燃烧过程中痕量元素释放与反应机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃烧装置中排放的痕量元素对环境和人类健康具有很大的危害,而人们对痕量元素的排放规律和抑制机理的探索和认识却非常浅薄。目前,有关痕量元素排放已经成为燃烧污染中的一个新兴而前沿的领域,成为愈来愈关切的热点。本文对煤燃烧过程中痕量元素的释放、反应机理、在线监测及动力学模型等方面进行了较为系统的研究。
     将量子化学理论和研究方法引入到燃烧学领域,应用量子化学不同方法和典型基组分别计算含汞燃烧烟气中分子的几何结构、反应焓变、反应熵变及汞化合物的振动频率值,以验证量子化学计算所用的理论水平和基组的有效性。理论计算值与美国国家标准技术局(NIST)的实验数据进行了比较。结果以QCISD方法/Stevens基组的组合最好,其次为B3PW91方法/Stevens基组、B3LYP方法/Stuttgart基组。对金属原子Hg、非金属原子分开指定基组可使计算精度提高。
     在原子和分子的水平上对含汞燃烧烟气中汞的10个氧化反应的机理进行理论研究,建立较为全面的汞的均相氧化模型。应用量子化学从头计算QCISD方法,对于Hg,选用Stevens基组,对于非金属元素Cl、H、O、N,选用6-311++G(3df,3pd)基组,优化得到反应途径上各稳定点(反应物、产物、过渡态和中间体)的几何构型。不同稳定点的性质通过对其几何构型进行振动频率分析来确认。在此基础上进行热能(包括零点能)校正,并以此能量计算活化能,同时计算指前因子。采用过渡态理论计算得到了293-2000K温度范围内各基元反应的反应速率常数,建立了较为全面的汞的均相氧化模型。从本质上揭示了汞的生成及其与煤中其它元素相互作用的反应机理,可为寻求廉价、实用的汞控制方法奠定理论基础。
     将密度泛函理论应用于气固吸附机理研究,对烟气中不同形态的汞(Hg0、HgCl2和HgCl)在飞灰未燃尽炭固体表面的吸附进行理论计算。构建了较好表征未燃尽炭固体表面的锯齿形(zigzag)、扶手椅形(armchair)和尖端形(tip)的簇模型。以模型中边缘未饱和的碳原子模拟吸附的活性位,对其它碳原子使用氢原子加以封闭。计算表明,元素态汞在未燃尽炭固体表面的吸附属于较弱的物理吸附。氯原子会增加未燃尽炭对汞的吸附能力,使其更倾向于化学吸附。其它卤素原子的存在也增强了未燃尽炭对元素态汞的吸附,吸附强度顺序为F>Cl>Br>I。具有含氧官能团(内酯、羰基和半醌)的未燃尽炭固体表面对元素态汞的吸附属于化学吸附。HgCl2是以平行位稳定的吸附在未燃尽炭固体表面上,属于强的化学吸附。HgCl是以平行位及Hg端垂直位形式稳定的吸附在未燃尽炭表面上,属于强的化学吸附。在实际烟气中,氧化态汞更容易被飞灰中的未燃尽炭所脱除。与相关的煤燃烧实验进行比较,结果一致。从物质性质与其结构之间的关系以及微观相互作用出发定量描述吸附体系的特征和行为,对飞灰未燃尽炭作为汞吸附剂的性能,吸附产物的稳定性等问题进行较为系统深入的描述。
     发展一种基于电感耦合等离子体发射光谱(ICP-AES)的气相痕量元素在线测量方法来测定烟气中痕量元素的瞬时相对浓度,从而全面跟踪痕量元素的挥发释放过程。实验得到优化的ICP(功率1200 W)进气流速为:样品气体,0.1 L/min;氩气,0.2 L/min。对不同基体(矿物质基体、煤和城市固体垃圾)在流化床内(850°C)进行热处理,研究痕量元素的释放行为。Cd及Pb较易挥发释放,而Zn释放程度较低。痕量元素与飞灰颗粒在高温下反应生成ZnO·Al2O3、CdO·Al2O3等稳定化合物,从而抑制了痕量元素的释放。在进行烟气痕量元素在线监测实验研究的同时,发展直接模型和反模型来研究痕量元素蒸发释放的动力学模型。首先将模型应用于矿物质基体氧化铝来验证模型的有效性,然后应用于有机基体煤和城市固体废弃物。根据痕量元素的蒸发率(r=dq/dt)和固体颗粒中的痕量元素的浓度(q)的关系得到其蒸发的动力学规律。对于氧化铝得到1级反应动力学规律;煤样和城市固体废弃物得到2级反应动力学规律。对燃烧中痕量元素的挥发释放行为作出较为深刻的描述和预报。
Trace elements emitted from coal-fired boiler would do great harm to human health, global agricultural and social sustainability, but the mechanism of release, emission and control is still not clear. Trace elements emitted from coal combustion have become an increasingly important environmental concern. In this work, we focused on describing the evaporation, reaction mechanism, on-line analysis and kinetic modeling of trace elements during coal combustion with computational and experimental methods.
     The quantum chemistry theories were introduced into the field of combustion. The geometry optimizations of molecular, heat of reactions, change of entropy and vibration frequencies were calculated by different levels of ab initio, DFT theory of quantum chemistry and typical ECP basis sets for combustion flue gas containing mercury system. The calculating results were compared with the NIST experimental results in order to validate the quantum mechanical method and basis set combination. The results show that the QCISD/Stevens combination is the most accurate, and than is the B3PW91/Stevens combination, B3LYP/Stuttgart combination. It improves the calculation results by appointing different basis set for metal atom and nonmetal atoms. The results provide a base for investigating kinetic mechanism of mercury interaction with combustion-generated flue gas by quantum chemistry.
     Theoretical exploration on mercury oxidation reaction mechanism in flue gas was conducted on the level of atoms and molecules. The geometry optimizations of reactant, transition state, intermediate and product were made at QCISD level by ab initio calculations of quantum chemistry. The basis set of Stevens was used for Hg, and the basis set of 6-311++G(3df,3pd) was used for nonmetal atoms (Cl, H, O and N). The property of stable minimums were validated by vibration frequencies analysis. The activation energies were calculated by thermal energy calibration (including zero point energy calibration). The reaction rate constants in the temperature scale of 293-2000K were calculated from transition state theory. The calculated parameters can provide new foundation for emission model of trace elements during coal combustion.
     The adsorptions of different species of mercury (Hg0、HgCl2 and HgCl) on the unburned carbon (UBC) surface were investigated by the density functional theory (DFT). The cluster models of zigzag, armchair and tip were set up to well representing the UBC surface. The unsaturated carbon atoms in the edge of the cluster model were used to simulate the active sites of the UBC surface, and other carbon atoms were closed by H atom. The present calculations show that UBC could substantially reducing gaseous mercury chloride (HgCl2 and HgCl), but have no apparent effect on Hg0, which is compatible with the available experimental results. Cl atom and surface functionality (lactone, carbonyl and semiquinone)increase the adsorption of mercury on UBC surface. The research method will provide the valuable information for the optimizing and selecting sorbent of the trace element in flue gas.
     An inductively coupled plasma atomic emission spectrometer (ICP-AES) was developed to continuously measure the heavy metal concentrations in order to track the metal release process. The system is devoted to the thermal treatment of metal-spiked mineral matrix, coal and municipal solid wastes in fluidized bed (850°C). This method was used to study the kinetics of heavy metal vaporization. The optimum values of the gas flows for the 1200 W power generator are 0.1 L/min for the sample gas and 0.2 L/min for Ar. During the thermal treatment of coal and municipal solid waste, the release process of Cd and Pb is short; Zn vaporizes lower than Cd and Pb. The formation of stable compounds such as ZnO·Al2O3 and CdO·Al2O3 could decrease the metals vaporization. In all cases, the experimental setup was successfully used to monitor the metal evaporation process during coal and solid waste thermal treatment. A study was carried out to investigate the kinetic law of toxic metal release during thermal treatment in a fluidized bed. Both direct and inverse models were developed in transient conditions. The direct model predicts the time course of the metal concentration in the gas from the vaporization rate profile, based on the Kunii and Levenspiel’s 2-phase flow model for Geldart Group B particles. The inverse model was developed and validated to predict the metal’s vaporization rate from its concentration in the outlet gas. A method to derive the kinetic law of heavy metal vaporization during fluidized bed thermal treatment of coal from the global model and the experimental measurements is derived and illustrated. A first order law was fitted for the mineral matrix and a second order law (simplified) was fitted for coal. This method can be applied to any matrix, whatever mineral matrix or organic matrix.
引文
[1]毛健雄,毛健全,赵树民编著.煤的清洁燃烧.北京:科学出版社,1998,1-5
    [2]江哲生.中国洁净煤发电技术的展望.北京:中华人民共和国国家电力公司科技教育局,1997,1-12
    [3] Linak W P, Wendt J O L. Toxic metal emissions from incineration: Mechanisms and control. Prog. Energy Combust. Sci., 1993, 19(2): 145-185
    [4] Horne RA. The chemistry of our environment. John Wiley & Sons, New York, 1978
    [5]郑楚光,徐明厚,张军营,刘晶著.燃煤痕量元素的排放与控制,武汉:湖北科学技术出版社,2002
    [6] Markowski G R, Ensor D S, Hooper R G. A submicron aerosol mode in flue gas from a pulverized coal utility boiler. Environ. Sci. Technol., 1980, 11: 1400-1402
    [7] Flagan R C, Taylor D D. Laboratory studies of submicron particles from coal combustion, 18th International Symposium On Combustion, 1981, 1227-1237
    [8] Linak W P, Wendt J O L. Trace element transfromation mechanisms during coal combustion. Fuel processing technology, 1994, 39: 173-198
    [9] Finkelman R B, Palmer C A, Holub V. Modes of occurrence of sulfide minerals and chalcophile elements in several high sulfur Czechoslovakian coals. Ed. by B.n., B.m., B.r. 29th Internat. Geol. Cong. Abs. Kyoto Japan, 1992, 216-220
    [10] Frandsen F. Trace elements from combustion and gasification of coal - An equilibrium approach. Fuel and Energy, 1995, 9(36): 357
    [11] Wu C, Biswas P. An equilibrium analysis to determine the speciation of metals in an incinerator. Combustion and Flame,1993, 93: 31-40
    [12] Lee C C. A model analysis of metal portioning. Waste Management, 1988, 38(7): 941-945
    [13] Frandsen F, Erickson T A, Kuhnel V, et al. Equilibrium speciation of As, Cd, Cr, Hg, Ni, Pb, and Se in oxidative thermal conversion of coal- a comparison of thermodynamic packages. High temperature Gas Clean, 1996, 462-473
    [14] Helble J J, Mojtahedi W, Lyyranen J, et al. Trace element partitioning during coal gasification. Fuel, 1996, 75: 931-939
    [15] Durlak S K, Biswas P, Shi J CH. Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators. Journal of Hazardous Materials, 1997, 9(56): 1-20
    [16] Yan R, Gauthier D, Flamant G. Possible interactions between As, Se and Hg during coal combustion. Combustion & Flame, 1999, 120(1- 2): 49-60
    [17] Li Z, Wang J. Mercury distribution in fly ash components. Air & Waste Management Association, WP72B.05, for presentation at the 90th Annual Meeting & Exhibition, Toronto, Ontario, Canada, 1997, June 8–13
    [18] Brown T D, Smith D N, O’Dowd W J, Hargis R A. Control of mercury emissions from coal-fired power plants: a preliminary cost assessment and the next steps for accurately assessing control costs. Fuel Process. Technol., 2000, 65-66: 311-341
    [19] Kevin C G, Christopher J Z. Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 2000, 66(6): 289-310
    [20] Hall B, Schager P, Lindqvist O. Chemical reactions of mercury in combustion flue gases. Water, Air and Soil Pollution, 1991(4), 56: 3-14
    [21] Hall B, Lindqvist O, Ljungstrom E. Mercury chemistry in simulated flue gases related to waste incineration conditions. Environmental Science and Technology, 1990, 24(1): 108-111
    [22]刘迎晖,郑楚光,游小清,邱建荣.氯元素对烟气中汞的形态和分布的影响.环境科学学报, 2001, 21 (1): 69-73
    [23] Carey T, Hargrove C, Richardson C, Chang R. Factors affecting mercury control in utility flue gas using activated carbon. J. Air Waste Manage. Assoc. 1998, 48 (12) 1166–1174
    [24] Laudal D L, Brown T D, Nott B R. Effects of flue gas constituents on mercury speciation. Fuel Processing Technology, 2000, 65-66(6): 157-165
    [25] Carey T R, Skarupa R C, Hargrove O W. Enhanced control of mercury and other HAPs by innovative modifications to wet FGD processes. Contract DE-AC22- 95PC95260, USA: the U.S. Department of Energy, 1998
    [26]徐明厚,郑楚光,冯荣,乔瑜,晏荣.煤燃烧过程中痕量元素排放的研究现状.中国电机工程学报, 2001, 21(10): 33-38
    [27]傅玉普,郝策,曹殿学.多媒体物理化学.大连:大连理工大学出版社, 1998
    [28] Mallard W G, Westley F, Herron J T, et al. NIST Chemical Kinetics Database,Version 2Q98, 1998
    [29] Ghorishi S B, Sedman C B. Low concentration mercury sorption mechanisms and control by calcium-based sorbents: application in coal- fired processes. J. Air & Waste Management, 1998, 48: 1191-1198
    [30] Senior C, Sarofim A, Zeng T, Helble J, Mamani-Paco R. Gasphase transformations of mercury in coal-fired power plants. Fuel Proc. Technol. 2000, 63 (2–3): 197-213
    [31] Horne D G, Gosavi R, Strauzs O P. Reactions of metal atoms. I. the combination of mercury and chlorine atoms and the dimerization of HgCl2. Chem. Phys., 1968, 48, 4758-4763
    [32] Schager P. The behavior of mercury in flue gases. Department of Inorganic Chemistry, University of Goteburg, Report, Goteburg, Sweden, 1990
    [33] Laudal D L, Heidt M K, Brown T D, Nott B R. Mercury speciation: a comparation between method 29th and other sampling methods, presented at the 89 Annual Meeting of the Air and Waste Management Association, Nashville, TN, Paper 96-W64A.04, June, 1996
    [34] Dajnak D, Lockwood F C. Modelling of toxic heavy mental mercury partitioning from pulverized fuel combustion, IFRF Combustion Journal Article Number 200103, March 2001
    [35] Sliger R N, Kramlich J C, Marinov N M. Toward the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine. Fuel Proce. Technol., 2000, 65-66: 423-438
    [36] Kramlich J C, Sliger R N, Going D J. Reduction of inherent mercury in pulverized coal combustion, DOE Grant DE-FG22-95PC95216, presentation at DOE university coal research contractor’s meeting, Pittsburgh, June 1997
    [37] Rebecca N Sliger, John C. Kramlich, Nick M Marinov. Towards the development of a Chemical kinetic model for the homogeneous oxidation of mercury by chlorine species, Fuel Processing Technology,2000, (65-66): 423-438
    [38] Widmer N C, West J. Thermochemical study of mercury oxidation in utility boiler fuel gases, 93rd Annual Meeting, Air&Waste Management Association, Salt Lake City, Utah. 2000
    [39] Sliger R N, Kramlich J C, Marinov N M, Fall 1999 meeting of the western states section/The combustion institute, University of California, Irvine, California, 1999,October 25-26, 99F-072
    [40] Cosic B, Fontijn A. Kinetics of Pb reactions with N2O, Cl2, HCl and O2 at high temperatures. Journal of Physical Chemistry, 2000, 23: 5517-5524
    [41] Helble J J, Fujiwara N. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems. Environ. Sci. Technol., 2001, 35: 3701-3706
    [42] Niksa S, Fujiwara N, Fujita Y, et al. A mechanism for Hg oxidation in coal-derived exhausts, AWMA 2002, 52(8): 894-901
    [43] Niksa S, Helble J J, Fujiwara N. Kinetic modeling of homogeneous mercury/oxidation: The importance of NO and H2O in predicting oxidation in coal-derived systems. Environmental Science and Technology, 2001,35(18): 3701-3706
    [44] Roesler J F, Yetter R A, Dryer F L. Detailed kinetic modeling of moist CO oxidation inhibited by trace quantities of HCl. Combust. Sci. Technol. 1992, 85: 1-22
    [45] Roesler J F, Yetter R A, Dryer F L. Kinetic Interactions of CO, NOx, and HCl emissions in postcombustion gases. Combust. Flame, 1995, 100, 495-504
    [46] Mueller M A, Yetter R A, Dryer F L. Flow reactor studies and kinetic modeling of the H2/O2/NOX and CO/H2O/O2/NOX reactions. Int. J. Chem. Kinet. 1999, 31, 705-724
    [47] Mueller M A, Yetter R A, Dryer F L. Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet. 1999, 31, 113-125
    [48] Allen M T, Yetter R A, Dryer F L. High pressure studies of moist carbon monoxide / nitrous oxide kinetics. Combust. Flame,1997, 109: 449-470
    [49] Mueller M A, Yetter R A, Dryer F L. Kinetic modeling of the CO/H2O/O2/NO/SO2 System: implications for high-pressure fall-off in the SO2 + O(+M) = SO3(+M) Reaction. Int. J. Chem. Kinet., 2000, 32: 317-339
    [50] Rizeq R, Hansell D, Seeker W, Predictions of metals emissions and partitioning in coal-fired combustion systems. Fuel Process. Technol., 1994, 39: 219-236
    [51] Gullett B K. Sorbent injection for dioxin/furan prevention and mercury control, Multipollutant Sorbent Reactivity Workshop, Research Triangle Park, NC, July 1994
    [52] Edwards J R, Srivastava R K, Kilgroe J D. A study of gas-phase mercuryspeciation using detailed chemical kinetics. Air & Waste Manage. Assoc., 2001, 51: 869-877
    [53] Sloss L L, Smith I M. Trace element emissions. IEA Coal Research, ISBN92-9029-344-6, 2000, 83
    [54] Ron Zevenhoven, Pia Kilpinen. Control of pollutants in flue gases and fuel gases. the Helsinki University of Technology course ENE-47.153, ISBN 951-22-5527-8
    [55] National guidelines and legislation, IEA Coal Research, 1999
    [56] OCEA, Mercury Information Clearinghouse: Quarter 7–Mercury Regulations In The United States: Federal And State, 2005
    [57] AECDP Report, http://www.mtiresearch.com/aecdp/mercury.html
    [58] Biswas P, Wu Y C. Control of toxic metal emissions from combustors using sorbents: a review. J. Air & Waste Manage. Assoc., 1998, 48, 113-127
    [59] Fahlke J, Bursik A. Impact of the state-of-the-art flue gas cleaning on mercury species emissions from coal-fired steam generators. Water, Air, Soil Poll., 1995, 80: 209-215
    [60] Laudal D, Pavlish J, Chu P. Pilot-scale evaluation of impact of selective catalytic reduction for NOx on mercury speciation. Air and Waste Management Association, for presentation at the 94th Annual Meeting & Exhibition, Orlando, Florida, 2001, June 24–28
    [61] Senior C. Behavior of mercury in air pollution control devices on coal-fired utility boilers, presented for Power Production in the 21st Century: Impact of Fuel Quality and Operations. Engineering Foundation Conference, Snowbird, UT, 2001, October 28-November 2
    [62] Chang R, Hargrove B, Carey T, et al. Power Plant Mercury Control Options and Issues, Proc. POWER-GEN’96 International Conference, Orlando, Fla, 1996, Dec.4-6
    [63] Granite E J, Pennline H W, Hargis R A. Novel sorbents for mercury removal from flue gas, Industrial & engineering Chemistry Research, 2000(39): 1020-1029
    [64]彭苏萍,王立刚.燃煤飞灰对锅炉烟道气的吸附研究.煤炭科学技术,2002,30(9):33-36
    [65] Owens W D, Sarofim A F, Pershing D. The use of recycle for enhanced volatile metal capture. Trace elements transformation in coal-fired power systemsworkshop, Scottsdale, AZ, April 1993
    [66] Grover C, Butz J, Haythornthwaite S, Smith J. Mercury measurements across particulate collectors of PSCO coal - fired electric utility boilers. EPRI/ DOE/ EPA Mega - Symposium, Atlanta , GA. August 1999
    [67] Devito M S, Rosehoover W A. Hg flue gas measurements from coal-fired utilities equipped wet scrubbers, Presented at the 92nd Annual meeting and exhibition of the air & waste management association, St. Louis, MO, June1999
    [68] Redinger K E, Evans A, Bailey R. Mercury emissions control in FGD systems, Presented at the EPRI/DOE/EPA combined air pollutant control symposium, Washington, DC, August, 25-29,1997
    [69] Carey T R, Hargrove O W, Brown T D. Enhanced control of mercury in wet FGD systems, Presented at the first joint DOE-PETC power and fuel systems contractors conference, U.S. Department of energy, Pittsburgh, PA, July9-11, 1996
    [70] Felsvang K, Gleiser R. Activate carbon injection in spray drayer/ESP/FF for mercury and toxic control. Fuel Processing Technology 1994,39;417-430
    [71] Li Y H, Lee C W, Gullett B K. Importance of activated carbon’s oxygen surface functional groups on elemental mercury adsorption. Fuel, 2003, 82: 451-457
    [72] Marshall T. The use of activated carbon for flue gas treatment, First international symposium on incineration and flue gas treatment technologies, Sheffield, UK, July, 1997
    [73] Thomas W Peterson. Interactions between vapor-phase mercury compounds and coal char in synthetic flue gas. Fuel Processing Technology, 2000, 63: 93–107
    [74] Joseph V. Modeling powdered activated carbon injection for the uptake of elemental mercury vapors. Air&Waste Management Association, 1998, 48: 1051-1059
    [75] Sinha R K, Walker P L. Removal of Mercury by Sulfurized Carbons. Carbon, 1972, 10: 754-756
    [76] Miller S J, Laudal D L, Dunham G. E. Piolt-scale investigation of mercury control in baghouses. In Procedings of the ERPI/DOE international Conference on managing Hazardous and particulate pollutants, Toronto, Canada, August 15-17,1995
    [77] Miller S J, Dunham G. E, Olson E S, Brown T D. Mercury sorbent development in coal-fired boilers, in: Proceedings of the Conference on Air Quality: Mercury,Trace Elements, and Particulate Matter, 1998, McLean, VA
    [78] Mercury Study Report to Congress. US Environmental Protection Agency, Airlink Web Site at http:www.epa.gov.airlinksr 1998
    [79] Brown T D, O’Dowd W J, Robert Reuther R B. Control of mercury emissions from coal-fired power plants: a preliminary cost assessment, in: Proceedings of the Conference on Air Quality: Mercury, Trace Elements, and Particulate Matter, 1998, McLean, VA.
    [80] Srivastava K, Sedman B, Kilgroe J, Smith D, Renninger S. Preliminary estimates of performance and cost of mercury control technology applications on electric utility boilers. J. Air Waste Manage.Assoc. 2001, 51, 1460–1470
    [81] McDermott Technologies, Inc. Advanced Emissions Control Development Program PhaseⅢ-Approved Final Report, prepared for the U.S. Department of Energy (U.S.DOE-FETC contract DE-FC22-94PC94251-22) and Ohio Coal Development Office(grant agreement CDO/D-922-13), July 1999
    [82] Ghorishi B, Singer C F, Sedman C. Preparation and evaluation of modified line and silica-lime sorbents for mercury vapor emission control, EPRI-DOE-EPA
    [83] Ghorishi S B, Gullett B K. An experimental study on mercury sorption by activated carbons and calcium hydroxide, The fifth annual north American waste-to-energy conference, Research Triangle Park, NC, April 1997
    [84] Meij R. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization. Water, Air, and Soil Pollution, 1991, 56: 21-33
    [85] Chang R, Hargrove B, Carey T, Richardson C, Meserole F. Power Plant Mercury Control Options and Issues, Proc. POWER-GEN '96 International, Conference Orlando, Fla., Dec. 4-6, 1996
    [86] Livengood C D, Mendelsohn M H. Progress for combined control of mercury and nitric oxide EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, 1999, Atlanta, Georgia
    [87] Mendelsohn M H, Harkness J B L. Enhanced flue-gas denitrification using ferrous?EDTA and a polyphenolic compound in an aqueous scrubber system. Energy & Fuels, 1991, 5(2): 244-247
    [88] McDermott Technologies, Inc. Advanced Emissions Control Development Program Phase III¨C Approved Final Report, prepared for the U.S. Department of Energy (U.S. DOEFETC contract DE-FC22-94PC94251.22) and Ohio CoalDevelopment Office (grant agreement CDO/D-922-13), July 1999, Available at: http://www.osti.gov/dublincore/servlets/purl/756595-LACvcL/webviewable/756595.pd >.
    [89] U.S. Department of Energy, National Energy Technology Laboratory. Full-Scale Testing of Enhanced Mercury Control in Wet FGD, November 2001, Available at < http://www.fetc.doe.gov/coalpower/environment/mercury/index.html >.
    [90] McLarnon C R, Jones M D. Electro-catalytic oxidation process for multi-pollutant control at firstenergy’s P. E. Burger Generating Station, Presented at Electric Power 2000 Cincinnati Convention Center April 5, 2000
    [91] Trassy C. Gas control: a new application field for ICP. Spectrosc. Eur., 1996, (8/1): 20-26
    [92] Trassy C, Diemiaszonek R. Heavy elements in gaseous effluents: Study of an online analytical method. High Temp. Chem. Process., 1994, 3: 449-458
    [93] Lemieux P M, Ryan J V, French N B. Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies. Waste Management, 1998, 18: 385-391
    [94] French N B, Haas W, Priebe S. Status of multimetal continuous emission monitoring technologies. Spectroscopy, 2000, 15(7): 24-32
    [95] Seltzer M D, Green R B, Process Control and Quality, 1996, 37: 6
    [96] Meyer G A, Dpectrochim. Acta Rev., 1991, 14: 437
    [97] Helou C. Analyse d’éléments trace dans les gaz par spectroscopie d’emission utilisant un plasma induit par haute fréquence. Thesis, University Claude Bernard, Lyon, France, 1981
    [98] NoréD, Gomès A M, Bacri J, Cabe J. Development of an apparatus for the detection and measurement of the metallic aerosol concentration in atmospheric air in situ and in real time: preliminary results. Spectrochim. Acta, Part B, 1993, 48: 1411-1479
    [99] Seltzer M D, Green R B. Intrumentatin for continuous emissions monitoring of airborne metals. Process Cont. Quality, 1994, 6: 37-46
    [100] Meyer G A, Lee K W. Real-time determination of metal hazardous air pollutants in flue gas emissions: Laboratory study. Process Cont. Quality, 1994, 6: 187-194
    [101] Morin-Adam A, Desbonnet J, Carre M, Coffre E. Calibration of high resolution ICP-MS for direct analysis of specialty gases. 1995 Winter Conference on Plasma Spectrochemistry, Cambridge, UK, Jan 7-12, 1995
    [102] Hassaine S, Seddiki F, Diemiaszonek R, Trassy C. On-line monitoring of elemental pollutants in flue gases: standardization, precision and accuracy. Progress in Plasma Processing of Materials 1997 P. Fauchais Ed. Begell House, NY, 1997, pp211-218. ISBN 1-56700-089-4
    [103] Hassaine S, Trassy C, Diemiaszonek R. Trueness and precision in on-line monitoring of metallic pollutants in flue gases by ICP-OES. Progress in Plasma Processing of Materials 1999, P. Fauchais, J. Amouroux Ed. Begell House, NY, 1999, pp785-792. ISBN 1-56700-126-2
    [104] CarréM, and Coffre E. Characterizaton of ultrasonic nebulize for calibration of ICP/MS and ICP/OES in gas analysis. 1999 Winter conference on plasma spectrochemistry, Pau, France 11-15 January, 1999
    [105] Hassaine S, Trassy C, Proulx P. Continuous emission monitoring of metals in flue gases by ICP-OES: Role of calibration and sample gas. High Temp. Mat. Process., 2001, 5: 313-331
    [106] Trassy C, Diemiaszonek R. On-line analysis of elemental pollutants in gaseous effluents by ICP-OES: thermodynamic aspects. J. Anal. At. Spectrom., 1995, 10: 661-669
    [107] Baldwin D P, Zamzow D S. Detection limits for hazardous and radioactive elements in airborne aerosols using inductively coupled air plasma-atomic emission spectrometry. J. Air & Waste Manage. Assoc., 1995, 45: 789-791
    [108] Gomès A M, Sarrette J P, Madon L, Almi A. Continuous emission monitoring of metal aerosol concentrations in atmospheric air. Spectrochim. Acta Part B, 1996, 51:1695-1705
    [109] Seltzer M D, Meyer G A. IC Argon P continuous emissions monitor for hazardous air pollutant metals. Environ. Sci. Technol., 1997, 31: 2665-2672
    [110] Meyer G A, Seltzer M. continuous ICP measurement of hazardous metals in stack gas emissions. American Laboratory, 1997, 29: 34
    [111] Seltzer M D. Continuous air monitoring using inductively coupled plasma atomic emission spectrometry: correction of spectral interferences arising from CN emission. Appl. Spectrosc., 1998, 52: 195-199
    [112] Gomès A M, Almi A, Teulet P, Sarrette, J P. The effects of natural moisture and of argon addition on the plasma temperature and on the detection limits of an apparatus for online control of metal pollutants by air inductively coupled plasma. Spectrochim. Acta Part B, 1998, 53: 1567-1582
    [113] Gomès A M, Trassy C, Almi A, Seddiki F, Hassaine S. Comparison of air and argon plasmas in gaseous elemental pollutants analysis for process control and environment. Hign Temp. Mat. Proces., 1997, 1: 461-472
    [114] Vacher D, Andre P. Real-time analysis of CuO by inductively coupled plasma emission without external calibration. Spectrochimica Acta Part B, 2003, 58: 443-456
    [115] Wang Q., Shen W., Ma Z. Emission of mercury emissions from coal combustion in China, Environmental Science and Technology, 2000, 34(13): 2711-2713
    [116]郭奕玲,沈慧君.物理学史.北京:清华大学出版社, 1993:306-323
    [117]科恩著,鲁旭东,赵培杰,宋振山译.科学中的革命.北京:商务印书馆, 1998:507-543
    [118]徐光宪,黎乐民.量子化学.北京:科学出版社,2001
    [119] Manthe U, Bian W S, Werner H J. Quantum-mechanical calculation of the thermal rate constant for the H2+Cl=H+HCl reaction. Chemical Physics Letters, 1999, 313: 647-654
    [120] Durant J L. Evaluation of transition state properties by density functional theory. Chemical Physics Letters, 1996, 256: 595-602
    [121] Ryde U. Combined quantum and molecular mechamics calculations on metalloproteins. Current Opinion in Chemical Biology, 2003, 7(1): 136-142
    [122] Latour J R A, Hench, Larry L. A theoretical analysis of the thermodynamic contributions for the adsorption of individual protein residues on functionalized surfaces. Biomaterials, 2002, 23(23): 4633-4648
    [123]周公度等编著.结构化学基础.北京大学物理化学丛书,北京大学出版社, 1989, 4: 4-102
    [124]廖沐真,吴国是,刘洪霖.量子化学从头计算法.北京:清华大学出版社, 1987: 1-6
    [125] Parr R G, Yang W. Density Functional Theory of Atoms and Molecles. Oxford: Oxford Science, 1989
    [126]陈志达.量子化学的第二次革命——1998年诺贝尔化学奖简介.大学化学, 1999, 14(3): 3-6
    [127] Stevens W J, Krauss M, Basch H, Jasien P.G. Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Canadian Journal of Chemistry, 1992, 70: 612-630
    [128] H?ussermann U, Dolg M, Stoll H, Schwerdtfeger P, Pitzer R M. Accuracy of energy-adjusted quasirelativistic ab initio pseudopotentials all-electron and pseudopotential benchmark calculations for Hg, HgH, and their cations. Molecular Physics, 1993, 78(5): 1211
    [129] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98 (Revision A. 9), Gaussian Inc., Pittsburgh PA, 1998
    [130] Malcolm W Chase. NIST-JANAF thermochemical tables, Washionton: U.S., 1998
    [131]宋世谟,香雅正.化学反应速率理论.北京:高等教育出版社, 1990:1-4
    [132]韩德刚,高盘良.化学动力学基础.北京:北京大学出版社, 1987: 1-8
    [133] Mayne H R, Toennies J P. Quasiclassical Trajectory Studies of the H + H2 Reaction on an Accurate Potential-energy Surface. III. Comparison of Rate Constants and Cross Sections with Experiment. J Chem Phys. 1981, 75: 1794-1803
    [134]臧雅茹.化学反应动力学.天津:南开大学出版社, 1995: 1-9
    [135] Bacon A D, Zerner M C. An Intermediate Neglect of Differential Overlap Theory for Transition Metal Complexes: Fe, Co, and Cu Chlorides.Theo. Chim. Acta,1973, 53: 21
    [136]徐明厚,乔瑜,程俊峰等.燃煤过程中痕量元素动力学机理的研究进展.工程热物理学报, 2003,24(2) : 339-342
    [137] Winn J S. Physical Chemisstry. Harper Collins College Publishers, 1995
    [138] Billing G D, Mikkelsen K V. Introduction to molecular dynamics and chemical kinetics. New York: John Wiley & Sons, Inc., 1996
    [139] Johnston H S. Gas phase reaction rate theory. New York: Ronald Press Company, 1966
    [140]韩德刚,高盘良.化学动力学基础.北京:北京大学出版社,1987
    [141]王琪,唐敖庆.化学动力学导论.吉林人民大学出版社,1982
    [142] Steinfeld J I, Francisco J S, Hase W L. Chemical kinetics and dynamics, Prentice-Hall: New York, 1999
    [143] Gonzalez-Lafont A, Truong T N, Truhlar D G. Interpolated Variational Tranistion-state Theory: Practical Methods for Estimating Variational Tranistion-state Properties and Tunneling Contributions to Chemical Reaction Rates from Electronic Structure Calculations. J. Chem.Phys. 1991, 95: 8875
    [144] Li Z, Hwang J Y. Mercury distribution in fly ash components, Presented at the Air and Waste Management Association’s 90th Annual Conference and Exhibition, Toronto, Ontario, Canada, June 8–13, 1997
    [145] Senior C L, Johnson S A. Impact of carbon-in-ash on mercury removal across particulate control devices in coal-fired power plants, Presented at the Air and Waste Management Association’s 95th Annual Conference and Exhibition,Baltimore, MD, June 23–27, 2002
    [146] Gibb W H, Clarke F, Mehta A K. The fate of coal mercury during combustion. Fuel Processing Technology, 2000, 65-66: 365-377
    [147] Carey T R, Richardson C F, Chang R, et al. Assessing sorbent injection mercury control effectiveness in flue gas streams. Environ. Prog., 2000, 19: 167-174
    [148] Shannon D Serre, Geoffrey D Silcox. Adsorption of Elemental Mercury on the Residual Carbon in Coal Fly Ash. Ind. Eng. Chem. Res. 2000, 39, 1723-1730
    [149] L Bartonova, Z Klika, D A Spears. Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs. Fuel 86 (2007) 455-463
    [150] Shaobin Wang, Hongwei Wu. Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials, 2006, B136: 482–501
    [151] Suárez-Ruiz I, Hower J C, Thomas G A. Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in spanish power plants. Energy & Fuels, 2007, 21: 59-70
    [152] M Antonia López-Antón, Mercedes Díaz-Somoano, M. Rosa Martínez-Tarazona. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content. Ind. Eng. Chem. Res., 2007, 46, 927-931
    [153] Goodarzi F. Petrology of subbituminous feed coal as a guide to the capture of mercury by fly ash—influence of depositional environment. International Journal of Coal Geology, 2005, 61: 1-12
    [154] Carey T R, Hargrove O W, Richardson C F, Chang R, Meserole F B. Factors affecting mercury control in utility flue gas using sorbent injection. AWMA 90th Annual Meeting and Exhibition, AWMA, 1997, Paper No. 97-WP72A.05
    [155] Ghorishi S B, Sedman C B. Low concentration mercury sorption mechanisms and control by calcium-based sorbents: Application in coal-fired processes. J. Air & Waste Manage. Assoc., 1998, 48: 1191-1198
    [156] Miller S J, Dunham G E, Olson E S. Mercury sorbent development for coal-fired boilers. Conf. on Air Quality: Mercury, Trace Elements, and Particulate Matter, Univ. North Dakota Energy and Environmental Research Center, 1998
    [157] Huggins F E, Huffman G P. XAFS examination of mercury sorption on three activated carbons. Energy & Fuels, 1999,13(1): 114
    [158] Huggins F E, Huffman G P, Dunham G E, Senior C L. XAFS examination of mercury capture on three activated carbons. ACS Div. Fuel Chem. Pre., AmericanChemical Society, 1997, p.1118
    [159] Niksa S, Fujiwara N. Predicting extents of mercury oxidation in coal-derived flue gases. 13th International Conference on Coal Science and Technology, Okinawa, Japan, 2005
    [160] Alejandro Montoya, Thanh-Thai T Truong, Fanor Mondragon, Thanh N Truong. CO desorption from oxygen species on carbonaceous surface: 1. effects of the local structure of the active site and the surface coverage. J. Phys. Chem. A, 2001, 105: 6757-6764
    [161] Karina Sendt, Brian S Haynes. Density functional study of the chemisorption of O2 on the zig-zag surface of graphite. Combustion and flame, 2005, 143: 629-643
    [162] Ning Chen, Ralph T. Yang. Ab initio molecular orbital calculation on graphite: selection of molecular system and model chemistry. Carbon, 1998, 36(7-8): 1061-1070
    [163] Maroto-Valer M M, Zhang Y, Granite E J, Tang Z, Pennline H N. Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample. Fuel, 2005, 84(1): 105-108
    [164] Lee S, Park Y. Gas phase mercury removal by carbon-based sorbents. Fuel Process. Technol., 2003, 84: 197-206
    [165]赵藻藩.仪器分析.北京:高等教育出版社,1990
    [166] Hassaine S, Trassy C, Proulx P. Continuous emission monitoring of metals in flue gases by ICP-OES: Role of calibration and sample gas. High Temp. Mat. Process., 2001, 5: 313-331
    [167] Seltzer M D. Continuous air monitoring using inductively coupled plasma atomic emission spectroscopy: Correction of spectral interferences arising from CN emission. Appl. Spectrosc., 1998, 52: 195-199
    [168] beroi M, Shadman F. High-temperature removal of cadmium compounds Using using sorbents. Environ. Sci. Technol. 1991, 25, 1285-1289
    [169] Scotto M V, Uberoi M, Peterson T W, Shadman F, Wendt J O L. Metal capture by sorbents in combustion processes. Fuel Processing Technol. 1994, 39, 357-372
    [170] Frandsen F, Dam-Johansen K, Rasmussen P. Trace elements from combustion and gasification of coal—An equilibrium approach. Prog. Energ. Combust. Sci., 1994, 20: 115-138
    [171] Verhulst D, Buekens A, Spencer P, Eriksson G. Thermodynamic behavior of metalchlorides and sulfates under the conditions of incineration furnaces. Environ. Sci. Technol., 1996, 30: 50-56
    [172] Linak W P, Wendt J O L. Toxic metal emissions from incineration: mechanisms and control. Prog. Energ. Combust. Sci., 1993, 19: 145-185
    [173] Ho T C, Lee H T, Shiao C C, Hopper J R. Metal behavior during fluidized bed thermal treatment of soil. Waste Manage., 1995, 15: 325-334
    [174] Jakob A, Stucki S, Kuhn P. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ. Sci. Technol., 1995, 29: 2429-2436
    [175] Helena M, Annikki P, Juha P. Trace metal emissions from co-combustion of refuse derived and packaging derived fuels in circulation fluidized bed boiler. Chemosphere, 1996, 32(12): 2457-2469
    [176] Barton R G, Clark W D, Seeker W R. Fate of metals in waste combustion systems. Combust. Sci. Technol., 1990, 74: 327-342
    [177] Ho T C, Lee H T, Shiao C C, Hopper J R. Metal behavior during fluidized bed thermal treatment of soil. Waste Manage., 1995, 15: 325-334
    [178] Eddings E G, Lighty J S, Kozinski, J A. Determination of metal behavior during the incineration of contaminated montmorillonite. Environ. Sci. Technol., 1994, 28: 1791-1800
    [179] Belevi H, Langmeier M. Factors determining the element behavior in municipal solid waste incinerators. Environ. Sci. Technol., 2000, 34: 2507-2512
    [180] Wey M Y, Yu L J, Jou S I. The influence of heavy metals on the formation of organics and HCl during incinerationg of PVC-containing waste. J. Hazard. Mater. 1998, 60: 259-270
    [181] Vassilev S V, Braekman-Danheux C. Characterization of refuse derived char from municipal solid waste: occurrence, abundance and source of trace elements. Fuel Process. Technol. 1999, 59: 135-161
    [182]严建华,李建新,池涌等.垃圾焚烧飞灰痕量元素蒸发特性试验分析.环境科学,2004, 25(2):170-173
    [183] Abanades S, Flamant G, Gagnepain B, et al. Fate of heavy metals during municipal solid waste incineration. Waste Management & Research , 2002, 20: 55-68
    [184] Frandsen F, Dam-Johansen K, Rasmussen P. Trace elements from combustion andgasification of coal-An equilibrium approach. Prog. Energy Combust. Sci., 1994, 20: 115-138
    [185] Lockwood F C, Yousif S. A model for the particulate matter enrichment with toxic metals in solid fuel flames. Fuel Processing Technology, 2000, 65-66: 439-457
    [186] Senior C, Helble J J, Sarofim A F. Emission of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Processing Technoloty, 2000, 65-66: 263-288
    [187] Kunii D, Levenspiel O. Model for Flow of Gas through a Fluidized Bed. Ind. Eng. Chem. Fundam. 1968, 7 (3): 446-452
    [188] Kunii D, Levenspiel O. Fluidisation Engineering. 2nd Edition, Butterwort-Heinemann Ed., Boston, 1991
    [189] Uberoi M, Shadman F. High-temperature Removal of Cadmium Compounds Using Sorbents. Environ. Sci. Technol. 1991, 25:1285-1289
    [190] Scotto M V, Uberoi M, Peterson T W, Shadman F, Wendt J O L. Metal capture by sorbents in combustion processes. Fuel Processing Technol. 1994, 39, 357-372
    [191] Davidson J F, Harrison D. Fluidised Particles. Cambridge University Press, Cambridge, 1971
    [192] Mori S, Wen C Y. Estimation of bubble diameter in gaseous fluidized beds. AIChE J. 1975, 21 (1): 109-115
    [193] Cooke M J, Harris W, Highley J, Williams D F. Kinetics of Oxygen Consumption in Fluidized-Bed Carbonisers. Inst. Chem. Eng. Symp. Ser. 1968, 30: 21-28
    [194] Uberoi M, Shadman F. High-temperature removal of cadmium compounds using sorbents. Environ. Sci. Technol., 1991, 25: 1285-1289
    [195] Scotto M V, Uberoi M, Peterson T W, Shadman F, Wendt J O L. Metal capture by sorbents in combustion processes. Fuel Processing Technol., 1994, 39: 357-372

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700