浓相气力输送脱硫石膏复杂管段流动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国火力发电厂以煤炭为主要原料,加上我国煤的含硫量普遍较高,SO_2就成为大气污染的主要污染物之一,在环境压力日益增大的今天,这已经成为备受重视与亟待解决的问题。因此火力发电厂的烟气脱硫显得尤为重要。烟气脱硫,80-90%都采用石灰石(石灰)-石膏法脱硫技术,其副产物就是脱硫石膏。从质量上看,脱硫石膏纯度较高、成分稳定,与天然石膏相比,其含水率较高、粒度较小、成粉状、含水溶性盐类较少,脱硫石膏的品位已经超过了天然石膏,有相当大的利用价值。但是脱硫石膏的输送是个难题,一方面由于脱硫石膏过细(直径普遍小于60μm ),带来流动性和触变性问题;另一方面,由于从脱硫塔下到脱硫石膏的利用地,如石膏板厂、水泥厂等通常地形都比较复杂,车辆运输等造价太高,这就造成了脱硫石膏的干燥状态下的输运问题成为其应用的瓶颈。
     浓相气力输送技术由于其能耗低、装置安全、费用低、易于自动化、环保并且结构简单、操作方便、布置灵活等优势,在工农业生产中得到了广泛应用。而将其作为脱硫石膏粉体输运的方式不仅可以保持粉体活性而且容易实现输送的连续性,这不但有重要的理论意义还有重要的应用价值和前景。
     鉴于此,本文选用工程中较为常用而研究较少的水平弯管、变管径(含渐缩管、渐扩管)等复杂管段作为研究对象,在高浓度流态化气力输送台上以压缩空气作为输送动力,火电厂脱硫石膏粉体作为输送介质进行两相流实验,通过改变输送管道的几何形状、系统的操作参数等因素找到不同复杂管道处的流动参数的实验变化规律。通过实验研究发现,管道的几何结构对输送过程的流动参数具有较大影响。
     在实验的基础上,本文建立了适合不同复杂管道包含管道几何结构、流动参数等因素在内的普适性较好的压力降物理数学计算模型。误差分析表明,该模型具有较好的准确性,能够用来系统的设计计算与管道布置形式的优化。
     数值模拟作为浓相气力输送新的研究方法,近十几年来得到了充分的发展。本文根据输送实验管道的实际尺寸,在前处理过程中采用GAMBIT软件建立了复杂管道的几何模型,并进行了网格划分,考虑在管壁及变径处流动的复杂性,特通过划分边界层的方式对网格进行加密,以便提高模拟的准确性。在实验的基础上,选用气固两相湍动的双流体模型,该模型全面地考虑了两相间、颗粒之间以及颗粒与管壁之间的相互作用,在ANSYS计算平台上对实验工况的气力输送过程进行了模拟,得到了输送过程的压力分布图、浓度分布图和速度矢量图等流场信息,直观地显示了浓相气力输送过程中的流场变化情况,并分析了产生图示流场的原因。将模拟结果和实验结果作了对比,发现两者吻合较好,说明本文建立的数学模型具有较高的准确性,能够预测浓相气力输送过程中的各种参数的变化。
Viewing of the growing pressure on the current environment, SO_2 emissions has been a much attention and urgent problem which as the main pollutants of air pollution. Therefore, what the flue gas desulfurate gypsum in thermal power plant is very important and the by-product is desulfurated-gypsum. From the view of quality point, desulfurated-gypsum have high purity, stability composition, high moisture content, smaller particle size, powder shape, containing less water-soluble salts compared with natural gypsum. Therefore there is considerable value in use. But due to the complex terrain from desulfurization tower to the using land, such as gypsum board factory, cement plant, etc. vehicles and transportation costs are too high, which leaded the transports been an application bottleneck.
     Pneumatic conveying powder is widely used in many kinds of industrial processes because of merits like almost no dust pollution and more flexibility of pipeline layout. Widely used too are the high-density and low-velocity conveying of powder due to merits like the low energy loss, the prevention of the attrition of pipes and that it inhibits to make powder crash. Using dense-phase pneumatic conveying desulfurated-gypsum powder not only can maintain the activity of powder and continuity of easy transportation, but also has important theoretical significance there is an important value and prospects.
     View of this, variable pipe (including the stepped pipe, diverging pipe) and horizontal curved duct which were widely used in the engineering project and less researched on in the high concentration of fluidized transportation were studied in this paper. In the research we used compress air as the transmission power, desulfurated-gypsum as the transport medium and found out the change and law of flow parameters by changing the geometry of the transmission pipeline, the system's operating parameters and other factors. The experiments indicated that the geometry of the transmission pipeline and the system's operating parameters played an important role.
     Based on the experiments, the physical and mathematical model was established which considered of the geometry of the transmission pipeline, flow parameters and other factors to calculate the pressure lost. The error analysis shows that the model has good accuracy and can be used to calculate and optimize the pipe layout, providing reference for practical application.
     Numerical simulation of dense phase pneumatic conveying has been fully developed at the last decade as a new research method. Based on the actual size of the geometry of the transmission pipeline, the geometric model and mesh creation was set up by using the software GAMBIT in former course of treatment. The boundary layer was divided near wall and refinement mesh was carried out in complex pipe in considering of the complexity of the flow to improve the accuracy of the simulation. Based on the experiment, an Euler-Euler two fluid model was used to simulate the process of the pneumatic conveying which was based on the kinetic theory of dense gases and kinetic theory of granular, including the interactions between two phases, particles and the particles, particles and wall in the ANSYS computing Platform. The visual information of flow field in the process such as the distribution of static pressure, dynamic pressure, distribution of particle phase, velocity vectors were simulated and analyzed. The simulation results and experimental results are consistent with each other, indicating that numerical simulation can be used to predict the two-phase flow.
引文
[1]黄标.气力输送[M].上海:上海科学技术出版社,1984.
    [2]刘宗明,段广彬,赵军.低速高能效的浓相气力输送技术[J].中国粉体技术,2005,11(5):5-29.
    [3]赵军,胡寿根,刘宗明,等.密相气固两相流管道气力输送的阻力特性[J].发电设备,2005,(1):1-6.
    [4]高敬国,徐德龙,赵江平.粉体密相气力输送理论与技术进展[J].中国粉体技术,1999,5(5):35-37.
    [5] Liu Zongming, Yue yunlong, Lu Haidong. An experimental study on fly ash removal by dense phase pneumatic conveying[C]. Energy and the Environment-Proceeding of the International Conference on Energy and Environment,2003:1288-1291.
    [6] EldinWee Chuan Lim, Yan Zhang, Chi-HwaWang. Effects of an electrostatic field in pneumatic conveying of granular materials through inclined and vertical pipes[J]. Chemical Engineering Science, 2006(61):7889-7908.
    [7] Bradley M S A, BumettA J, Woodheas S R. Measurement of press profiles in pneumatic conveying pipelines[J]. Powder Technology,2002(122):77-99.
    [8]罗驹华,高敬国.密相气力输送系统的比较[J].水泥工程,2002,(5):15-18.
    [9]程克勤.粉粒状物料性能与其气力输送特性(待续)[J].硫磷设计与粉体工程,2004,(6):13-25.
    [10]程克勤.粉粒状物料性能与其气力输送特性(续完) [J].硫磷设计与粉体工程,2005,(1):11-17.
    [11]杜滨.粉体性能对浓相气力输送特性的影响[D].济南:济南大学,2008.6.
    [12]李贤松,刘宗明,杜滨.不同粒径粉体颗粒气力输送特性的比较研究[J].中国材料科技与设备.2008,(1):30-32.
    [13]李勇,王海萍.气力输送系统输送管道对能耗的影响[J] .硫磷设计与粉体工程.2010,(4):40-43.
    [14] Luis Sancheza, Nestor A. Vasqueza, George E. Klinzinga, et al. Evaluation of models and correlations for pressure drop estimation in dense phase pneumatic conveying and an experimental analysis [J]. Power Technology,2005(153):142-147.
    [15] Akilli, H.Levy, E.K.,et al. Gas–solid flow behaviour in a horizontal pipe after vertical-to-horizontal horizontal curved duct[J]. Powder Technology, 2001(116):43–52.
    [16] Yilmaz, A. Levy, E.K.. Roping phenomena in pulverized coal conveying lines[J]. Powder Technology,1998( 95):43–48.
    [17] Yilmaz, A. Levy, E.K. Formation and dispersion of ropes in pneumatic conveying[J]. Powder Technology,2001(114):165–185.
    [18] K.A. Ibrahim, M.A. El-kadi, M.H. Hamed, et al. Numerical simulation gas–solid two-phase flow in curved duct[C]. Proceedings of ASME ATI' Conference:Milan,Italy, 2006:981–990.
    [19]李永祥.气力输送弯管的磨损及磨损机理研究[J].河南工业大学学报(自然科学版),2005,26(01):68-74.
    [20]李勇,朱秀苹.气力输送中弯管磨损的影响因素及解决办法[J].起重运输机械,2008 (09):77-80.
    [21]李志华,金秋华.气力输送系统中弯管磨损分析及应对措施[J].硫磷设计与粉体工程,2007 (01):20-24.
    [22] B. Kuan, W.Yang, M.P. Schwarz. Dilute gas–solid two-phase flows in a curved 90? duct bend: CFD simulation with experimental validation [J]. Chemical Engineering Science, 2007(62):2068-2088.
    [23]周云,陈晓平,梁财,等.高压密相气力输送弯管压降研究[J].中国电机工程学报,2009,29(2):8-12.
    [24]周云,陈晓平,梁财,等.高压密相气力输送垂直弯管阻力特性[J].化工学报,2009,60(3):580-584.
    [25]邱朋华,陈力哲,王宏,等.临界状态下弯管段浓相气力输送的两相速度分布[J].燃烧科学与技术,2003,9(01):58-63.
    [26]段广彬,胡寿根,赵军,等.气力输送Y型分支管网流动阻力特性的研究[J].流体机械,2009,37(2):6-10.
    [27] Duan Guangbin, Hu Shougen, Zhao Jun, et al. Flow Distribution Property of Y-Shaped pipeline in Gas-solid flow[C]. IPMC, 2009:2655-2657.
    [28] Guangbin Duan, Zongming Liu, Guangli Chen, et al. Numerical Simulation of Y -Shaped Branch Pipe in Gas-Solid Two-Phase Flow[C]. CACS, 2010:299-302.
    [29]王晓宁,胡寿根,赵军.气固两相分支管路输送特性的实验研究[J].上海第二工业大学学报,2006,23(02):107-111.
    [30]王晓宁,胡寿根,赵军,等.气固两相管道输送分支流动阻力特性的研究[J].流体机械,2006,34(10):9-12.
    [31]王晓宁,胡寿根,赵军,等.气力输送分支管路流量分配特性的研究[J].中国机械工程,2006,17(20):2110-2112.
    [32]王晓宁,胡寿根,赵军,等.气力输送过程分支管路阻力特性的研究[J].机械工程学报, 2006,42(10):49-52.
    [33]赵军.密相气固管道输送阻力特性及控制系统的研究[C].上海:上海理工大学, 2004.
    [34]赵军,胡寿根,王晓宁,等.气力输送管路系统的流动特性与节能研究[J].流体机械,2005,33(12):1-56.
    [35]赵军,胡寿根,刘宗明,等.密相气固两相流管道气力输送的阻力特性[J].发电设备,2005,19(01):1-6.
    [36] M. Hirota,Y. Sogo,T. Marutani,et al.Effect of mechanical properties of powder on pneumatic conveying in inclined pipe[J].Powder Technology,2002(122):150-155.
    [37]王法良,赵军,胡寿根,等.变倾角管道气力输送阻力特性研究[J].能源研究与信息,2007,23(02):100-104.
    [38]郭晓镭,龚欣,代正华,等.竖直上升管中密相气力输送压降特性[J].化工学报,2007,58(03):602-607.
    [39] Zongming Liu,Hua Yi,Guangbin Duan,et al.Particle Velocity and Pressure Drop in Long-distance Dense-phase Pneumatic Conveying of Fly Ash [C].The 5th International Symposium on Measurement Techniques for Multiphase Flows,Macau,China,2006:107-111.
    [40] Zongming Liu,Weilin Zhao,Xiansong Li,et al.Investigation on Resistance Property of Dense-Phase Pneumatic Conveying Fly Ash in Long-distance[C]. ICEM, Nanjing, China,2008.
    [41]刘清华,孙伟,钮根林,等.变径结构提升管反应器内颗粒流动特性的研究[J].炼油技术与工程, 2007,37(10):32-36.
    [42] DUAN Guangbin, LIU Zongming, WU Waiting, et al. Energy Consumption of Dense-phase Pneumatic Conveying in Long-distance Pipe[C]. The Second China Energy Scientist Forum, 2010:41-44.
    [43]刘清华,杨朝合,张欢,等.扩径段参数对变径提升管内气固流动的影响[J].炼油技术与工程,2009,39(1):8-13.
    [44] Mehmet Yasar Gundogdu,Ahmet Ihsan Kutlar,Hasan Duz.Analytical prediction of pressure loss through a sudden-expansion in two-phase pneumatic conveying lines[J].Advanced Powder Technology, 2009(20):48-54.
    [45]衣华,刘宗明,杜滨,等.浓相气力输送粉煤灰颗粒速度的研究及应用[J].济南大学学报(自然科学版), 2007, 21(01):25-27.
    [46] Wanjie Huang,Xin Gong,Xiaolei Guo,et al.Study of the pressure drop of dense phase gas–solid flow through nozzle [J].Powder Technology, 2009(189):82-86.
    [47]李勇,朱秀苹.气力输送中变径管道系统设计的研究[J].起重运输械,2008(10):25-27.
    [48]宋国良,周俊虎,刘建忠,等.浓相气力输送中变径管道优化设计方法的研究[J].浙江大学学报(工学版),2005,39(11):1788-1792.
    [49]丁岩峰,李新生,蒋丽,等.紊流双套管气力输渣技术实验研究[J].中国电力,2008,41(10):53-56.
    [50]丁岩峰,樊泉桂.紊流双套管气力输灰技术及其设计要点[J].水泥工程,2006,(05):15-44.
    [51]陈国艳.吸气式低压套管气力输送加速压损的研究[D].河南:河南工业大学,2005.5.
    [52]胡志波,余帆,马忠云,等.双套管气力输送技术的应用[J].节能技术, 2006,(06):542-544.
    [53]由长福,岳光溪,叶大均.方形分离器内气固两相流动的数值模拟[J].工程热物理学报, 1996, 17(2): 252-256.
    [54] Samy M. El-Behery,Mofreh H. Hamed,M.A. El-Kadi,et al.CFD prediction of air–solid flow in 180°curved duct [J].Powder Technology,2009(191):130–142.
    [55] M. HIDAYAT , A. RASMUSON . Numerical Assessment of Gas–Solid Flow in a U-Bend[J].Chemical Engineering Research and Design,2004,82(3):332-343.
    [56] M. Hidayat,A. Rasmuson.Numerical investigation of gas–solid flow in a U-bend[C].Proc. of the 13th Int. Drying Symp.,Beijing,China,2002:424–433.
    [57] M. Hidayat,A. Rasmuson.Some aspects on gas–solid flow in U-bend: numerical investigation[J].Powder Technology,2005,(153) :1-12.
    [58]李荫堂,李志勇,黄卓.中浓度气力输送弯管压力降数值模拟研究[J].硫磷设计与粉体工程,2006 (06):21-24.
    [59]李荫堂,杨林峰,李志勇,等.粉煤灰中浓度气力输送管道压降研究[J].硫磷设计与粉体工程,2005 (05):1-4.
    [60]段广彬,胡寿根,赵军,等.气固两相Y型分支管网流量分配特性的研究与数值模拟[J].热能动力工程,2009,24(6):750-818.
    [61]王丽珏,胡寿根,赵军,等.Y型分支管内气固两相流动的数值模拟[J].力学季刊,2009,30(1):55-61.
    [62]蒲文灏,熊源泉,赵长遂,等.垂直管煤粉高压密相气力输送特性的模拟研究[J].中国电机工程学报,2008,28(17):21-25.
    [63]蒲文灏,赵长遂,熊源泉,等.垂直管密相输送的数值模拟[J].动力工程,2008,28(1):95-99.
    [64] Wenhao Pu,Changsui Zhao,Yuanquan Xiong,et al.Numerical simulation on dense phase pneumatic conveying of pulverized coal in horizontal pipe at high pressure [J].Chemical Engineering Science,2010,65(8):2500-2512.
    [65]谢灼利,张政.气力输送的数值模拟[J].北京化工大学学报,2001,28(1):22-27.
    [66]管春生,张春霞,陈灵,等.双套管密相气力输运过程的数值模拟和能耗分析[J].过程工程学报,2009,9(4):625-633.
    [67]张轲轲,杨大力,周靖.双套管浓相气力输送的数值模拟[J].电力建设,2008,29(11):64-66.
    [68]杜滨,刘宗明,李贤松.水泥厂中浓相气力输送粉煤灰的应用研究[C].中国工程院化工冶金与材料工程学部第六届学术会议论文集.2007,7:25-27.
    [69]朱立平,韩东劲.电厂粉煤灰气力输送技术[J].煤矿机电,2002(1):21-22.
    [70]唐来永,鲁幼勤,许晓东,等.大型低耗气力输送设备的研究与应用[J].水泥,2008(9):33-36.
    [71]周灿霞,郭令.生石灰粉气力输送的应用实践[J].江苏冶金,2003,31(2):27-29.
    [72]林开江.水泥气力输送系统的技改探讨[J].新世纪水泥导报,1998,4(6):30-32.
    [73]郑伟德.双套管气力输送技术的应用[J].湖南电力,2009,29(3):52-53.
    [74]李鹤鸣.双套管长距离干灰输送系统在330MW机组上的应用[J].电力环境保护,2007,23(3):51-53.
    [75]朱建强.双套紊流正压浓相输灰系统在某电厂的应用[J].电力学报,2008,23(2):144-147.
    [76]李俊华,曹志坚.双套管气力输灰系统管道优化研究[J].热力发电,2008,37(11):89-91.
    [77]吴金土,陶磊.双套管长距离气力输送技术的应用[J].电力环境保护,2008,24(1):19-21.
    [78]王妍凡,林宗虎.改进BP神经网络在流型判别中的应用[J].热能动力工程,2001,(1):63-65.
    [79] Yang wq, Liu s. Role of tomography in Gas-solids Flow Measurement [J]. Flow Measurement and Instrumentation, 2000, (11): 273-244.
    [80] Millen, Coghill P J, et al. Plant tests of an online multiple-pipe pulverized coal mass flow measuring system[J]. Flow Measurement and Instrumentation, 2000, (11): 153-158.
    [81] Pan R, Wypych P W. Pressure drop and slug velocity in low-velocity pneumatic conveying of bulk solids[J]. Powder Technology, 1997, (34): 123-132.
    [82]沈颐身,洪江,周建刚.粉体高浓度输送相图[J].化工冶金,1996,17(4):353-356.
    [83] Levy A. Two-fluid approach for plug flow simulations in horizontal pneumatic conveying[J]. Powder Technology, 2000, (112): 263-272.
    [84]李昌明,康玉梨.气力输灰系统的发展[J].内蒙古科技与经济,2010,(2):99-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700