燃气轮机透平气动与冷却优化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃气轮机广泛用于航空推进、地面工业发电等能源动力领域,在国民经济与国防建设中的作用日显重要。在燃气轮机研究中,提高燃气轮机通流设计水平以及增加透平进口压力和温度是提高燃气轮机性能的主要手段,这就要求要发展先进的透平气动设计技术和透平冷却技术。
     数值优化方法最近几年先后被引入到透平的气动设计和冷却设计研究当中,它通过优化算法和数值计算方法的有机结合自动寻找最佳的设计方案,充分利用现有技术手段设计出高水平的透平,不仅能降低型号研制成本还能大大缩短研制周期,因此透平的优化设计得到了广泛地重视和发展,在燃气轮机的研制过程中已经取得了很多成功案例。
     在气动设计方面,国内外学者针对三维叶片几何优化开展了大量的研究工作,取得了诸多研究成果,也证实了通过透平叶片几何优化可以把透平绝热效率提高一个百分点左右;而对于子午流道的优化设计及展向匹配的优化设计研究较少,事实证明在透平方案设计阶段及展向气动设计阶段也存在着较大的优化潜力,在这些环节可以引入优化设计方法作为有力的辅助工具。
     在冷却优化设计方面,由于冷气通道几何复杂,设计参数繁多,计算量庞大,目前的优化研究多集中于对简单的具有二维几何特征的柱形冷气孔的优化及简单蛇形通道的优化,对于实际的多通道复杂冷却结构的优化设计仍难以实现。
     本文在此研究背景下主要开展了以下方面的研究工作:
     1.针对多级轴流透平气动设计的特点,开发了一套完整的多级轴流透平气动设计系统。系统包括基于平均截面准一维设计的方案设计模块、基于多截面准一维设计方法的展向设计模块、三维叶片造型模块及基于1.5维欧拉方程组的透平特性线计算模块。
     2.通过透平气动设计系统各模块与差分式遗传算法的有机耦合,开展了轴流透平气动优化设计研究工作。包括子午流道的优化设计、展向气流设计的优化和叶片三维造型的优化设计。
     3.以多目标优化软件IOSO NM为平台,通过集成建模软件、网格生成软件和CFD计算软件建立了透平冷却优化设计系统。分别对平板带肋直通道和三流程蛇形冷却通道进行了优化研究。
     4.基于瞬态单色液晶捕捉技术建立了带肋冷却通道换热特性实验台。对本文研究的三流程带肋通道进行了实验研究,分别测量了带肋壁面的换热系数和沿流程的压力分布。
Gas turbine is widely used in the fields of aircraft propulsion and power generation, and plays a significant role in the civil economy and national defense. In the research and development of gas turbine, improving the throughflow design technique and increasing the inlet temperature/pressure are the main approaches to enhance the gas turbine performance. This demands us to explore advanced aerodynamic design method and turbine cooling design method.
     Numerical optimization method is applied to the turbine aerodynamic design and the cooling design in the last few years. By integrating optimization algorithm and CFD method, numerical optimization method can search the optimal design automatically, and the present design technique can slso be used at best by the optimization. At the same time, the component design period can be shortened and the design cost can be cut down effectively. So the numerical optimization method is drawn more and more attentions and many successful real turbine design cases with optimization technique are reported.
     In the turbine aerodynamic design, investigations on3D blade geometry optimization were carried out by a lot of scholars, and many achievements and optimization methods were reported. It is recognized that the turbine aerodynamic efficiency can be increased about one precentage by means of3D blade geometry optimization. However, the optimizations aimed at the meridional flow-path and the radial flow matching are fewly reported. Some investigations show that the improvement on meridional flow-path and radial flow matching has more potienal in the increase of turbine performance, and numerical optimization method can be very useful in those processes.
     In the turbine cooling design, it is infeasible to perform a real blade cooling geometry optimization, because the CFD computations time in blade cooling passage analysis are expensive. At the present time, a lot of investigations aimed at the simple cyclinder-like structure in the cooling passage optimization.
     The following investigations are performed in this paper:
     1. An aerodynamic optimization system for multi-stage axial-flow turbine was developed. The system consists of a quasi-one-dimensional method based on the meanline for the preliminary aerodynamic design of the whole turbine stages, a multi-elements method for the radial aerodynamic design of all blade rows, a novel multi-elements auto-blading method and an aerodynamic characterisitics computation method based on1.5dimensinal Euler equations.
     2. Intergrated the above design parts with Differential Evolution algorithm, a lot of aerodynamic optimization investigations were performaed, including the turbine meridinal flowpath optimization, the radial-matchaing design optimization, and the3D blade geometry optimization.
     3. Based on the multi-objective optimization software, IOSO NM, a turbine cooling optimization system is constructured. The system employed CAD software to generate parmaterized geometry and CFD software to assess the performace of cooling designs. In the optimization system, a ribbled straight cooling duct and a three-pass ribbed serpentine cooling passage are investigated by the nurmerical optimization technique.
     4. Using transient sigle-color liquid crystal capturing technique, a test rig for measuring heat transfer coefficient of cooling passage is set up. The three-pass ribbed serpentine cooling passage is used as a test sample to measure the heat transfer coefficient and the pressure drop.
引文
[1]王如根,高坤华.航空发动机新技术.航空工业出版社[M].2003.12.
    [2]D. G. Ainley, G. C. R. Mathieson. A Method of Performance Estimation for Axial-Flow Turbine [J], British Aeronautical Research Council. R&M 2974, 1951.
    [3]S. C. Kacker, U. Okapuu. A Mean Line Prediction Method for Axial Flow Turbine Efficiency [J], ASME 81-GT-58.
    [4]A. F. Carter, R K. Lenherr. Correlations of Turbine Blade Total Pressure Loss Coeffiency Data [J]. ASME paper 68-WA/GT-5,1968.
    [5]华鑫,乔渭阳.基于流线曲率法的航空轴流透平损失模型研究[J].机械设计与制造,2005年12月.
    [6]宋力强,王永泓.变几何燃气轮机透平损失模型的分析[J].燃气轮机技术.2004年6月.Vol.17.
    [7]Junqiang Zhu, A. Steen Suolander. Improved Profile Loss and Deviation Correlations for Axial-turbine Blade Rows. ASME-GT2005-69077.
    [8]史海秋,等家禔.透平叶片一维气动方案多学科优化设计[J].制造自动化.2006年6月.
    [9]靳杰,温风波,韩万金.不同损失模型对气冷透平S2流面优化影响的分析[J].热能动力工程.2009年1月.
    [10]Milan V. Petrovic, George S. Dulikravich. Optimization of Multistage Turbines Using a Through-flow Code [J]. ASME-GT-521.2000.
    [11]虞跨海,岳珠峰,透平冷却叶片参数化建模及多学科设计优化[J].航空动力学报.Vol.22 No.8.Aug.2007.
    [12]虞跨海,李立周,岳珠峰.透平叶片三维气动优化设计[J].机械设计.2005年11月.
    [13]Van den Braembussche. Numerical Optimization for Advanced Turbomachinery Design.2005.
    [14]Temesgen T. Mengistu, Wahid S. Ghaly. A Geometric Representation of Turbomachinery Cascades Using NURBS [J]. AIAA 2002-0318.
    [15]宋立明,李军,丰镇平ARDE算法及其在三维叶栅气动优化设计中的应用[J].工程热物理学报.Mar.2005.
    [16]J. D. Denton. A Time Marching Method for Two- and Three-dimensional Blade-to-blade Flows[R]. Marchmood Engineering Laboratories Report, ARC R.&M. No.3775,1975.
    [17]J. Moore, D H. Timmis. Performance Evaluation of Centrifugal Compressor Impellers Using Three Dimensional Viscous Flow Calculation [J]. Journal of Engineering for Gas Turbine and Power,1984,106(2):475-481.
    [18]M M. Rai. Three Dimensional Navier-Stockes Simulations of Turbine Rotor-stator Interaction [J]. Journal Propulsion,1989,5(3):367-374.
    [19]Yongsheng Lian, Multiobjective Optimization Using Coupled Response Surface Model [J], AIAA 2004-4323.
    [20]陈宝林.最优化理论与算法[M].清华大学出版社.2005.10.
    [21]D E. Goldberg, Korb B, Messy Genetic Algorithms:Motivation, Analysis and First Results. Complex System,1989(3):493-530.
    [22]C M. Fonseca, P J. Fleming. Genetic Algorithms for Multi-objective Optimization Formulation, Discussion, and Generalization [C]. Proceedings of the Fifth International Conference of Genetic Algorithms, Morgan Kaufmann, Los Altos, CA. Morgan Kaufmann Publishers,1993:416-423.
    [23]J. Horn, N. Nafpliotis, D E. Goldberg. A Niched Pareto Genetic Algorithm for Multi-objective Optimization[C]. Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, Florida IEEE Press,1994,1:82-87.
    [24]N. Srinivas, K. Deb. Multi-objective Function Optimization using Non-dominated Sorting Genetic Algorithm. Evolutionary Computation. 1994,2(3):221-248.
    [25]E. Zitzler, L. Thiele. An Evolutionary Algorithm for Multi-objective Optimization:The Strength Pareto Approach [R]. Technical Report 43, Zurich, Switzerland:Computer Engineering and Network Laboratory, Swiss Federal Institute of Technology.
    [26]J D. Knowles, D W. Corne. Approximating the Non-dominated Front using the Pareto Archived Evolution Strategy [J]. Evolutionary Computation, 2000,8(2):149-172.
    [27]K. Deb, A. Pratap, S. Agarwal. A Fast and Elitist Multi-objective Genetic Algorithm [J]. NASA-II. IEEE Transactions on Evolutionary Computation, 2002,6 (2):182-197.
    [28]A. Samad, K Y. Kim, K S. Lee. Multiobjective Optimization of a Turbomachinery Blade Using NSGA-Ⅱ [C]. Proceedings of FEDSM2007 5th Joint. ASME2007-37434.
    [29]C, Cravero, P. Macelloni Design Optimization of a Multistage Axial Turbine Using a Response Surface Based Strategy [R].2nd International Conference on Engineering Optimization,2010.
    [30]P. Akhilehsh, Rallabandi, Huitao Yang, Je-Chin Han. Heat Transfer and Press Drop Coreelations for Square Channels with 45 Deg Ribs at High Reynolds Numbers [J]. ASME, Journal of Heat Transfer, July,2009,071703.
    [31]A. Magi, F. Montomoli. Experimental and Numerical Investigation of Stationary Ribbed Ducts [C]. Proceedings of ASME Turbo Expo, Vienna, GT2004-53180, pp.1-9.2004.
    [32]Ramakumar B.V.N, Vighneswara R. Kollati. Numerical Validation of Heat Transfer Augmentation Factor in Serpentine Passages with Ribbed Walls [C]. Proceedings of ASME Turbo Expo, Glasgow, GT2010-22636. pp.1-11.2010.
    [33]R. S. Amano, Krishna Guntur. Study of Flow through a Stationary Ribbed Channel for Blade Cooling [C]. Proceedings of ASME Turbo Expo, Glasgow, GT2010-23031,pp.1-8,2010.
    [34]M. Schuler, H.M.Dreher, M.elfert. Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-similar Two-pass Internal Cooling Channel with Smooth and Ribbed Walls [C]. Proceedings of ASME Turbo Expo, Glasgow, GT2010-22870, pp.1-13.2010.
    [35]D E. Metzger. Heat Transfer Around Shape 180-deg Turns in Smooth Rectangular Channels [J]. Journal of Heat Transfer.1986,108:500-506.
    [36]J C. Han, P. Zhang. Pressure Loss Distribution in Three-Pass Rectangular Channels with Rib Turbulators [J]. Journal of Turbomachinery,1989, 111:515-521.
    [37]H. Nakayama, M. Hirota. Fluid Flow and Heat Transfer in Two-pass Smooth Rectangular Channels with Different Turn Clearances [J]. Journal of Turbomachinery.2006,128:772-785.
    [38]D. Pape, H. Jeanmart. Influence of the 180 Bend Geometry on the Pressure Loss and Heat Transfer in a High Aspect Ratio Rectangular Smooth Channel [J]. ASME Paper GT2004-53753.
    [39]D V. Rao. Effect of Guide Vanes on Pressure Drop in a Rib Roughened Squared Channel with a Shape Cornered 180 Bend [M]. AIAA Paper 2003-5961.
    [40]Gianlorenzo Bucchieri, Massimo Galbiati. Optimisation Techniques Applied to The Design of Gas Turbine Blades Cooling [M]. ASME Turbo Expo 2006: Power for Land, Sea and Air. May,2006, Barcelona, Spain, GT2006-90771.
    [41]Grzegorz Nowak. Thermo-Mechanical Optimization of Cooled Turbine Vane [J]. ASME-GT2007-28196
    [42]宋迎东,张福军,岳珠峰.一类冷却导向叶片的多学科设计优化[J].航空动力学报.2008年11月.Vol.23.
    [43]Brian H.Dennis, Igor N. Egorov, Helmut Sobleczky. Parallel Thermoelasticity Optimization of 3-D Serpentine Cooling Passage in Turbine blades [J]. ASME. GT2003-38180.
    [44]T E. Cooper, R J. Field. Liquid Crystal Thermography and its Application to the Study of Convective Heat Transfer [J]. Journal of Heat Transfer.1975, 97(3):442-450.
    [45]P T. Ireland, T V. Jones. Response Time of a Surface Thermometer Employing Encapsulated Themochromic Liquid Crystals [J]. Journal of Physics E: Scientific Instruments,1987,20(10):1195-1199.
    [46]Z. Wang, P T. Ireland. A Technique for Measuring Convective Heat Transfer at Rough Surfaces [J]. Transactions of the Institute of Measurement and Control, 1991,13 (3):145-154.
    [47]C. Camci, K. Kim. A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies [J]. Journal of Turbomachinery,114:765-775.
    [48]P T. Ireland, A J. Neely. Turbulent Heat Transfer Measurements Using Liquid Crystals. International Journal of Heat and Fluid Flow,1999,20:355-367.
    [49]S V. Ekkad, J C. Han. A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements. Meas. Science Technology,2000, 11:957-968.
    [50]韩介勤,桑地普·杜达,斯瑞纳斯·艾卡德[著].程代京,谢永慧[译].燃气轮机传热和冷却技术[M].西安:西安交通大学出版社.2005.
    [51]苏生.复杂透平内冷动叶中流动与换热研究[D].中国科学院工程热物理研究所博士学位论文.2008.12.
    [52]Sinan AKANDOR. Multi-objective Aerodynamic Optimization of Axial Turbine Blades Using a Novel Multi-level Generic Algorithm [J]. ASME, GT2008-50521.
    [53]Dieter E. Bohn, Christian tummers. Numerical 3-D Conjugate Flow and Heat Transfer Investigation of a Transonic Convection-Cooled Thermal Barried Coated Turbine Guide Vane With Reduced Cooling Fluid Mass Flow [J]. ASME-GT2003-38431.
    [54]孙杰,宋迎东,孙志刚.透平冷却叶片热—固耦合分析与优化设计[J].航空动力学报.2008年12月.Vo1.23.
    [55]N.Kulasekharan. B.V.S.S.S Prasad. Computation Investigation in The Trailing Edge Region of Cooled Turbine Vane-comparison of Different Channel Shapes [J]. ASME-GT2007-27421.
    [56]Brian H. Dennis. Igor N.Egorov. Optimization of a Large Number of Coolant Passages Located Close to The Surface of a Turbine Blade [J]. ASME-GT2003-38051.
    [57]J.Glassman. Computer Code for Preliminary Sizing Analysis of Axial-Flow Turbines [R]. NASA Report 4430,1992.
    [58]Vassilios Paachidis. Pericles Pilidis. An Iterative Method for Blade Profile Loss Model Adaptation Using Streamline Curvature [J]. Journal of Engineering for Gas Turbines and Power.2008, Vol.130.
    [59]Byung Nam Kim. Myung Kyoon Chung. Improvement of Tip Leakage Loss Model for Axial Turbines [J]. Journal of Turbomachinery. APRIL 1997.
    [60]D. J. Jackson. K. L. Lee. Transonic Aerodynamic Losses Due to Turbine Airfoil, Suction Surface Film Cooling [J]. Journal of Trubomachinery. APRIL 2000.
    [61]王婧超,李立州,岳珠峰.透平叶片MDO实现的进展[J].科学技术与工程.2005年四月.
    [62]周岳琨,王建新.汽轮机叶片设计和几何成型方法综述.汽轮机技术.2001年8月.
    [63]Takashi Yamane, Takahiro Bamba. Conjugate Simulation of Flow and Heat Conduction by a Common CFD Platform "UPACS". ACGT 2005-072.
    [64]Y. G. Li. An Adaptation Approach for Gas Turbine Design-Point Performance Simulation [J]. ASME-2006. Vol.128/789.
    [65]S. V. Damle, T. Q. Dang. Through-flow Method for Turbomachines Applicable for all Flow Regimes [J]. ASME. APRIL,1997.
    [66]赵洪雷,王松涛.联合应用现代优化方法与S2流面计算进行多级透平的气动设计.燃气透平试验与研究.2007年2月.
    [67]张效伟,朱惠人.大型燃气轮机叶片冷却技术.热能动力工程.2008年1月.
    [68]Leonid Moroz. Yuri Govoruschenko. Axial Turbine Stages Design:1d/2D/3D Simulation, Experiment, Optimization [J]. ASME. GT-68614.
    [69]刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社.2005.
    [70]J. C. Han. Heat Transfer and Friction Characteristic in Rectangular Channel of With Rib Turbolators [J]. ASME Journal of Heat Transfer. pp.321-328,1998.
    [71]《航空发动机设计手册》总编委会.航空发动机设计手册.航空工业出版社.2001.5.
    [72]何坤.叶轮机械通流部分多目标气动优化设计系统的研究与应用[D].清华大学博士学位论文.2011.06.
    [73]孙娜.多级轴流压气机变几何扩稳优化研究[D].西北工业大学硕士学位论文.2008.03.
    [74]陈伟.燃气轮机透平叶片内部冷却机理的实验与理论研究[D].清华大学博士学位论文.2011.05.
    [75]宁方飞,徐力平Spalart-Allmaras湍流模型在内流流场数值模拟中的应用[J].工程热物理学报.Vol,22,No.3.May,2001.
    [76]周宇,钱炜祺,邓有奇,马明生.k-ω SST两方程湍流模型中参数影响的初步分析[J].空气动力学学报.Vol.28.2010年4月.
    [77]U.Trottenberg, C.W.Oosterlee and A.Schuler. Multigrid[M], Academic Press,2001.
    [78]A.Brandt. Algebraic Multigrid theory:the symmetric case [J], Appl.Math.Com-put,1986,19:23-56.
    [79]陈波,高学林,袁新.基于NURBS的叶片全三维气动优化设计.工程热物理学报.第27卷第5期,2006年9月.
    [80]宋立明,李军,丰镇平ARDE算法及其在三维叶栅气动优化设计中的应用[J].工程热物理学报.Mar.2005.
    [81]吴亮红,王耀南,袁小芳.自适应二次变异差分进化算法[J].控制与决策.Aug 2006.
    [82]王录.轴流式叶轮机械叶片气动数值优化设计研究[D].中国科学院研究生院硕士学位论文.010年5月.
    [83]陈凯云,谢晓芹.节点矢量影响NURBS曲线的规律研究及应用.机械工程学报.2008年10月.
    [84]张忠桢.二次规划——非线性规划与投资组合的算法[M].武汉大学出版社.2006.04,152-168.
    [85]绍仕泉.基于BP神经网络的遗传算法在数字滤波器设计中的应用[D].电子科技大学硕士学位论文.2005年1月.
    [86]席光,王志恒,王尚锦.叶轮机械气动优化设计中的近似模型方法及其应用[J].西安交通大学学报.2007.02.
    [87]谷簌隆嗣,簌原将文(日).人工神经网络与模糊信号处理[M].科学出版社.2003.
    [88]施法中.计算机辅助几何设计与非均匀有理B样条[M].高等教育出版社.2001年8月第一版.
    [89]Mi-Ae Moon, Kwang-Yong. Shape Optimization of a Rotating U-Duct Channel with Guide Vanes in the Turning Region [C]. IGTC'll Osaka.#123.
    [90]C.F.Favaretto. W.P.Kellar. W.N.Dawns. Speeding up the CFD Process [C]. IGTC'll Osaka.#072.
    [91]M.Schuler, H.-M.Dreher, M.Elfert. Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Enginer-similar Two-pass Internal Cooling Channel with Smooth and Ribbed Walls. GT2010-22870.
    [92]Ramakumar B.V.N, Jong S.Liu. Numerical Validation of Heat Transfer Augmentation Factor in Serpentine Passages with Ribbed Walls. GT2010-22636.
    [93]A.Magi, F.Montomoli. Experimental and Numerical Investigation of Stationary Ribbed Ducts. GT2001-53180.
    [94]Akhilesh P. Rallabandi, Huitao Yang, Je-Chin Han. Heat Transfer and Pressure Drop Correlations for Square Channels with 45 Deg Ribs at High Reynolds Numbers [J]. Journal of Heat Transfer. July 2009. Vol.131/071703.
    [95]Akhilesh P. Rallabandi, Nawai Alkhamis, Je-chin Han. Heat Transfer and Pressure Drop Measurements for a Square Channel with 45 Deg Round-Edged Ribs at High Reynolds Numbers [J]. Journal of Turbomachinery, July 2011, Vol.133/031019.
    [96]S.A. Abdelfattah, M. T. Schobeiri. Experimental and Numerical Investigation of Aerodynamic Behavior of a Three-stage Hp-turbine at Different Operating Conditions [J]. GT2010-23564.
    [98]R. M. Storn, K. V. Price, J. A. Lampinen. Differential Evolution a Practical Approach to Global Optimization [J]. Springer-Verlag, Berlin.2005.
    [99]Janez Brest, Viljem Zumer, Mirjam. Self-Adaptive Differential Evolution Algorithm in Constrained Real -Parameter Optimization. IEEE Congress on Evolutionary Computation. July 16-21,2006. pp:919-926.
    [100]张晓东.跨音速轴流压气机叶片设计及其优化[D].西北工业大学硕士学位论文.2008年04月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700