equation when the rockets launch vertically and the author also has illustrated the features of "one force for two effects" in a single flexible body dynamics.
     Forthly, quasi-variational principle of flexible multi-body system dynamics is also studied. Variational methods are applied to deduce the problems of flexible multi-body system dynamics. Three kinks of movement in annex are considered: extendable translation, rotation, extendable translation and rotation. Quasi-Hamilton principles of flexible multi-body system dynamics in the three kinds of movement in annex are deduced, the quasi-Hamilton principle which include two kinds of variables are established. The concept of quasi-stationary value condition of flexible multi-body system dynamics is proposed. Through the deduction of quasi-stationary value condition of quasi-variational principles, the author has tested the quasi-variational principles. Due to the application of quasi-stationary value condition of quasi-Hamilton principle in the extendable translation annex of flexible multi-body system dynamics, the author has established vibration differential equations of extendable translation flexible beam in space vehicles, and also has got round lateral vibration frequencies. The purpose is that the quasi-stationary value condition of quasi-Hamilton principle in rotation annex of flexible multi-body system dynamics is applied to establish the spacecraft rotation flexible beam vibration differential equations and to get round lateral vibration frequencies.
引文
[1]K.Washizu. Variational methods in elasticity and plasticity. Third Edition. Pergamon Press,1982:325-332P
    [2]J. L. Lagrange. Mecanique analytique. T. Ⅰ, Ⅱ, Paris,1788
    [3]刘书振,陈书勤,罗绍凯.分析力学.河南:河南大学出版社,1992:1-35页
    [4]钱伟长.应用数学与力学论文集.江苏:江苏科学技术出版社,1980:138-143页
    [5]钱伟长.变分法及有限元.北京:科学出版社,1980:220-254页
    [6]梁立孚,石志飞.粘性流体力学的变分原理及其广义变分原理.应用力学学报.1993,10(1):119-123页
    [7]梁立孚,石志飞.关于变分学中逆问题的研究.应用数学和力学.1994,15(9):775-788页
    [8]梁立孚.应用Lagrange乘子法推导一般力学中的广义变分原理.中国科学(A辑).1999,29(12):1102-1108页
    [9]梁立孚.胡海昌.一般力学中的三类变量的广义变分原理.中国科学(A辑).2000,30(12):1130-1135页
    [10]罗恩,梁立孚,李纬华.分析力学的非传统Hamilton型变分原理.中国科学(G辑).2006,36(6):633-643页
    [11]梁立孚,罗恩,冯晓九.分析力学初值问题的一种变分原理形式.力学学报.2007,39(1):106-111页
    [12]胡海昌.弹性力学的变分原理及其应用.北京:科学出版社,1981:382-388页
    [13]Reissner E. On a variational theorem in elasticity. Journal of Mathematics and Physics.1950,29(2):90-98P
    [14]胡海昌.论弹性力学与受范体力学中的一般变分原理.物理学报.1954, 10(3):359-363页
    [15]K.Washizu. On the variational principles of elasticity. Massachusetts Institute of technology Technical Report 25-18, March 1955:386-389P
    [16]钱令希.论固体力学中的极限分析并建立一个一般变分原理.力学学报.1963,6(4):287-302页
    [17]张汝清.固体力学变分原理及其应用.重庆大学出版社,1991(8):12-28页
    [18]刘殿魁,张其浩.弹性理论中非保守问题的一般拟变分原理.力学学报.1981,(6):562-570页
    [19]Glabisz W. Stability of one-degree-of-freedom system under velocity and acceleration dependent nonconservative forces. Computers and Structures. 2001(79):757-768P
    [20]Glabisz W. Stability of simple discrete systems under nongcongservative loading with dynamic follower parameter. Computer and Structures.1996, 60(4):653-663P
    [21]Detinko F.M. On the elastic stability of uniform beams and circular arches under nonconservative loading. Int. J. Solids and Structures.2000(37): 5505-5515P
    [22]Glabisz W. Vibration and stability of a beam with elastic supports and concentrated masses under conservative and nonconservative forces. Computers and Structures.1999(70):305-313P
    [23]张汝清.非线性弹性体的弹性动力学变分原理.应用数学和力学.1992,13(1):1-9页
    [25]梁立孚著.变分原理及应用.哈尔滨工程大学等五联社,2005:2页, 262-272页,37页,8-11页,98-99页
    [26]Flethcer H J, Rongved L, Yu E Y. Dynamics analysis of a two-body gravitationally oriented satellite. Bell System Tech. J.1963,42(5): 2239-2266P
    [27]Hooker W W, Margulies G. The dynamic attitude equations for an N-body satellite. J. Astronautical Science.1965,12(4):123-128 P
    [28]Hooker W W. A set of r-dynamical attitude equations for an N-body satellite having r rotational degrees of freedom. AIAA J.1970,8(7): 1205-1207P
    [29]刘延柱,洪嘉振,杨海兴.多刚体系统动力学.北京:高等教育出版社,1989:40-56页
    [30]J.维藤伯格著,谢传锋译.多刚体系统动力学.北京:北京航空学院出版社,1986:30-37页
    [31]袁士杰.多刚体系统动力学.北京:北京理工大学出版社,1992:1-45页,177-184页
    [32]Likins P W. Dynamics and control of flexible space vehicles. Jet propulsion laboratory. Pasandena. Ca. TR.1969:32-1329P
    [33]Likins P W. Finite element appendage equations for hrbrid coordinate dynamic analysis. Int. J. Solids and Structures.1972,8(7):709-731 P
    [34]Likins P W. Dynamic analysis of system of hinge-connected rigid bodies with non-rigid appendages. Int. J Solids and Structures.1973,9(12): 1473-1487 P
    [35]Meirovitch L. and Nelson H.D. High spin motion of satellite containing elastic parts. J. Spacecraft and Rocket.1966(13):1579-1602 P
    [36]Ho J Y L. Direct path method for flexible multibody spacecraft dynamics. Journal of Spacecraft and Rockets.1977,14(2):102-110P
    [37]Bodley C S. et.al. A digital computer program for the dynamic interaction simulation of controls and structure (DISCOS).1978,112,NASA TP-1219
    [38]Modi V J, Ng A, Suleman A, Morita Y. Dynamics of orbiting multibody system:a formulation with application. AIAA-91-0998-CP
    [39]Cavin R K, Dusto A R. Hamilton's Principle:Finite Element Methods and Flexible Body Dynamics. AIAAJ,1977,15(12):1684-1690P
    [40]Kane T R, Levinson D A. Multibody Dynamics. J. Applied Mechanics.1983, 50(4):1071-1078P
    [41]Kane T R, Levinson D A. Formulation of Equations of motion for Complex Spacecraft. J. Guidance, Control and Dynamics.1980,3(2):99-112P
    [42]Singh R P, Vandervoort R J, Linkins P W. Dynamics of flexible bodies in tree topology—A computer-oriented approach. J. Guidance, Control and Dynamics.1985,8(5):584-590P
    [43]J T Wang, R L Huston. Kane's equations with undetermined muitipliers—Application on constrained multibody systems. J. Applied Mechanics.1987,54(2):424-429P
    [44]J W Kamman, R L Huston. Dynamics of constrained multibody system. J. Applied Mechanics.1984,51(4):899-903P
    [45]R P Singh, P W Likins. Singular value decomposition for constrained dynamical systems. J. Applied Mechanics.1985,52(4):943-948P
    [46]D S Bae, E J Haug. A recursive formulation for constrained mechanical system dynamics:Part 1, Open loop systems. Mech. Structures and Machines.1987,15(3):359-382P; Part 2, Closed loop systems. Mech. Structures and Machines.1987,15(4):481-5062P
    [47]W J Book. Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robotics Research.1984,3(9):87-101P
    [48]J M Hollerbach. A recursive Lagrangian formulation of mainpulator dymamics and a comparative study of dynamic formulation complexity. IEEE Trans. On System, Man and Cybernetics.1980, SMC-10(11): 730-736P
    [49]缪炳祺,曲广吉,夏邃勤,程道生.柔性航天器动力学建模的伪坐标形式Lagrange方程.中国空间科学技术.2003,4(2):1-5页
    [50]刘才山,陈滨,阎绍泽.基于Hamilton原理的柔性多体系统动力学建模方法.导弹与航天运载技术.1999(5):32-36页
    [51]邓峰岩,和兴锁,李亮,张娟,赵春燕.考虑非线性变形的航天器柔性附件建模方法.2006,23(4):555-562页
    [52]王琪,陆启韶.多体系统Lagrange方程数值算法的研究进展.力学进展.2001,31(1):9-17页
    [53]Shabana A A. Dynamics of multi-body system. New York:John Wiley and Sons,1989
    [54]黄文虎,邵成勋.多柔体系统动力学.北京:科学出版社,1996:1-4页,10页,15-21页,29-36页,
    [55]马兴瑞,王本利,苟性宇.航天器动力学——若干问题进展及应用.北京:科学出版社,2001:5-15页,31-61页,215-233页,244-265页
    [56]陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996:3-12页,42-45页,86-88页,
    [57]缪炳祺,曲广吉.柔性航天器动力学模型的模态综合——混合坐标法建模研究.航天器工程.1998,7(1):29-35页
    [58]缪炳祺,曲广吉,程道生.柔性航天器的建模问题.航天器工程.7(3):26-33页
    [59]匡金炉.带挠性附件的航天器系统动力学特性研究.宇航学报.1998,19(2):73-80页
    [60]缪炳祺.挠性卫星姿态动力学模型的建立.宇航学报.1986(4):14-20页
    [61]杨辉,洪嘉振,余征跃.刚—柔耦合多体系统动力学建模与数值仿真.计算力学学报.2003,20(4):402-408页
    [62]洪嘉振,蒋丽忠.柔性多体系统刚—柔耦合动力学.力学进展.2000,30(1):15-20页
    [63]蒋丽忠,洪嘉振,赵跃宇.作大范围运动弹性梁刚—柔耦合动力学建模.计算力学学报.2002,19(1):12-15页
    [64]肖世富,陈滨.一类刚柔耦合系统的建模与稳定性研究.力学学报.1997,29(4):439-447页
    [65]邵成勋,黄文虎,张嘉钟.带弹性附件的卫星姿态动力学方程.宇航学报.1989(2):79-85页
    [66]Modi V J. Attitude dynamics of satellites with flexible appendages—a brief review. Journal of Spacecraft and Rockets.1974(11):746-751P
    [67]蒋建平,李东旭.带挠性附件航天器刚柔耦合动力学.上海航天.2005(5):24-27页
    [68]肖建强,章定国.转动刚体上柔性悬臂梁的动力学建模与仿真.2005,24(1):45-47页
    [69]Banerjee A K, Lemak M K. Multi-flexible body dynamics capturing motion-induced stiffness. Journal of Applied Mechanics.1991(58): 766-755P
    [70]Ider S K. Finite element based recursive formulation for real time dynamic simulation of flexible multibody systems. Computers and Structures. 1991(40):939-945P
    [71]Wu S C, Haug E J. Geometric non-linear substructuring for mechanical system. International Journal for Numerical Methods in Engineering. 1988(26):2211-2226P
    [72]Yoo H H, Ryan R R, Scott R A. Dynamics of flexible beams undergoing overall motions. Journal of Sound and Vibration.1995,181(2):261-278P
    [73]Jeha R, Sanng Sup Kim, Sung Soo Kim. A criterion on inclusion of stress stiffening effects in flexible multibody dynamic system simulation. Computers and Structures.1997(28):1035-1048P
    [74]Zakhariev E. Nonlinear dynamics of rigid and flexible multibody systems. Mech struct and Mach.2000,28(1):105-136P
    [75]Shi P, Mcphee J, Heppler G R. A deformation field for Euler-Bernoulli beams with applications to flexible multibody dynamics. Multibody system Dynamics.2001(5):79-104P
    [76]蒋丽忠,洪嘉振.平动弹性梁的刚—柔耦合动力学.力学季刊.2002,23(4):450-454页
    [77]蒋丽忠,洪嘉振.带柔性部件卫星耦合动力学建模理论及仿真.宇航学报.2000,21(3):39-44页
    [78]蒋建平,李东旭.带太阳帆板航天器刚柔耦合动力学研究.航空学报.2006,27(3):418-422页
    [79]刘锦阳,洪嘉振.柔性体的刚—柔耦合动力学分析.固体力学学报.2002,23(2):159-166页
    [80]阎绍泽,季林红,范晋伟.柔性机械系统动力学的变形耦合方法.机械工程学报.2001,37(8):1-4页
    [81]刘锦阳,李彬,洪嘉振.作大范围空间运动柔性梁的刚—柔耦合动力学.力学学报.2006,38(2):276-282页
    [82]包光伟,刘延柱.三轴定向充液卫星的姿态稳定性.空间科学学报.1993,13(1):31-38页
    [83]戈新生,刘延柱.万有引力场中带挠性太阳帆板航天器的姿态稳定性.1999,20(3):61-68页
    [84]徐士杰,吴瑶华.挠性空间飞行器姿态控制系统的时间域鲁棒稳定性分析.宇航学报.1990(1):77-83页
    [85]Blaise Morton, Michael Elgersma, Robert Playter. Analysis of booster-vehicle liquid propellant slosh stability during ascent-to-orbit. A90-40542P
    [86]Wang Zhaolin, Quan Bin, Deng Zhongping. On the slsohing dynamics and attitude stability of liquid-filled spacecraft with complex structures. A90-13490P
    [87]李俊峰,王照林.航天器伸展附件振动稳定性.清华大学学报.1998,38(2):5-29页
    [88]王大钧,曲广吉.工程力学进展.北京大学出版社,1998
    [89]胡海昌.弹性力学的变分原理及其应用.北京:科学出版社,1981
    [90]钟万勰.应用力学对偶体系.北京:科学出版社,2003
    [91]宋海燕,梁立孚,周轶雷.一般力学广义变分原理的对偶形式.哈尔滨工程大学.2004,25(6):740-742页
    [92]梁立孚,樊涛,周利剑.一般力学初值问题三类变量的广义变分原理.哈尔滨工程大学.2006,27(5):714-717页
    [93]#12
    [94]梅凤翔,刘瑞,罗勇.高等分析力学.北京:北京理工大学出版社,1991:52-121页
    [95]王光远.应用分析动力学.北京:人民教育出版社,1981:91-93页
    [96]S.铁摩辛柯,D.H.杨,W.小韦孚著.胡人礼译.工程中的振动问题.北京:人民铁道出版社1978:177-181页
    [97]K.马格努斯著.贾书惠等译.陀螺理论与应用.北京:国防工业出版社,1983:1-55页
    [98]梁立孚,刘殿魁,宋海燕.非保守系统的两类变量的广义拟变分原理研究.中国科学(G).2005,35(2):202-210页Liang Lifu, Liu Dianqui, Song Haiyan.The generalized quasi-variational principles of non-conservative systems with two kinds of variables. Science in China(G).2005,48(5):600-613页
    [99]陆元久.陀螺及惯性导航原理.北京:科学出版社,1964:1-94页
    [100]钱伟长.对合变换和薄板弯曲问题的多变量变分原理.应用数学和力学.1985,6(1):25-46页
    [101]宋海燕.非保守系统的拟变分原理及其应用.哈尔滨工程大学博士学位论文,2005,39页
    [102]R.克拉夫,J.彭津著.王光远等译.结构动力学.第二版.北京:高等教育出版社,2006:283-317页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700