下颌骨髁突支架的个体化设计与初步构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     基于CT图像的下颌骨髁突支架的个体化设计
     研究目的
     探索运用医学图像处理和逆向工程技术相结合的方法来个体化设计下颌骨髁突支架负模,为组织工程构建下颌骨髁突支架提供一种有效的技术手段。
     研究方法
     以CT扫描的影像资料作为数据源,利用Mimics软件获取一侧下颌支形状的数据,并以.STL格式输入到Solidworks软件中进行编辑,最终获得下颌骨髁突支架的负型模具文件。
     研究结果
     1.一侧下颌支三维模型的建立
     将头颅CT影像资料以DICOM格式输入到三维重建软件Mimics 8.1中,进行阈值选取、区域增长等操作,重建出一侧下颌支三维模型,并以.STL格式输出。
     2.下颌骨髁突支架负型模具的生成
     利用Solidworks 2010中的"scan to 3D"模块来处理下颌支三维模型的网格数据,最后生成实体模型。通过“型腔”命令来完成下颌骨髁突支架负模的构建,通过“分割”命令将髁突支架负模切割为三部分,并以.STL格式输出。
     研究结论
     基于头颅CT影像资料,利用三维重建软件Mimics 8.1获得一侧下颌支三维模型的网格数据,再利用机械设计软件Solidworks 2010对获得的网格数据进行整理、编辑,并获取所需的三维特征曲线,最终通过三维曲面表达出下颌骨髁突负模的模具模型。
     第二部分
     基于快速成型技术的下颌骨髁突支架的初步构建
     研究目的
     探讨运用快速成型技术与模具内浇注的方法制造具有双相支架复合材料的下颌骨髁突支架,为下颌骨髁突支架的生成提供一种方法。
     研究方法
     将Solidworks 2010中获取的下颌骨髁突支架负模的模具文件输入到objet studio软件中,进行模型的放置,调整好后发送到job manager中进行三维打印,将得到的树脂模具去除支撑材料得到实体模具,对模具进行固定,下层浇注胶原材料,中层浇注PLGA,上层浇注磷酸钙骨水泥和PLGA微球体。固化后去除树脂模具得到双相下颌骨髁突模型,通过扫描电镜观察其微观结构。
     研究结果
     通过快速成型技术获得了下颌骨髁突支架负模的树脂模型,通过生物材料浇注获得了一体化的双相下颌骨髁突支架结构。通过电镜扫描证实下颌骨髁突支架生物材料具有双相结构。
     研究结论
     快速成型技术与医学影像技术、计算机辅助设计技术以及材料学等新兴技术相结合,可以获取并重建出下颌骨髁突的外部轮廓及其双相结构,实现了下颌骨髁突支架制造的个体化,为骨组织工程更好地向临床过渡奠定了基础。
Part 1 Custom design of mandibular condyle scaffold based on CT image
     Objective
     To explore the methods of designing the negative mold of mandibular condyle scaffold individually by medical image processing and reverse engineering technology, and attempt to provide a new effective way for custom design of mandibular condyle scaffold.
     Methods
     Cranial CT image data were processed in Mimics software for reconstruction of one side of ramus of mandible, then the reconstruction image were input into Solidworks software to edit and form the format of STL. Lastly we acquired the negative mold of mandibular condyle scaffold.
     Results
     1.Establishment of three-dimensional ramus of mandible Cranial CT data were input into Mimics 8.1 software by the format of DICOM, in which after utilizing thresholding and region growing, the 3D model of ramus of mandible was gotten and would be output by the format of STL.
     2.Establishment of three-dimensional negative mold of mandibular condyle scaffold
     Grid data of ramus of mandible were treated by utilizing the "scan to 3D" module of Solidworks 2010 to generate a solid model. Then we completed the construction of the negative mode of mandibular condyle scaffold through operating the command of "cavity", which was then cut into three parts through the command of "segmentation". Lastly these parts were output by the format of STL.
     Conclusions
     Based on cranial CT image data, we have acquired the grid data of ramus of mandible by applying three-dimensional reconstruction software Mimics 8.1, then the grid data were edited by mechanical design software Solidworks 2010 in order to get the characteristic curve. Ultimately we get the negative mold of mandibular condyle scaffold through the expression of three-dimensional surface.
     Part 2 Primary construction of mandibular condyle scaffold based on rapid prototyping technology
     Objective
     To explore the methods of fabricating biphasic mandibular condyle scaffold by applying rapid prototyping and mold-cast technologies in order to provide a new tool for producing the solid model of mandibular condyle scaffold.
     Methods
     Firstly, the negative mold of mandibular condyle scaffold acquired from Solidworks 2010 was input to objet studio software, then corresponding works were executed including the placement of model. After adjustment, we sent it to job manager for three-dimensional printing. Secondly, we eliminated the support materials of the resin mold of condyle scaffold and got the solid one, then fixed the mold, in which we cast collagen in lower layer, PLGA in middle layer, CPC and PLGA microspheres in higher layer. After cured, we removed the resin mold and got the biphasic mandibular condyle scaffold model. Lastly, we observed its microstructure by SEM.
     Results
     We have acquired the resin model of the negative mandibular condyle scaffold mold by rapid prototyping technology, and gotten an integral biphasic scaffold through casting biomaterials. The results of SEM revealed that the model consists of two parts.
     Conclusions
     The combination of rapid prototyping technology, medical imaging technology, materials takes a lot of advantages. They could acquire and reconstruct the external contour and biphasic structure of mandibular condyle. By this way, we realize the custom fabrication of mandibular condyle scaffold and lay the foundation for bone tissue engineering toward clinical application.
引文
[1]L. Wang, M. S. Detamore. Tissue engineering the mandibular condyle[J]. Tissue Eng,2007, 13 (8):1955-1971
    [2]L. G. Mercuri. Temporomandibular joint reconstruction[J]. Alpha Omegan,2009,102 (2) 51-54
    [3]S. B. Milam, G. Zardeneta, J. P. Schmitz. Oxidative stress and degenerative temporomandibular joint disease:a proposed hypothesis[J]. J Oral Maxillofac Surg,1998,56 (2): 214-223
    [4]T. Fujisawa, T. Kuboki, T. Kasaiet al. A repetitive, steady mouth opening induced an osteoarthritis-like lesion in the rabbit temporomandibular joint[J]. J Dent Res,2003,82 (9) 731-735
    [5]S. Wadhwa, S. Kapila. TMJ disorders:future innovations in diagnostics and therapeutics[J]. J Dent Educ,2008,72 (8):930-947
    [6]R. Langer, J. P. Vacanti. Tissue engineering[J]. Science,1993,260 (5110):920-926
    [7]马绪臣.颞下颌关节病的基础与临床[M]:人民卫生出版社,2000
    [8]K. L. Low, S. H. Tan, S. H. Zeinet al. Calcium phosphate-based composites as injectable bone substitute materials[J]. J Biomed Mater Res B Appl Biomater,2010,94 (1):273-286
    [9]漆小鹏.聚乳酸-羟基乙酸共聚物/磷酸钙骨水泥多孔复合支架的制备[J].复合材料学报,2010(3):73-77
    [10]向其军,刘咏,郑治等.磷酸钙骨水泥/聚乳酸-聚羟基乙酸复合材料的制备及性能[J].粉末冶金材料科学与工程,2005(6):361-364
    [11]W. J. Habraken, J. G. Wolke, A. G. Mikoset al. Injectable PLGA microsphere/calcium phosphate cements:physical properties and degradation characteristics[J]. J Biomater Sci Polym Ed,2006,17 (9):1057-1074
    [12]W. J. Habraken, J. G. Wolke, A. G. Mikoset al. PLGA microsphere/calcium phosphate cement composites for tissue engineering:in vitro release and degradation characteristics[J]. J Biomater Sci Polym Ed,2008,19 (9):1171-1188
    [13]R. M. Schek, J. M. Taboas, S. J. Hollisteret al. Tissue engineering osteochondral implants for temporomandibular joint repair[J]. Orthod Craniofac Res,2005,8 (4):313-319
    [14]W. L. Grayson, M. Frohlich, K. Yeageret al. Engineering anatomically shaped human bone grafts[J]. Proc Natl Acad Sci U S A,2010,107 (8):3299-3304
    [15]H. Xu, D. Han, J. S. Donget al. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibularcondyle bone defects[J]. Int J Med Robot,2010,6 (1):66-72
    [16]麻春英.复杂曲面零件三维CAD模型构造方法的研究[D].大连:大连理工大学,2006
    [17]裴国献.数字骨科学[M]:人民卫生出版社,2009
    [18]李江雄,柯映林,程耀东.基于实物的复杂曲面产品反求工程中的CAD建模技术[J].中国机械工程,1999(4):38-41
    [19]龚振宇,刘彦普,周树夏等.基于反求工程和快速原型的下颌骨缺损的修复[J].中华口腔医学杂志,2004(1):11-13
    [20]S. J. Hollister, R. A. Levy, T. M. Chuet al. An image-based approach for designing and manufacturing craniofacial scaffolds[J]. Int J Oral Maxillofac Surg,2000,29 (1):67-71
    [21]E. Maravelakis, K. David, A. Antoniadiset al. Reverse engineering techniques for cranioplasty: a case study[J]. J Med Eng Technol,2008,32 (2):115-121
    [22]L. P. Khoo, J. C. Goh, S. L. Chow. Parametric modelling of a knee joint prosthesis[J]. Proc Inst Mech Eng H,1993,207 (2):115-120
    [23]Da Silva IN Lima, G. F. Barbosa, R. B. Soareset al. Creating three-dimensional tooth models from tomographic images[J]. Stomatologija,2008,10 (2):67-71
    [24]詹迪维主编SolidWorks高级应用教程[M].北京:机械工业出版社,2009
    [25]刘浩怀,张利,邹琴等.聚氨酯软骨-骨双层复合材料的构建及性能研究[J].功能材料,2010(4):652-655
    [26]A. Alhadlaq, J. J. Mao. Tissue-engineered neogenesis of human-shaped mandibularcondyle from rat mesenchymal stem cells[J]. J Dent Res,2003,82 (12):951-956
    [27]Y. Weng, Y. Cao, C. A. Silvaet al. Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction[J]. J Oral Maxillofac Surg,2001,59 (2):185-190
    [28]H. U. Luder. Age changes in the articular tissue of human mandibular condyles from adolescence to old age:A semiquantitative light microscopic study[J]. ANATOMICAL RECORD, 1998,251 (4):439-447
    [29]P. A. Webb. A review of rapid prototyping (RP) techniques in the medical and biomedical sector[J]. J Med Eng Technol,2000,24 (4):149-153
    [30]S. M. Chaware, V. Bagaria, A. Kuthe. Application of the rapid prototyping technique to design a customized temporomandibular joint used to treat temporomandibular ankylosis[J]. Indian J Plast Surg,2009,42 (1):85-93
    [31]T. Weigel, G. Schinkel, A. Lendlein. Design and preparation of polymeric scaffolds for tissue engineering[J]. Expert Rev Med Devices,2006,3 (6):835-851
    [32]初殿伟,工玮,王文良.骨软骨组织工程支架的研究现状[J].武警医学院学报,2009(3)240-244
    [33]翁雨来,曹谊林, VacantiCA组织工程化人形下颌骨髁状突的实验研究[J].上海口腔医学,2000(2):94-96
    [34]H. Abukawa, H. Terai, D. Hannoucheet al. Formation of a mandibular condyle in vitro by tissue engineering[J]. J Oral Maxillofac Surg,2003,61 (1):94-100
    [35]A. Alhadlaq, J. J. Mao. Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells[J]. J Dent Res,2003,82 (12):951-956
    [36]郭圣荣主编.医药用生物降解性高分子材料[M].北京:化学工业出版社,2004:243
    [37]P. Q. Ruhe, E. L. Hedberg-Dirk, N. T. Padronet al. Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects[J]. Tissue Eng, 2006,12 (4):789-800
    [38]D. P. Link, J. van den Dolder, J. J. van den Beuckenet al. Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites[J]. J Biomed Mater Res A,2008,87 (3):760-769
    [1]沈兴全.快速成形技术在人工骨骼制造中的应用[J].应用基础与工程科学学报,2005:85-90
    [2]S. J. Hollister, R. A. Levy, T. M. Chuet al. An image-based approach for designing and manufacturing craniofacial scaffolds[J]. Int J Oral Maxillofac Surg,2000,29 (1):67-71
    [3]E. Maravelakis, K. David, A. Antoniadiset al. Reverse engineering techniques for cranioplasty: a case study[J]. J Med Eng Technol,2008,32 (2):115-121
    [4]牛爱军,党新安,杨立军.快速成型技术的发展现状及其研究动向[J].热加工工艺,2008(5):116-118
    [5]吕国刚,谌永祥,李永桥.反求工程测量技术简述[J].机械研究与应用,2006(4):7-8
    [6]吴家升,张义力,王军杰.逆向工程数据采集方法的研究和展望[J].机械制造,2005(5):14-17
    [7]P. A. Webb. A review of rapid prototyping (RP) techniques in the medical and biomedical sector[J]. J Med Eng Technol,2000,24 (4):149-153
    [8]K. Sato, J. Sugawara, H. Mitaniet al. Use of selectively colored stereolithography for diagnosis of impacted supernumerary teeth for a patient with cleidocranial dysplasia[J]. Int J Adult Orthodon Orthognath Surg,1998,13 (2):163-167
    [9]J. Winder, R. Bibb. Medical rapid prototyping technologies:state of the art and current limitations for application in oral and maxillofacial surgery[J]. J Oral Maxillofac Surg,2005,63 (7): 1006-1015
    [10]M. N. Cooke, J. P. Fisher, D. Deanet al. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth[J]. J Biomed Mater Res B Appl Biomater,2003,64 (2):65-69
    [11]S. Eosoly, D. Brabazon, S. Lohfeldet al. Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds[J]. Acta Biomater,2010,6 (7):2511-2517
    [12]B. Duan, M. Wang, W. Y. Zhouet al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering[J]. Acta Biomater,2010,6(12):4495-4505
    [13]K. W. Lee, S. Wang, L. Luet al. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding[J]. Tissue Eng,2006,12 (10):2801-2811
    [14]I. Zein, D. W. Hutmacher, K. C. Tanet al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications[J]. Biomaterials,2002,23 (4):1169-1185
    [15]雷华,余东,唐晓军等.低温快速成型个性化组织工程活性支架的制备及性能分析[J]_中国美容医学,2008(7):1008-1012
    [16]L. Liu, Z. Xiong, Y. Yanet al. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds[J]. J Biomed Mater Res B Appl Biomater,2009,88 (1): 254-263
    [17]K. J. Zouhary, S. E. Feinberg. Regeneration of the mandibular condyle in minipigs[J]. J Oral Maxillofac Surg,2006,64 (3):565-566
    [18]翁雨来,曹谊林,VacantiCA组织工程化人形下领骨髁状突的实验研究[J].上海口腔医学,2000(2):94-96
    [19]H. Abukawa, H. Terai, D. Hannoucheet al. Formation of a mandibular condyle in vitro by tissue engineering[J]. J Oral Maxillofac Surg,2003,61 (1):94-100
    [20]A. Alhadlaq, J. J. Mao. Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells[J]. J Dent Res,2003,82 (12):951-956
    [21]R. M. Schek, J. M. Taboas, S. J. Hollisteret al. Tissue engineering osteochondral implants for temporomandibular joint repair[J]. Orthod Craniofac Res,2005,8(4):313-319
    [22]W. L. Grayson, M. Frohlich, K. Yeageret al. Engineering anatomically shaped human bone grafts[J]. Proc Natl Acad Sci U S A,2010,107 (8):3299-3304
    [23]H. Xu, D. Han, J. S. Donget al. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects[J]. Int J Med Robot,2010,6 (1):66-72
    [24]S. M. Peltola, F. P. Melchels, D. W. Grijpmaet al. A review of rapid prototyping techniques for tissue engineering purposes[J]. Ann Med,2008,40 (4):268-280
    [25]X. Wang, Y. Yan, R. Zhang. Recent trends and challenges in complex organ manufacturing[J]. Tissue Eng Part B Rev,2010,16 (2):189-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700