肺炎嗜衣原体Ⅲ型分泌系统效应蛋白的预测、筛选及免疫活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:预测、筛选肺炎嗜衣原体(Chlamydophila pneumoniae,Cpn)III型分泌系统(Type III secretion system,T3SS)效应蛋白编码基因,并研究其免疫活性,探讨预测的T3SS效应蛋白重组蛋白在临床Cpn血清学诊断中的应用价值。
     方法:①通过生物信息学分析结合相关文献报道,预测Cpn T3SS效应蛋白编码基因;②以Cpn AR39菌株总RNA为模板,RT-PCR从转录水平分析Cpn T3SS效应蛋白编码基因在感染细胞的表达情况,并筛选出在感染后72小时有表达的基因;③PCR扩增预测Cpn T3SS效应蛋白编码基因,将其亚克隆至原核表达载体pGEX-6P-2中构建重组质粒pGEX-6P-2/目的片段,经PCR、测序鉴定后将其转化至表达宿主菌E.coli BL21中,IPTG诱导表达。采用SDS-PAGE和Western blot分析和鉴定表达产物;对温度、IPTG和时间等诱导表达条件进行系列的优化后,获得可溶性表达蛋白并大量诱导表达。GST纯化树脂纯化重组蛋白,用tris8.0将目的蛋白透析降低谷胱甘肽浓度,BCA法测定蛋白浓度;用重组蛋白包被微孔板,建立间接ELISA法检测临床Cpn患者血清,评价重组蛋白的抗原性;用重组蛋白经皮下注入免疫BALB/c小鼠,检测免疫小鼠血清中重组蛋白多克隆抗体的效价,分析重组蛋白的免疫原性,并以制备的多克隆抗体为一抗,应用间接免疫荧光检测预测蛋白在感染细胞的定位情况,以筛选Cpn分泌性蛋白。
     结果:通过生物信息学分析结合相关文献报道,预测了14个Cpn T3SS效应蛋白编码基因:Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0432,Cpn0431,Cpn0434,Cpn0661。RT-PCR分析筛选了11个在感染后72h有表达的基因: Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0431;PCR扩增得到其目的片段;构建的重组质粒经PCR和测序鉴定证实插入片段为目的基因,测序结果与Genbank上登录序列完全一致;SDS-PAGE结果显示,在IPTG诱导下,重组工程菌分别表达了相对分子量(Mr)与预测分子量相近的蛋白,对诱导表达条件进行系列的优化后,获得5个可溶性表达蛋白:Cpn1022,Cpn0960,Cpn0810,Cpn0704,Cpn0425,经GST纯化树脂纯化后,纯度在98%以上;以纯化的重组蛋白为包被抗原建立间接ELISA法,检测临床Cpn患者血清,我们收集了20例确诊为Cpn感染患者血清和10例正常人的血清进行ELISA分析,结果显示:Cpn0810能识别全部病人的血清,Cpn0425能识别17个病人的血清,Cpn0960与Cpn0704能与14个病人的血清发生反应,Cpn1022只识别11个病人的血清,而正常人的血清未出现上述反应。利用纯化的Cpn1022,Cpn0960,Cpn0810,Cpn0704,Cpn0425重组蛋白免疫新BALB/c小鼠,间接ELISA法测定兔免疫血清特异性抗体,效价分别为Cpn0810与Cpn0425达1:64000,Cpn0960与Cpn0704达1:32000,Cpn1022达1:16000;5种重组蛋白刺激BALB/c小鼠,皮肤出现发热、红肿,6~10d后逐渐消失,迟发型超敏反应(delayed type hypersensitivity,DTH)阳性。
     结论:
     1. Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0431在Cpn感染细胞后72h有转录;
     2.成功构建pGEX-6P-2/Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0431等11个原核表达载体,将其转化至E.coli BL21后表达出相应的重组蛋白;
     3. Cpn1022,Cpn0960,Cpn0810,Cpn0704,Cpn0425重组蛋白具有良好的免疫原性,能刺激BALB/c小鼠产生高效价的特异性抗体;
     4. Cpn1022,Cpn0960,Cpn0810,Cpn0704,Cpn0425重组蛋白具有较好的抗原性,能与Cpn阳性血清特异性结合。
Objective: This study attempts to predict and screen effector proteins secreted via type III secretion system of Chlamydophila pneumoniae , and study on characterization and intracellular localization of these putative Chlamydia pneumoniae effector proteins.
     Methods: Genes of effector proteins secreted via type III secretion system of Chlamydophila pneumoniae were predicted according to the bioinformatics analysis and references. RT-PCR was used to examine the transcription of these genes in Cpn infected cells at 72h pi. Eleven Pairs of Primers were synthesized according to these gene sequenees of Chlamydia pneumoniae strain AR39. PCR was used to amplify these genes,And then these genes were cloned into pGEX -6P-2 vector to induce the expression of corresponding recombinant proteins with IPTG in E.coli BL21,and then purified using Merck GST*tag assay kit. their concentrations were determined by BCA assay, Indirect ELISA were developed by coating microwell plates with the purified proteins, their reliability test and stability test were carried out after optimization.The purified fusion proteins were used to immunize BALB/c mice to produce polyclonalantibodies.Antibodies were used to loealize these proteins in Cpn infected cells at 72h pi.
     Results: Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0432,Cpn0431,Cpn0434,Cpn0661 were predicted as genes of effector proteins secreted via Cpn T3SS according to the bioinformatics analysis and references, Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0431 transcripted by RT-PCR analysis in Cpn infected cells at 72h pi,Then these genes fragments were amplified by PCR; Restriction enzyme digestion and sequencing showed that the inserted target genes were the purpose fragments, compared with genes reported by GenBank, it had 100% similarity.These fusion proteins was expressed after induced with IPTG,Cpn1022,Cpn0960,Cpn0810,Cpn0704,Cpn0425 were purified. Western blot proved that the recombinant proteins could specifically react with anti-GST polyclonalantibody. Indirect ELISA was successfully developed to detect the antibody to Cpn in human sera, all the positive sera were reacted with the Cpn0810;17 of the positive sera reacted with the Cpn0425;14 of the positive sera reacted with the Cpn0960 and Cpn07704;Only 11 of the positive sera reacted with the Cpn1022. While all the proteins were not reacted with uninfected human sera. Specific humoral response were elicited by recombinant proteins in BALB/c mice and the specific antibody titer was 1∶1 6000, 1∶32 000 and 1∶64 000 respectively. five kinds of recombinant proteins stimulated the BALB/c mice to show fever red skin in leg, disappearanced after 6~10d and delayed-type hypersensitivity were positive.
     Conclusion:
     1. Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0431 transcripted in Cpn infected cells at 72h pi;
     2. Prokaryotic expression vector pGEX-6P-2 / Cpn0704,Cpn0710,Cpn1022,Cpn0810,Cpn0962,Cpn0960,Cpn0422,Cpn0425,Cpn0323,Cpn0322,Cpn0431 were successfully constructed, and the corresponding recombinant proteins were expressed in E.coli BL21;
     3. Cpn1022,Cpn0960,Cpn0810,Cpn0704,Cpn0425 recombinant proteins showed excellent immunongenicity and could induce the humoral responses efficiently;
     4. Cpn1022,Cpn0960,Cpn0810,Cpn0704,Cpn0425 recombinant proteins showed better immunoreactivity, could specifically react with Cpn IgG positive sera;
引文
[1] Mukhopadhyay S,Good D,Miller RD,et al. Identification of Chlamydia pneumoniae proteins in the transition from reticulate to elementary body formation. Mol Cell Proteomics. 2006;5(12):2311-2318.
    [2] Samransamruajkit R,Jitchaiwat S,Wachirapaes W,et al.Prevalence of Mycoplasma and Chlamydia Pneumonia in Severe Community-Acquired Pneumonia among Hospitalized Children in Thailand. Jpn J Infect Dis. 2008;61(1):36-39.
    [3] Fainardi E,Castellazzi M,Seraceni S,et al.Under the Microscope: Focus on Chlamydia pneumoniae Infection and Multiple Sclerosis. Curr Neurovasc Res. 2008;5(1):60-70.
    [4] Mukhopadhyay S,Good D,Miller RD,et al. Identification of Chlamydia pneumoniae proteins in the transition from reticulate to elementary body formation. Mol Cell Proteomics. 2006 ;5(12):2311-2318.
    [5] Valdivia RH.Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol. 2008;[Epub ahead of print]
    [6] Bryan Coburn,Inna Sekirov,B. Brett Finlay.Type III Secretion Systems and Disease.Clin. Microbiol. Rev. 2007;20(4):535-549.
    [7] Hongtao Li, Hao Xu, Feng Shao, et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science. 2007;315:1000-1003.
    [8] Haller, JC, Carlson S, Pederson KJ, et al. A chromosomally encoded type III secretionpathway in Yersinia enterocolitica is important in virulence. Mol.Microbiol. 2000;36:1436-1446.
    [9] R. Corech, A. Rao, A. Laxova, et al. Early Immune Response to the Components of the Type III System of Pseudomonas aeruginosa in Children with Cystic Fibrosis. J Clin Microbiol. 2005;43(8):3956-3962.
    [10] Shea, J.E. Hensel M, Gleeson C, Holden DW.Identification of a virulence locus encoding a and type III secretion system in Salmonella typhimurium. Proc Nat Acad Sci.1996,93, 2593-2597.
    [11] Kalman, S, W. Mitchell, R. Marathe, et al. Comparative genomes of Chlamydiapneumoniae and C. trachomatis. Nature Genetics. 1999;21:385-389.
    [12] Jan Peters,David P,Wilson,Garry Myers,et al. Type III secretion a` la Chlamydia.Trends Microbiol. 2007;15(6):241-251.
    [13] Horn M,Collingro A,Schmitz-Esser S, et al. Illuminating the evolutionary history of chlamydiae.Science. 2004;304(5671):728-730.
    [14] Hsia RC,Pannekoek Y,Ingerowski E,et al. Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol. 1997; 25:351-359.
    [15] Slepenkin A,Motin V,Luis M,et al.Temporal expression of Type III Secretion Genes of Chlamydia pneumoniae. Infect Immun. 2003; 71(5): 2555-2562.
    [16] Galán JE. Energizing type III secretion machines: what is the fuel? Nat Struct Mol Biol. 2008;15(2):127-128.
    [17] Polkinghorne A, Hogan RJ, Vaughan L,et al.Differential expression of chlamydial signal transduction genes in normal and interferon gamma-induced persistent Chlamydophila pneumoniae infections. Microbes Infect . 2006;8(1):61-72.
    [18] Zhong G, Liu L,Fan T, et al.Degradation of Transcription Factor RFX5 during The Inhibitionof Both Constitutive and Interferonγ-inducible Major Histocompatibility Complex Class Expression in Chlamydia-infected Cells, J Exp. Med. 2000;191(9):1525-1534.
    [19] Zheng JH, Wu YM, Ding T, et al. Preparation and analysis of immuno- competence of recombinant fusion protein of the immunodominant region in chlamydial protease-like activity factor form Chlamydophila pneumoniae and its application in serodiagnosis. J Microbiol Immunol. 2006;121(7):925-935
    [20] Zhang F, Li S,Yang J, Pang W,Yang L,He C,Isolation and characterization of Chlamydophila psittaci isolated from laying hens with cystic oviducts. Avian Dis, 2008 Mar;52(1):74-8.
    [21] Dolcetti R, Ponzoni M, Ferreri AJ, Doglioni C,Genetic and epigenetic changes linked to Chlamydophila psittaci associated ocular adnexal lymphomas. Hematol Oncol, 2010 Feb 2. [Epub ahead of print]
    [22] Iijima Y, Akiyoshi K,Tanaka S,Nukina M,Ito M, Haruta T,Inoue A,Ando S, Kishimoto T,Psittacosis outbreak at an avian exhibition. Kansenshogaku Zasshi,2009 Sep;83(5):500-5.
    [23] Pannekoek Y, Visser C, Duim B, Heddema ER,Chlamydophila psittaci infections in The Netherlands. Drugs Today (Barc) , 2009 Nov;45 Suppl B: 151-7.
    [24] Gaede W, Reckling KF, Dresenkamp B, Kenklies S, Schubert E, Noack U, Irmscher HM, Ludwig C, Hotzel H, Sachse K,Chlamydophila psittaci infections in humans during an outbreak of psittacosis from poultry in Germany. Zoonoses Public Health, 2008 May;55(4):184-8.
    [25] Vanrompay D, Harkinezhad T, Van de Walle M, Beeckman D, Van Droogenbroeck C, Verminnen K, Leten R, Martel A, Cauwerts K,Chlamydophila psittaci transmission from pet birds to humans. Emerg Infect Dis,2007 Jul;13(7):1108-10.
    [26] Petrovay F, Balla E,Two fatal cases of psittacosis caused by Chlamydophila psittaci. J Med Microbiol, 2008 Oct;57(Pt 10):1296-8.
    [27] Berk Y,Klaassen CH,Mouton JW,Meis JF,An outbreak of psittacosis at a bird-fanciers fair in the Netherlands. Ned Tijdschr Geneeskd, 2008 Aug 23;152(34):1889-92.
    [28] Zhong G, Fan P, Ji H, Dong F, Huang Y,Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med, 2001;193:935-942
    [29] Kleba B, Stephens RS,Chlamydial effector proteins localized to the host cell cytoplasmic compartment. Infect Immun, 2008;76(11):4842-4850.
    [30] Bryan Coburn,Inna Sekirov, B. Brett Finlay,Type III Secretion Systems and Disease.Clin Microbiol Rev, 2007;20(4):535-549.
    [31] Peters J, Wilson DP, Myers G, Timms P, Bavoil PM,Type III secretion a` la Chlamydia. Trends Microbiol,2007, 15(6):241-251.
    [32] Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA, Chlamydial entry involves TARP Binding of Guanine Nucleotide Exchange Factors.PLoS Pathog ,2008, 4(3):e1000014.
    [33] Alzhanov D, Barnes J, Hruby DE, Rockey DD, Chlamydial development is blocked in hostcells transfected with Chlamydophila caviae incA. BMCMicrobiol, 2004, 1(4):24.
    [34] Mota LJ, Cornelis,The bacterial injection kit: type III secretion systems. Ann Med, 2005,37(4):234-249.
    [35] Yao Q, Cui J, Zhu Y, Wang G, Hu L, Long C, Cao R, Liu X, Huang N, Chen S, Liu L, Shao F,A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc Natl Acad Sci U S A, 2009 Mar 10;106(10):3716-21.
    [36] Beeckman DS, Geens T, Timmermans JP, Van Oostveldt P, Vanrompay DC,Identification and characterization of a type III secretion system in Chlamydophila psittaci. Vet Res,2008 May-Jun;39(3):27.
    [37] Fields KA, Fischer ER, Mead DJ, Hackstadt T,Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates.J Bacteriol, 2005, 187(18):6466-6478.
    [38] Jewett TJ, Fischer ER, Mead DJ, Hackstadt T,Chlamydial TARP is a bacterial nucleator of actin.Proc Natl Acad Sci U S A, 2006, 103(42):15599-15604.
    [39] Subtil A, Delevoye C, Bala?áME, Tastevin L, Perrinet S, Dautry-Varsat A,A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates. Mol Microbiol, 2005,56(6):1636-1647.
    [40] Hobolt-Pedersen AS, Christiansen G, Timmerman E, Gevaert K, Birkelund S,Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus,FEMS Immunol Med Microbiol, 2009 October; 57(1): 46–58.
    [41] Hongliang C, Zhou Z, Zhan H, Yanhua Z, Zhongyu L, Yingbiao L, Guozhi D, Yimou W , Serodiagnosis of chlamydia pneumoniae infection using three inclusion membrane proteins. J Clin Lab Anal, 2010;24(1):55-61.
    [42] Subtil A, Delevoye C, Bala?áME., et al. A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates〔J〕. Mol Microbiol. .2005, 56(6):1636-1647.
    [43] Clifton DR, Fields KA, Grieshaber SS, et al. A chlamydial type III translocatedprotein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin〔J〕. Proc Natl Acad Sci U S A. 2004, 101(27):10166-10171.
    [44] Lane BJ, Mutchler C, Al Khodor S, et al. Chlamydial Entry Involves TARP Binding of Guanine Nucleotide Exchange Factors〔J〕.PLoS Pathog. 2008, 4(3):e1000014.
    [45] Elwell CA, Ceesay A, Kim JH, et al. RNA Interference Screen Identifies Abl Kinase and PDGFR Signaling in Chlamydia trachomatis Entry〔J〕. PLoS Pathog. 2008, 4(3):e1000021.
    [46] Jewett TJ, Dooley CA, Mead DJ,et al. Chlamydia trachomatis tarp is phosphorylated by srcfamily tyrosine kinases〔J〕. Biochem Biophys Res Commun.2008, 371(2):339-344.
    [47] Kostriukova ES, Lazarev VN, Govorun VM. Inclusion membrane proteins of Chlamydiaceae〔J〕.Biomed Khim. 2008 Jan-Feb; 54(1):24-41
    [48] Pannekoek Y, Spaargaren J, Langerak AA, et al.Interrelationship between polymorphisms of incA, fusogenic properties of Chlamydia trachomatis strains, and clinical manifestations in patients in The Netherlands〔J〕. J Clin Microbiol.2005, 43(5):2441-2443.
    [49] Suchland RJ, Rockey DD, Weeks SK, et al. Development of secondary inclusions in cells infected by Chlamydia trachomatis〔J〕. Infect Immun. 2005, 73(7):3954-3962.
    [50] Lugert R, Kuhns M, Polch T, et al. Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae〔J. Med Microbiol Immunol. 2004, 193(4):163-171.
    [51] Ferracci F, Schubot FD, Waugh DS, et al. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion〔J〕. Mol Microbiol. 2005, 57(4):970-987.
    [52] Kleba B, Stephens RS. Chlamydial Effector Proteins Localized to the Host Cell Cytoplasmic Compartment. Infect Immun. 2008 Aug.〔Epub ahead of print〕
    [1] Mota LJ, Cornelis. The bacterial injection kit: type III secretion systems〔J〕. Ann Med, 2005, 37(4):234-249.
    [2] Feilds KA, Fischer ER, Mead DJ, et al. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates〔J〕.J Bacteriol, 2005, 187(18):6466-6478.
    [3] Subtil A, Delevoye C, Bala?áME., et al. A directed screen for chlamydial proteins secreted by a type III mechanism identifies a translocated protein and numerous other new candidates〔J〕. Mol Microbiol. .2005, 56(6):1636-1647.
    [4] Peters J, Wilson DP, Myers G, et al. Type III secretion a` la Chlamydia〔J〕. Trends Microbiol. 2007, 15(6):241-251.
    [5] Clifton DR, Fields KA, Grieshaber SS, et al. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin〔J〕. Proc Natl Acad Sci U S A. 2004, 101(27):10166-10171.
    [6] Jewett TJ, Fischer ER, Mead DJ, et al. Chlamydial TARP is a bacterial nucleatorof actin〔J〕. Proc Natl Acad Sci U S A. 2006, 103(42):15599-15604.
    [7] Lane BJ, Mutchler C, Al Khodor S, et al. Chlamydial Entry Involves TARP Binding of Guanine Nucleotide Exchange Factors〔J〕.PLoS Pathog. 2008, 4(3):e1000014.
    [8] Elwell CA, Ceesay A, Kim JH, et al. RNA Interference Screen Identifies Abl Kinase and PDGFR Signaling in Chlamydia trachomatis Entry〔J〕. PLoS Pathog. 2008, 4(3):e1000021.
    [9] Jewett TJ, Dooley CA, Mead DJ,et al. Chlamydia trachomatis tarp is phosphorylated by srcfamily tyrosine kinases〔J〕. Biochem Biophys Res Commun. 2008, 371(2):339-344.
    [10] Kostriukova ES, Lazarev VN, Govorun VM. Inclusion membrane proteins of Chlamydiaceae〔J〕.Biomed Khim. 2008 Jan-Feb; 54(1):24-41
    [11] Pannekoek Y, Spaargaren J, Langerak AA, et al.Interrelationship between polymorphisms of incA, fusogenic properties of Chlamydia trachomatis strains, and clinical manifestations in patients in The Netherlands〔J〕. J Clin Microbiol.2005, 43(5):2441-2443.
    [12] Suchland RJ, Rockey DD, Weeks SK, et al. Development of secondary inclusions in cells infected by Chlamydia trachomatis〔J〕. Infect Immun. 2005, 73(7): 3954-3962.
    [13] Alzhanov D, Barnes J, Hruby DE, et al. Chlamydial development is blocked in hostcells transfected with Chlamydophila caviae incA〔J〕. BMC Microbiol. 2004, 1(4):24.
    [14] Müller N, Sattelmacher F, Lugert R, et al. Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins〔J. Med Microbiol Immunol. 2008, 197(4):387-396.
    [15] Lugert R, Kuhns M, Polch T, et al. Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae〔J. Med Microbiol Immunol. 2004, 193(4):163-171.
    [16] Ho TD, Starnbach M.N. The Salmonella enterica serovar Typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins intothe cytosol of host cells〔J〕. Infect Immun. 2005, 73(2):905-911.
    [17] Ferracci F, Schubot FD, Waugh DS, et al. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion〔J〕. Mol Microbiol. 2005, 57(4):970-987.
    [18] Kleba B, Stephens RS. Chlamydial Effector Proteins Localized to the Host Cell Cytoplasmic Compartment. Infect Immun. 2008 Aug.〔Epub ahead of print〕
    [19] Jorgensen I, Valdivia RH. Pmp-like proteins Pls1 and Pls2 are secreted into the lumen of the Chlamydia trachomatis inclusion〔J〕. Infect Immun. 2008, 76(9):3940-3950.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700