计算机辅助设计、制作个性化骨缺损修复体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:将组织工程学(TE)、计算机辅助设计(CAD)、快速成型(RP)、逆向工程(RE)、有限元分析(FEA)等技术相结合;通过对比格犬骨髓间充质干细胞(BMSCs)进行分离、培养及定向诱导分化为成骨细胞,为骨缺损修复的种子细胞;计算机辅助设计、快速成型技术制作个性化骨缺损修复支架,在体外联合构建成骨细胞和个性化骨缺损修复支架的组织工程骨支架;采用有限元法对不同内固定方式+个性化骨缺损修复体修复重建骨缺损、计算机辅助设计个性化骨缺损体修复肿瘤型骨缺损进行静力结构分析,为个性化骨缺损修复提供力学依据。
     方法:
     1.采用密度梯度离心法和贴壁细胞分离法相结合的方法,对比格犬骨髓间充质干细胞进行分离、培养、扩增、以及骨髓间充质干细胞的生物学特性的鉴定。
     2.采用成骨细胞诱导液对BMSCs进行定向诱导分化,通过对诱导后的细胞进行形态学、组织化学和免疫组化染色等鉴定。
     3.计算机辅助设计骨组织工程支架内部结构的基本结构单元;有限元法分析不同基本结构单元的的应力和整体变形情况,筛选获取合适的基本结构单元;计算机辅助设计孔径、孔隙率和连通性可控的骨组织工程支架。
     4.通过立体光固化成型制作骨组织工程支架的负型模具和外套的光敏树脂模型;在骨组织工程支架负型模具中灌注β-TCP浆体,通过原位凝固和高温烧结,形成孔径、孔隙率和连通性可控的骨组织工程支架。
     5.将诱导后的成骨细胞复合多孔β-TCP陶瓷支架构建组织工程骨支架,观察成骨细胞在多孔β-TCP陶瓷支架上的粘附和增殖情况。
     6.计算机辅助建立胫骨骨缺损的三维模型,计算机辅助设计与骨缺损外形相匹配的个性化骨修复体的三维模型;计算机辅助建立Golf钢板和髓内钉固定修复骨缺损的三维模型;采用有限元法分析不同固定方式重建骨缺损后的应力情况。
     7.计算机辅助建立胫骨近端骨肿瘤的三维模型、测量肿瘤病灶范围、设计肿瘤病灶切除截骨平面;计算机辅助设计个性化骨修复体、建立Golf钢板固定修复骨缺损的三维装配体模型。采用有限元法分析Golf钢板+个性化同种异体骨修复体修复重建膝关节周围肿瘤切除后大段骨缺损的应力、应变分布情况。
     结果:
     1.经密度梯度离心法和贴壁细胞发分离获取的骨髓间充质干细胞原代培养14天细胞达90%以上融合,细胞呈长梭形、并沿一定方向放射状排列生长,连续传代培育3代,细胞形态、增殖特性未发生改变;P2代BMSCS的G1期为74.38%、G2期为0.4%、S期为25.23%;BMSCS组织化学染色结果:糖原PAS呈阳性,油红O染色为阴性,碱性磷酸酶染色为阴性。
     2.采用含有β-甘油磷酸钠、抗坏血酸、地塞米松和10%FBS/DMEM的成骨细胞诱导液对BMSCs诱导培养14天后的细胞呈多边形或多角形;组织化学染色显示:碱性磷酸酶染色阳性、茜素红染色阳性、银染色阳性;I型胶原免疫反应阳性;证实诱导后的细胞为成骨细胞。
     3.成功实现计算机辅助设计骨组织工程支架不同的基本结构单元;有限元分析证实:开口立方体结构单元力学性能最强、立方体-圆柱结构单元次之、立方体-球体结构单元最差;在计算机辅助设计软件中,可以设计出孔径、孔隙率和连通性可控的骨组织工程支架,以及与支架阴阳互补的负型模具
     4.采用快速成型技术,可以制作出孔径、孔隙率和连通性可控的骨组织工程支架负型模具;采用原位凝固成型法结合快速原型技术可以制备孔径、孔隙率和连通性可控的β-TCP陶瓷支架。
     5.成骨细胞与多孔β-TCP陶瓷支架体外培养7天后,见成骨细胞在支架中粘附、增殖情况良好,HE染色显示:多孔β-TCP陶瓷支架的孔壁均有成骨细胞的粘附生长。
     6.计算机辅助建立Golf钢板固定和髓内钉联合个性化骨缺损修复体修复骨缺损的三维模型;建立‘'Golf钢板+个性化骨缺损修复体”、“髓内钉+个性化骨缺损修复体”的有限元模型;Golf冈板固定修复骨缺损的最大等效应力为24.37Mpa,髓内钉固定修复骨缺损的最大等效应力13.51Mpa;对于胫骨骨干处的大段骨缺损修复,髓内钉固定较钢板固定合适。
     7.借助于逆向工程软件和计算机辅助设计软件,成功设计与肿瘤切除后骨缺损病灶外形匹配的个性化骨缺损修复体;有限元分析显示:轴向加压试验中,Golf钢板固定修复胫骨近端肿瘤型骨缺损的最大等效应力为18.26Mpa;扭转试验时最大等效应力为64.466Mpa; Golf钢板+个性化骨缺损修复体修复胫骨近端肿瘤型骨缺损能够提供足够的稳定性。
     结论:
     1.骨髓间充质干细胞是骨组织工程研究理想的种子细胞。
     2.采用计算机辅助设计技术,可以设计出不同内部结构的骨组织工程支架。
     3.计算机辅助设计-快速成型制作相结合,可以制备孔径、孔隙率和连通性可控的β-TCP陶瓷支架。
     4.β-TCP具有良好的生物相容性。
     5.逆向工程-计算机辅助设计相结合,可以设计出与骨缺损病灶外形相匹配的个性化骨缺损修复体。
     6.有限元分析可以为骨缺损修复重建提供力学依据。
Objective:
     To combine with new technologies, such as tissue engineering(TE), computer aided design (CAD),rapidprototyping(RP), reverse engineering(RE), finite element analysis(FEA), to design and manufacture individual bone defect scaffold. The purpose of this research is for separating and culturing the bone marrow stromal cells from Beagle dog, and induce differentiate to into the osteoblast. Individual bone defect scaffolds are designed and manufactured by using computer aided design and rapid prototyping. To constructe the tissue engineering bone scaffold in vitro with osteoblast and individual bone defectβ-tricalcium phosphate,β-TCP) ceramic scaffold. Using the finite element method to analysy the stress value in difference ways of fixationg with individual bone defect scaffold for reconstructing bone defect, and computer-aided design individual bone defect scaffold to repair tumor bone defect,to provid mechanics parameter in bone defect reconstruction.
     Method:
     1. The Beagle dogs'bone marrow stromal cells are separated in the method of the density gradient centrifuge process and pastes wall cell separation law unifies. And The bone marrow stromal cells was cultured, amplificated, and biological characteristics of bone marrow stromal cells was also appraised.
     2. The bone marrow stromal cells are induced differentiate to into the osteoblast using ascorbic acid,β-sodium glycerophosphate, dexamethasone and 10%FBS/DMEM. The evaluation of morphology, histochemistry, immunity dyeing of the cells after inducing are carried on.
     3. The bone tissue engineering scaffolds with different basic internal architecture units are designed using computer-aided design. And the stress and total deformity in the basic architecture units are tested in the ways of finite element analysis. After that the bone tissue engineering scaffolds with precise pore size, porosity, connectivity are designed using computer aided design.
     4. The photoallergy resin of minor and exterior die of bone tissue engineering scaffolds are manufactured using stereo lithography apparatus. After that theβ-TCP ceramic slurry perfuse into the minor die of bone tissue engineering scaffolds, The bone tissue engineering scaffolds with precise pore size, porosity, connectivity,are manufactured using in-situ consolidation and high sintering.
     5. To construct bone tissue engineering scaffolds with with osteoblast and individual bone defectβ-TCP ceramic scaffold in vitro, surveyed the capability adhere and proliferation of osteoblast after cultured in 7 days.
     6. The tibial bone defet module is built by computer-aided technologies, and the module of individual bone defect scaffolds matching with the profile of bone defect are designed by computer aided design. The module of bone defect reconstruction with golf plate and intramedullary pin fixation are installed by computer aided design. The value of the stress in different fixation of bone defect reconstruction are measured by finite element analysis.
     7. The proximal tibia bone tumor module is built by computer-aided technologies,and measure the range of the tumor bouncary, design the plane of tumor resection. The computer-aided design technologies are used to design individual bone defect scaffold,build the 3D module of golf plate fix bone defect. The value of the stress and strain in proximal tibia bone tumor reconstruction with golf plate and individual bone defect scaffold are measured by finite element analysis.
     Results:
     1. The bone marrow stromal cells harvest in the method of the density gradient centrifuge process and pastes wall cell separation law unifies. The BMSCs showed long fusiform shape and spread orderly along a direction, had a 90% fusion after cultured 14 days, The form and multiplication characteristic of the BMSCs has not changed after transfer of culture 3 times. The P2 BMSCs has 74.38% in Gl stage,0.4% was in G2 stage, and 25.23% was in S stage. The characterization of BMSCs histochemistry dyeing results showed that the glucogen PAS(+),oil red "0" (-).AKP(-).
     2. The cells inducted and cultured from BMSCs in 14 days, shows polygon and turn bigger and circler with osteoblast induction nutrient solution,which contain ascorbic acid,β-sodium glycerophosphate, dexamethasone and 10% FBS, DMEM. The characterization of cells histochemistry dyeing results showed that AKP(+), alizarin Bordeaux(+), VON KOSSA(+),I style collagen immunity dyeing(+), The results prove the cells is osteoblast.
     3. We finished successful the different basic internal architecture units which designed using computer-aided design technologies. The results of the FEA showed that the value of the stress and total deformity has the lowest in open cube unit, cube-cast unit is the second, and cube-spheroplast unit is the worst. We can design the the bone tissue engineering scaffolds with precise pore size, porosity, connectivity and the minor module of the scaffold using computer aided design software.
     4. The photoallergy resin of minor die of bone tissue engineering scaffolds can be manufacture using rapid prototyping technologies. Theβ-TCP ceramic scaffold with pore size, porosity, connectivity,can be manufactured precisely using in-situ consolidation and rapid prototyping technologies.
     5. The osteoblast proliferate and adhere very well in the porosityβ-TCP ceramic scaffold after 7 days culture in vitro. The HE dyeing result showed that all of the scaffold conduit wall have osteoblast proliferation and adherent.
     6. The 3D module of bone defect reconstruction with golf plate and individual bone defect scaffold, intramedullary pin and individual bone defect scaffold were built using computer-aided design technologies. And the finite element module was also built in the FEA software. The value of stress in module of bone defect reconstruction with golf plate and individual bone defect scaffold is 24.37 Mpa, intramedullary pin and individual bone defect scaffold is 13.51Mpa. The intramedullary pin fixation is a good choice for bone defect reconstruction in shaft of tibia.
     7. With the help of computer aided design and reverse engineering software, We designed successful individual bone defect scaffold matching with the profile of bone defect. In the finite element analysis axial direction pressurize test, the maximum value of stress is 18.26Mpa. In torsion test, the maximum value of stress is 64.466Mpa. The ways of golf plate and individual bone defect scaffold to reconstruct the proximal tibia bone tumor bone defect can provide a enough mechanics stabilize.
     Conclusion:
     1. Bone marrow stromal cells is an ideal seed cell for bone tissue engineering.
     2. The bone tissue engineering scaffolds with different internal architecture are designed using computer-aided design technologies.
     3. Theβ-TCP ceramic scaffold with precise pore size, porosity, connectivity, can be manufactured using computer aided design and rapid prototyping technologies.
     4. Theβ-TCP ceramic scaffold is of well biocompatibility.
     5. Individual bone defect scaffold matching with the profile of bone defect can be designed by computer aided design and reverse engineering technologies.
     6. Finite element analysis is a good method for providing mechanics parameter in bone defect reconstruction.
引文
[1].裴国献,金丹.骨组织工程学种子细胞研究进展[J].中华创伤骨科杂
    志.2003;5(1):55-58.
    [2]. Shao X, Goh JC, Hutmacher DW, et al.Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model[J].Tissue Eng.2006 Jun;12(6):1539-51.
    [3]. Zhou G,Liu W,Cui L,et al.Repair of porcine articular osteochondral defects in non-weight bearing areas with autologous bone marrow stromal cells[J].Tissue Eng.2006;12(11):3209-21.
    [4]. Yoshioka T, Mishima H, Ohyabu Y,et al. Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor[J]. J Orthop Res.2007 Oct;25(10):1291-8.
    [5]. Bruder SP, Jais wal N. Growth kenitics, self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryop reservation[J].J Cell Bi ochem.1997;64 (2):278-294.
    [6]. Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics[J]. Bone.l999;25 (2 Supple):S5-S9.
    [7]. Breitbart AS,Grande DA,Kessler R,et al.Tissue engineered bone repair of calvarial defects using cultured periosteal cells [J].Plast Reconstr Surg.1998;101(3):567-574.
    [8]. Pittenger MF, Mackay AM, Beck SC,et al·Multilineage potential of adult human mesenchymal stem cells [J]. Science.1999;284 (2):143-147·
    [9].Conget PA,Minguell JJ-Phenotypical and functional properties of human bone marrow mesenchymal progentior cells[J]-J Cell Physiol.1999; 181(1):63-73·
    [10]. Slack JMW.Stem Cells in Epithelial Tissues.Science.2000; 287:1431-1433.
    [11]. Van der Kooy D,Weiss S.Why stem cell? Science.2000; 287:1439-1441.
    [12].解芳,滕利,蔡磊,等.犬骨髓间充质干细胞分离纯化和成骨诱导分化Ficoll液密度梯度离心法体外分离的可行性[J].中国组织工程研究与临床康复.2010;14(6):951-956.
    [13]. Song L,Tuan RS.Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow.FASEB J.2004;18(9):980-982.
    [14]. Honczarenko M,Le Y,et al.Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors [J]. Stem Cells.2006;24(4):1030-1041.
    [1].刘阳,朱立新,杨宏,等.可注射性纳米羟基磷灰石/壳聚糖复合骨髓间充质干细胞促进骨缺损的修复[J].中国组织工程研究与临床康复.2010;14(34):6278-6282.
    [2]. Zhu L,Liu W,Cui L,et al.Tissue-engineered bone repair of goat femur defects with osteogenically induced bone marrow stromal cells [J].Tissue Eng,2006,12 (3):423-433.
    [3].袁捷,祝联,王敏,等.自体骨髓充质干细胞-珊瑚羟基磷灰石修复犬下颌骨节段缺损的实验研究[J].中华口腔医学杂志,2006,41(2):92-97.
    [4]. Abdallah BM,Haack-Sorensen M,Burns JS,et al.Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite[corrected] extensive proliferation. Biochem Biophys Res Commun 2005;326:527-538.
    [5]. Beresford JN,Joyner CJ.The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro.Arch Oral Biol 1994;39:941-947.
    [6]. Morais S,Dias N,Sousa JP,Fernandes MH,Carvalho GS:In vitro osteoblastic differentiation of human bone marrow cells in the presence of metalions.J Biomed Mater Res 1999;44:176-190.
    [7]. Allampallam K,Chakraborty J,Robinson J.Effect of ascorbic acid and growth factors on collagen metabolism of flexor retinaculum cells from individuals with and without carpal tunnel syndrome.J Occup Environ Med.2000;42:251-259.
    [8]. Coelho MJ,Fernandes MH.Human bone cell cultures in biocompatibility testing.Part II: elect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation.Biomaterial.2000;21(11):1095-1102.
    [9]. Cooper MS,Hewison M,Stewart PM.Glucocorticoid activity,inactivity and the osteoblast.J Endocrinol.1999;163(2):159-164.
    [10]. Maniatopoulos C,Sodek J,Melcher AH,et al.Bone formation in vitro by stromal cells obtained from bone marrow of yong adult rats.Tissue Res.1988;254(2):317-330.
    [11]. Thomas T,Gori F,et al.Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology.1999;140(4):1630-1638.
    [12]. Chung C-H,Golub EE,Forbes E,et al.Mechanismof action of b-glycerophosphate on bone cell mineral-ization. Calcif Tissue Int.1992;51:305-311.
    [13]. MorimichiMizuno,Yoshinori.Osteoblast-related gene expression of bone marrow cell during the osteoblastic differentiation induced by type collagen[J].J Bio Chem,2001;129(1):133.
    [14]. Sammons J,Ahmed N.The role of BMP-6,IL-6,and BMP-4 in mesenchymal stem cell-dependent bone development:effects on osteoblastic differentiation in duced by parathyroid hormone and vitamin D(3). Stem Cells.2004;13(3):273.
    [15]. Kihara T, Oshima A, Hirose M,et al. Tree-dimensional visualization analysis of in vitro cultured bone fabricated by rat marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications,2004;316:943.
    [16]. Kasten P, Luginbiihl R, M.van Griensven,et al.Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite,β-tricalcium phosphate and demineralized bone matrix. Biomaterials,2003;24:2593.
    [17]. Ehara A,Ogata K,Imazato S,et al.Effects ofa-TCP and TetCP on MC3T3-E1 proliferation, differentiation and mineralization Biomaterials.2003;24:831.
    [18]. Heino TJ, Hentunen TA.Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Experimental Cell Research,2004;294:458.
    [1].曹谊林.骨组织工程在骨科的应用[J].临床外科杂志.2008;16(1):21-23.
    [2]. Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors[J]. Tissue Eng 2001;7(6):679-689.
    [3].丁焕文,王迎军.组织工程骨软骨复合组织构建研究进展[J].国外医学(骨科学分册).2005;26(1):45-47.
    [4].丁焕文,唐春雷,赵中岳,等.个性化组织工程支架CAD设计与RP制作的方法研究[J].生物骨科材料与临床研究.2005;2(1):1-4.
    [5]. Chua CK, Leong KF, Cheah CM, et al. Development of a tissue engineering scaffold structure library for rapid prototyping. Part2:Parametric library and assembly program[J].Int J A dvanced Manufacturing Techno logy,2003,21 (4):302-312.
    [6].丁焕文,唐春雷,赵中岳,等.个性化组织工程支架CAD设计与RP制作的方法研究[J].生物骨科材料与临床研究.2005;2(1):1-4.
    [7].吴懋亮,刘廷章,石钢生.仿生支架微孔结构CAD设计方法[J].机械科学与技术.2006;25(11):1285-1287.
    [8]. Wettergreen,Bucklen,Sun,et al.Computer Aided Tissue Engineering of a Human Vertebral Body[J]. Annals of Biomedical Engineering.2005;33(10):1333-1343.
    [9].Melchels,Bertoldi,Gabbrielli.Mathematically defined tissue engineering scaffold architectures prepared by stereolithography[J]. Biomaterials.2010;10:6909-6916.
    [10].李祥,李迪尘,张彦东,等.骨组织微结构观察分析及仿生支架立体光固化间接制造[J].北京生物医学工程.2006;25(2):164-167.
    [11].吴懋亮,史振升,朱东波.仿生支架力学性能测试与分析[J].中国机械工程.2006;17:21-24.
    [12]. W Sun, B Starly, J Nam,et al.Bio-CAD modeling and its applications in computer-aided tissue engineering[J]. Computer-Aided Design.2005;37:1097-1114.
    [1]. Brekke JH,Toth JM.Principles of tissue engineering applied to programmable osteogenesis[J]. J Biomed Mater Res.1998;43(7):380-398.
    [2]. Chang BS,Lee CK,Hong KS,et al.Osteocondution at porous hydroxyapatite with various pore configureations[J]. Biomaterials.2000;21:1291-1298
    [3].Hutmacher DW.Scaffolds in tissue engineering bone and cartilage. Biomaterials[J]. 2000;21:2529-2543.
    [4]. Liao CJ, Chen CF, Chen JH, et al. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method[J].J Biomed Mater Res.2002;59(4):676-681.
    [5]. Almirall A,Larrecq G,Delgado JA,et al.Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an a-TCP paste[J]. Biomaterials. 2004;25(17):3671-3680.
    [6]. Kim HD, Bae EH, Kwon IC, et al. Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation[J]. Biomaterials. 2004;25(12):2319-2329.
    [7]. Hollister SJ.Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints[J]. Biomaterials.2002;23:4095-4103.
    [8]. Hieu LG,Zlatov N,Sloten V,et al.Medical rapid prototyping applications and methods[J].Rapid Prototyping Journal.2005;25(4):284-292.
    [9].Leong KF,Cheah CM.Solid freeform fabrication of three dimensional scaffolds for engineering replacement tissues and organs[J].Biomaterials.2003;24:2363-2378.
    [10].HutmacherDW,Sittinger M,Risbud M.Scaffold-based tissue engineering:rationale for computer-aided design and solid free-form fabrication systems[J].Trends Biotechnol. 2004;22(7):354-362.
    [11]. Chu TMQHalloran JW,Hollister SJ,et al. Hydroxyapatite implants with designed internal architecture[J]. J Mater Sci:Mater Med,2001,12:471-478.
    [12]. Li X,Li DC,Lu BH,et al. Stereolithography rapid prototyping indirect fabrication approach of scaffolds with controlled microstructure[J].Chin J Mech Eng,2005,41(11): 86-90.
    [13]. LI Yubao,KLEIN C P, ZHANG Xingdong, et al. Formation of a bone apatite-like layer on the surface of porous HA ceramics[J].Biomate-rials,1994,15(10):835-841.
    [14]. LIU D M. Fabrication of hydroxyapatite with controlled porosity [J]. J Mater Sci Mater Med,1997,8(4):227-232.
    [15]. DACULSI G, PASSUTI N,MARTIN S,et al.Macroporous calcium-phosphate ceramic for long-bone surgery in humans and dogs clinical and histological study [J].J Biomed Mater Res,1990,24(3):379-396.
    [16].谢林,陈晓峰,赵娜如,等.有机泡沫浸渍法制备多孔生物玻璃支架的研究[J].无机材料学报,2009,24(2):280-284.
    [17]. DACULSI G, PASSUTI N. Effect of the macroporosity for osseous substitution of phosphate calcium ceramics [J]. Biomaterials,1990,11:86-87.
    [18]. FABBRI M,CELOTTI G C,RAVAGLIOLI A. Hydroxyapatite-based porous aggregates:physico-chemical nature,structure,texture and ar-chitecture[J].Biomaterals,1995, 16(3):225-228.
    [1].曹谊林.骨组织工程在骨科的应用[J].临床外科杂志.2008;16(1):21-23.
    [2]. Lu J, Descamp sM, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone[J]. J Biomed Mater Res,2002,63 (4):408-412.
    [3]. Liu G, Zhao L, Cui L, et al. Tissue-engineered bone formation using human bone marrow stromal cells and novel β-tricalcium phosphate [J]. BiomedMater,2007,2:78-86.
    [4].刘广鹏,赵莉,刘波,等.新型B-磷酸三钙的制备与成骨能力的实验研究[J].中华创伤骨科杂志,2006,8(8):775-759.
    [5].祝联,袁捷,王敏.多孔B-TCP用于构建长骨组织的实验研究[J].生物工程学报.2004,20(4):561-567.
    [6].袁捷,祝联,刘广鹏,等.自体骨髓间充质干细胞复合B-磷酸三钙修复犬下颌骨节段缺损[J].中华创伤杂志,2006,22(9):663-668.
    [7]. Yuan J, Cui L, ZhangW, et al.Repair of canine mandibular bone defects with bone marrow stromal cells and porus β-tricalcium phosphate [J]. Biomaterials,2007,28 (6):1005-1013.
    [8].刘广鹏,赵莉,王衡健,等.组织工程骨修复山羊胫骨节段性缺损的实验研究[J].中华创伤骨科杂志,2007,9(11):1053-1058.
    [9]. Shao X, Goh JC, Hutmacher DW, et al.Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model[J].Tissue Eng.2006 Jun;12(6):1539-51.
    [10]. Cui L,Liu B,Liu G,et al.Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model[J]. Biomaterials,2007,28 (36):5477-5486.
    [1]. Mankin HJ,Gebhardt MC,Jennings LC,et al. Long-term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res.1996;(324):86-97.
    [2]. Muscolo DL,Ayerza MA,Aponte-Tinao LA,et al. Use of distal femoral osteoarticular allografts in limb salvage surgery. J Bone Joint Surg Am.2005;87(11):2449-2455.
    [3]. Matejovsky Z Jr,Matejovsky Z,Kofranek I. Massive allografts in tumour surgery. Int Orthop.2006;30(6):478-483.
    [4]. Itiravivong P,Tejapongvorchai T,Kuptniratsaikul S. Allograft replacement in limb salvage surgery for bone tumors. J Med Assoc Thai.2001;84 Suppl 1:S396-400.
    [5]. Mankin HJ:Complications of Allograft Surgery.In FriedlaenderGE,Mankin HJ,Sell KW (eds). Osteochondral Allografts. Boston,Little Brown and Co 1983.259-274.
    [6]. MacDonald DJ,McGuire MH:Complications with Large Fragment Allografts. In Brown KL (ed).Complications of Limb Salvage:Prevention,Management and Outcome.Montreal,ISOLS 1991.25-27.
    [7]. Folleras G,Bjerkreim I:Complications in a Consecutive Series of 48 Allografts. In Brown KL (ed).Complications of Limb Salvage:Prevention,Management and Outcome.Montreal,ISOLS 1991.81-86.
    [8]. Mimics User Manual. Materialise, Leuven, Belgium,2002.
    [9]. Simpleware 4.0 User Manual.Simpleware,England,2009.
    [10]. Christian Wong,Peter Mikkelsen,Leif Berner Hansen,et al.Finite element analysis of tibial fractures. Dan Med Bull.2010;57(5):1-4.
    [11]. Ivarsson BJ, Manaswi A, Genovese D et al. Site, type, and local mechanism of tibial shaft fracture in drivers in frontal automobile crashes. Forensic Sci Int 2008;175:186-192.
    [12]. Peng L,Bai J,Zeng X et al.Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions.Med Eng Phys 2006;28:227-233.
    [13]. Shirazi-Adl A, Mesfar W. Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads [J]. Clin Biomech,2007,22(3):344-351.
    [1]. Mankin HJ,Gebhardt MC,Jennings LC,et al. Long-term results of allograft replacement in the management of bone tumors. Clin Orthop Relat Res.1996;(324):86-97.
    [2]. Unwin PS,Cannon SR, Grimer RJ,et al.Aseptic loosening in cemented custom made prosthetic replacements for bone tumours of the lower limb.J Bone Joint Surg(Br),1996,78(1):5-13.
    [3]. Mittermayer F,Krepler P,Dominkus M,et al.Long term follow up of uncemented tumor endoprostheses for the lower extremit y. Clin Orthop Rel at Res,2001,(388):167-177.
    [4].郭卫,姬涛,杨毅.肿瘤型人工关节重建下肢骨肉瘤切除后的骨缺损.中国修复重建外科杂志2006;20(10):970-974.
    [5]. Nathan FG, Alan WY. Allograft-Prosthetic Composite Reconstruction of the Proximal Part of the Tibia. An Analysis of the Early Results[J]. J Bone Joint Surg Am.2009;91:1646-1656.
    [6]. Davide Donati,Marco Colangeli,et al.Allograft-prosthetic composite in the proximal tibia after bone tumor resection[J]. Clin Orthop Relat Res,2008; 466:459-465.
    [7]. KawaiA,Muschler CF,Lane JM, et al. Prosthetic knee replacement after resection of a malignant tumor of the distal part of the femur.medium to long-term results[J].J Bone Joint Surg Am,1998,80:636~647.
    [8].俞光荣,梅炯.骨肿瘤的基础与临床研究近况[J].国外医学·骨科学分册,2003;24(3):131~133.
    [9].王彩梅,毛恩荣,周殿阁.个体化人工膝关节假体的计算机辅助设计[J].中国组织工程研究与临床康复.2008;12(44):8661-8665.
    [10].王钧,韦建和.基于电子版X光片的个性化人工假体的计算机辅助设计[J].上海生物医学工程杂志.2005;26(3):168-169.
    [11].黄雪梅,林艳萍,王成焘.基于逆向工程的个性化人工膝关节CAD建模[J].机械设计与研究.2004;20(4):81-82.
    [12].行斌斌,段宏,屠重棋.复合移植重建股骨近段大段骨缺损骨临床愈合期的三维有限元分析.生物医学工程学杂志.2009.26(5):985-988.
    [13].任翔,屠重棋.定制型膝关节假体修复股骨远端骨缺损假体柄长的有限元分析[J].中国组织工程研究与临床康复.2009;13(9):1617-1620.
    [1].叶永平,陈丹,符臣学,等.不同颈椎前路融合植骨92例并发症分析:钛网植骨与整块自体骨植骨比较[J].中国组织工程研究与临床康.2010;14(9):1617-120.
    [2]. Mankin HJ,Doppelt SH,Tomford WW. Clinical experience with allograft implantation.The first ten years[J].Clin Orthop,1983,(174):69274.
    [3]. Mankin HJ. The clinical use of frozen cadaveric allografts in the management of bone tumors:an overview in limb salvage majior reconstrctions in oncologic and nontumoral conditions[J].New York:Springer,1991.327.
    [4]. Alexander DI, Manson NA, Mitchell MJ. Efficacy of calcium sulfate plus decompression bone in lumbar and lumbosacral spinal fusion:preliminary results in 40 patients[J].Can J Surg.2001;44(4):262-266.
    [5]. Bose B. Results of a Calcium Sulfate Bone Graft Substitute Used to Promote Posterolateral Lumbar Spinal Fusion[J]. Neurosurgery Quarterly.2003;13(4):251-256.
    [6]. Chen WJ, Tsai TT, Chen LH,et al. The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion[J].Spine (Phila Pa 1976).2005;30(20):2293-2297.
    [7].张涤生.组织工程学简介[J].中华整形烧伤外科杂志,1999;14:218-224。
    [8].裴国献,金丹.骨组织工程学种子细胞研究进展[J].中华创伤骨科杂志.2003;5(1):55-58
    [9]. Shao X, Goh JC, Hutmacher DW, et al.Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model[J].Tissue Eng.2006 Jun; 12(6):1539-51.
    [10]. Zhou G,Liu W,Cui L,et al.Repair of porcine articular osteochondral defects in non-weight bearing areas with autologous bone marrow stromal cells[J].Tissue Eng.2006;12(11):3209-21.
    [11]. Yoshioka T, Mishima H, Ohyabu Y,et al. Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor[J]. J Orthop Res.2007 Oct;25(10):1291-8.
    [12].王林,王臻,李祥,等.可控性微结构磷酸钙支架作为成骨细胞载体修复兔尺骨节段性缺损[J].中华实验外科杂志.2007;24(6):89-91.
    [13].章庆国,赵士芳,陈文斌,等.脱蛋白骨-钛网支架成骨细胞复合物修复骨缺损的研究[J].生物医学工程学杂志.2005;22(2):254-257.
    [14]. Bruder SP, Jais wal N, Haynes worth SE. Gr owth kenitics, self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryop reservation[J]. J Cell Bi ochem,1997,64 (2):278-294.
    [15]. Oreffo RO, Triffitt JT. Future potentials for using osteogenic stem cells and biomaterials in orthopedics[J]. Bone,1999,25 (2 Supple):S5-S9.
    [16].刘阳,朱立新,杨宏,等.可注射性纳米羟基磷灰石/壳聚糖复合骨髓间充质干细胞促进骨缺损的修复[J].中国组织工程研究与临床康复.2010;14(34):6278-6282.
    [17].李海丰,汤亭亭,戴克戎.骨髓间充质干细胞修复兔骨缺损的实验研究[J].2004;21(4):509.
    [18]. ShangQ,Wang Z,LiuW, et al. Tissue-engineered bone repair of sheep cranial defectswith aut ologous bone marrow str omal cells[J]. J Craniofac Surg,2001,12 (6): 586-593.
    [19].祝联,崔磊,王敏,等.应用珊瑚及骨髓基质干细胞复合物修复股骨缺损的实验研究[J].中华骨科杂志,2003,23(8):483-488.
    [20]. Zhu L,Liu W,Cui L,et al.Tissue-engineered bone repair of goat femur defects with osteogenically induced bone marrow stromal cells [J].Tissue Eng,2006,12 (3):423-433.
    [21].袁捷,祝联,王敏,等.自体骨髓充质干细胞-珊瑚羟基磷灰石修复犬下颌骨节段缺损的实验研究[J].中华口腔医学杂志,2006,41(2):92-97.
    [22].袁捷,刘广鹏,柴岗,等.自体骨髓基质干细胞复合珊瑚修复犬下颌骨节段缺损的初步研究[J].中华整形外科杂志,2007,23(1):51-54.
    [23]. Zur NiedenNI, Kempka G, Ahr HJ. In vitro differentiation of embryonic stem cells into mineralized osteoblasts[J].Differentiation.2003;71 (1):18-27.
    [24]. Thomson JA, Joseph Itskovitz-Eldor, Sander S. Shapiro, et al. Embryonic Stem Cell Lines Derived from Human Blastocysts[J]. Science.1998; 282:1145-1147.
    [25]. Zuk PA, ZhuM,Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell,2002,13 (12):4279-4295.
    [26]. Zuk PA, Zuh M,Mizuno H, et al. Multilineage cells from human adipose tissue: Implicati ons for cell-based therapies [J]. Tissue Eng,2001,7 (2):211-228.
    [27]. Lee JA, Parrett BM, Conejero JA,et al. Biological alchemy:engineering bone and fat from fat-derived stem cells[J]. Ann Plast Surg.2003;50(6):610-617.
    [28]. Justesen J,Pedersen SB,et al. Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo[J]. Tissue Eng.2004; 10(3-4):381-391.
    [29]. Cui L,Liu B,Liu G, et al. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model[J]. Biomaterials,2007,28 (36):5477-5486.
    [30].曹谊林.骨组织工程在骨科的应用[J].临床外科杂志.2008;16(1):21-23.
    [31].尹庆水,张惠民,苏增贵,等.珊瑚羟基磷灰石人工骨的研制和修复骨干缺损实验研究[J].中华骨科杂志,1996;16(11):726-731.
    [32].林伟枫,侯志勇,刘玉昌,等.四肢骨折合并骨缺损急诊一期植入珊瑚羟基磷灰石治 疗27例[J].中国组织工程研究与临床康复,2008;12(6):1133-1136.
    [33].郝思春,蒋建农,周建刚,等.兔骨髓基质干细胞复合珊瑚修复兔骨缺损的实验研究[J].南京医科大学学报(自然科学版).2006,16(9):846-848.
    [34].李东,崔磊,舒朝峰,等.荧光活性染料DiI标记观察人骨髓基质干细胞与部分脱钙骨粘附的实验研究[J].中华创伤骨科杂志,2004,6(3):311-314.
    [35].李东,柳向东,肖开颜,等.接种浓度对人骨髓基质于细胞在脱钙骨上生长和分布的影响[J].上海第二医科大学学报,2004,24(4):232-234.
    [36]. Cui L,LiD,Liu X, et al. Experimental study of partially demineralized bone matrix as bone tissue engineering scaffold [J]. Key Engineering Material,2005,288-289:63-66.
    [37].王玉学,毕郑钢,孙明学,等.兔骨髓源成骨细胞与人部分脱钙骨基质构建组织工程骨修复骨缺损的实验研究[J].中国临床康复.2006;10(5):7-9.
    [38].丁焕文,涂强,王迎军.数字化骨科手术新方法的建立及其临床广泛应用[J].中国骨科临床与基础研究杂志.2010,2(2):92-97.
    [39].涂强,丁焕文,刘宝.计算机辅助设计在髋臼恶性肿瘤治疗中的应用:1例报告[J].中国组织工程研究与临床康复,2010,14(17):3104-3108.
    [40]. Katthagen BD. Experiment animal investigation of bone regeneration with collagenapatite [J]. Arch Orthop Trauma Surg,1984,103(4):193-203.
    [41].宋坤修,何爱咏,谢求恩.纳米羟基磷灰石/胶原复合材料结合血管内皮生长因子修复兔桡骨缺损[J].中国组织工程研究与临床康复.2009,13(34):6624-6628.
    [42].卫爱林,刘世清,彭昊.磷酸三钙-透明质酸-I型胶原-骨髓基质细胞复合修复骨缺损的实验研究[J].中国修复重建外科杂志.2005;19(6):468-472.
    [43].吉光荣,林欣,韩剑峰,等.转基因骨髓间充质干细胞复合纤维蛋白凝胶修复兔桡骨缺损[J].中华创伤杂志.2003;19(12):728-730.
    [44].韦正超,蔡道章,张峻峰.多孔羟基磷灰石、纤维蛋白和金葡液复合物修复骨缺损的实验研究[J].中国修复重建外科杂志.2003,17(5):363-366.
    [45].张旭元,刘兴炎,葛宝丰.异种脱蛋白松质骨复合纤维蛋白及骨形态发生蛋白修复兔桡骨缺损[J].中国组织工程研究与临床康复.2008,12(27):5214-5218.
    [46]. Liu Y, Zhu LX, Yang H, et al. Injectable nano-hydroxyapatite/chitosan combined with bone marrow stromal cells for repair of bone defects[J]. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu.2010;14(34):6278-6282.
    [47].许勇,朱立新,田京.可注射性纳米羟基磷灰石、壳聚糖复合材料修复骨缺损的实验研究[J].中国临床解剖学杂志.2009;27(6):712-715.
    [48]. Lu J, Descamp sM, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone[J]. J Biomed Mater Res,2002,63 (4):408-412. [49]. Liu G, Zhao L, Cui L, et al. Tissue-engineered bone formation using human bone marrow stromal cells and novel β-tricalcium phosphate [J]. BiomedMater,2007,2:78-86.
    [50].刘广鹏,赵莉,刘波,等.新型B-磷酸三钙的制备与成骨能力的实验研究[J].中华创伤骨科杂志,2006,8(8):775-759.
    [51].祝联,袁捷,王敏.多孔B-TCP用于构建长骨组织的实验研究[J].生物工程学报.2004,20(4):561-567.
    [52].袁捷,祝联,刘广鹏,等.自体骨髓间充质干细胞复合B-磷酸三钙修复犬下颌骨节段缺损[J].中华创伤杂志,2006,22(9):663-668.
    [53]. Yuan J, Cui L, ZhangW, et al.Repair of canine mandibular bone defects with bone marrow stromal cells and porus B-tricalcium phosphate [J]. Biomaterials,2007,28 (6):1005-1013.
    [54].刘广鹏,赵莉,王衡健,等.组织工程骨修复山羊胫骨节段性缺损的实验研究[J].中华创伤骨科杂志,2007,9(11):1053-1058.
    [55].王荣,刘华松,孙正BMSC-HA/TCP修复羟基磷灰石种植体周围骨缺损的实验研究[J].口腔研究杂志.2007;23(6):620-623.
    [56].施咏毅,王根林,杨惠林,等.多孔型丝素蛋白/羟基磷灰石复合脂肪间充质干细胞修复兔股骨骨缺损[J].中国组织工程研究与临床康复.2010;14(8):1341-1344.
    [57].兰小勇,周初松,田京,等.海藻酸钙/纳米羟基磷灰石/胶原复合材料修复兔桡骨缺损[J].中国医学科学院学报.2009,31(4):459-463.
    [58]. Bosetti,et al.The effect of bioactive glasses on bone marrow stromal cells differentiation[J]. Biomaterials,2005,26 (18):3873-3879.
    [59]. Ducheyne P,EI-Ghannam A,Shpiro I.Effect of bioactive glass template on osteoblast proliferation and in vitro synthesis of bone-like tissue[J].J Cellular Bionchemis,1994,56(2):162.
    [60]. Hench LL,Splinter RJ, Allen WC, et al.Bonding mechanism at the interface of ceramic prosthetics materials[J]. Journal of Biomedical Materials Research,1971,2(1):117-141.
    [61].刘宏伟,孙俊英,王勇.生物活性玻璃复合自体骨髓移植修复良性骨肿瘤术后骨缺损[J].中国修复重建外科杂志.2008;22(11):1349-1353.
    [62].殷浩,孙俊英,李喜功.生物活性玻璃在四肢骨不连及骨缺损中的应用[J].苏州大学学报(医学版).2007;27(4):629-630.
    [63]. Agrawal CM,Ray RB,et al. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering[J]. J Biomed Mater Res,2001,55:141-150.
    [64]. Thomson RC,Mikos AG,Beahm E,et al.Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds[J].Biomaterials,1999,20:2007-2018.
    [65]. Ren T, Ren J, Jia X,et al. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds[J]. J Biomed Mater Res A.2005;74(4):562-569.
    [66].Puelacher WC, Vacanti JP, Ferraro NF,et al. Femoral shaft reconstruction using tissue engineered growth of bone[J]. J Oral Maxillofac Surg.1996;25(3):223-228.
    [67].胡稷杰,金丹,全大萍,等.负载不同浓度骨形态发生蛋白的组织工程骨体内成骨的量效关系[J].中华骨科杂志,2006,26(3):196-201.
    [68]. Ishaug SL,Grane GM,Miller MJ,et al.Bone formation by three dimensional stromal osteoblast culture in biodegradable polymer scaffolds[J]. J Biomed Mater Res,1997,36:17-28.
    [69]. Lee SC,Shea M,Battle MA,et al. Healing of large segmental defects in rat femurs is aided by RhBMP-2 in PLGA matrix[J]. J Biomed Mater Research,1994,28:1149-1156.
    [70]. Kostopoulos L, Karring T. Guided bone regeneration in mandibular defects in rats using a boioresorbable polymer[J]. Clin oral Implants Res,1994,5 (2):66-74.
    [71].史培良,胡平,顾晓明,等.聚羟基丁酸酯与骨髓基质细胞构建组织工程骨的实验研究[J].解放军医学杂志.2001;26(4):244-246.
    [72]. Rivard CH,ChaputC,RhalmiS,etal.Bioabsorbable synthetic polyesters and tissue regeneration. A study of three dimensional proliferation of ovine chondrocytes and osteoblasts[J].Ann Chir,1996,50:651-658.
    [73].陈建洪,唐倩,吴坚,等.聚羟基丁酸-羟基戊酸共聚酯膜引导骨组织再生的初步研究[J].中华口腔医学研究杂志(电子版).2009,3(3).
    [74]. Hile DD,Kowaleski MP,,et al. An injectable porous poly(propylene glycol-co-fumaric acid) bone repair material as an adjunct for intramedullary fixation[J]. Biomed Mater Eng. 2005;15(3):219-227.
    [75].刘勇,孙宏晨,陈学思,等.丙二醇/反丁烯二酰氯缩聚物复合材料生物相容性及体内降解实验研究[J].口腔医学研究.2004;20(3):240-242.
    [76]. Peter SJ.Lu L.Kim DJ,et al.Marrow stromal osteoblast function on a poly(propylene fumarate)/β-triealcium phosphate biodegradable orthopedic composite [J]. Biomaterials,2000,21:1201-1213.
    [77]. Yaszenski MJ, Payne RG, et al.In vitro degradation of a poly(propylene fumarate)-based composite material Biomaterials,1996,17:2127-2130.
    [78].陈鹏,毛天球,刘冰,等.纳米羟基磷灰石复合胶原材料负载骨髓基质干细胞修复颅骨极限缺损的实验研究[J].临床口腔医学杂志,2005,21(12):730-732.
    [79].王大平,韩云,朱伟民.不同孔径纳米羟基磷灰石人工骨修复兔桡骨缺损效果比较[J].中国组织工程研究与临床康复.2007,11(48):9641-9645.
    [80].卢小娟,赵迎泽,文巍,等.重组腺病毒介导的骨形态发生蛋白9与骨形态发生蛋白2复合纳米羟基磷灰石/聚酰胺多孔支架修复桡骨缺损的比较[J].中国组织工程研究与临 床康复.2010,14(21):3815-3818.
    [81].胡波,杨述华,肖德明,等.血管内皮生长因子复合纳米羟基磷灰石人工骨修复兔桡骨缺损[J].中国组织工程研究与临床康复.2008,12(32):6209-6212.
    [82].彭超,杨天府.纳米羟基磷灰石/壳聚糖复合人工骨的成骨及再血管化[J].中国组织工程研究与临床康复,2007,11(40):8025-8029.
    [83].赵清桐,赖仁发,汪距,等.壳聚糖/β-磷酸三钙/重组人骨形态发生蛋白2可注射性复合体修复兔下颌骨缺损[J].中国组织工程研究与临床康复,2009,13(51):10065-10068.
    [84].郑德宇,杨依勇,赵凯,等.生物玻璃活性陶瓷复合人骨形态发生蛋白2基因修饰骨髓间充质干细胞修复颅骨缺损[J].中国组织工程研究与临床康复,2010,14(42):7807-7810.
    [85].李轶,冉炜,刘满珍,等.新型骨组织工程支架复合重组人骨形态发生蛋白-2修复兔下颌骨缺损的实验研究[J].生物医学工程学杂志.2007;27(4):826-827.
    [86].孙新君,王正国,朱佩芳,等.重组人骨形态发生蛋白2/脱细胞骨基质材料复合移植修复兔骨缺损的研究[J].中华实验外科杂志.2005;22(3):287-289.
    [87].丁焕文,何锡煌,苏增贵.牛脑垂体中碱性或纤维细胞生长因子的提纯及其体外骨形成作用的初步观察[J].骨与关节损伤杂志,1998,13(5):286.
    [88].郑军,汤伟忠,齐新生.新型双相钙磷陶瓷复合骨形态发生蛋白及碱性成纤维细胞生长因子修复兔骨缺损[J].中国组织工程研究与临床康复,2010,14(38):7791-7794.
    [89].谢求恩,何爱咏,宋坤修bFGF与VEGF复合磷酸钙骨水泥修复兔桡骨缺损的实验研究[J].中南大学学报(医学版).2010;35(6):622-628.
    [90].宋坤修,何爱咏,谢求恩.纳米羟基磷灰石/胶原复合材料结合血管内皮生长因子修复兔桡骨缺损[J].中国组织工程研究与临床康复.2009,13(34):6624-6628.
    [91].孙勇,肖建德.纳米陶瓷人工骨复合血管内皮生长因子修复完全性骨缺损[J].中国组织工程研究与临床康复.2009,13(34):6659-6662.
    [92].胡波,杨述华,肖德明,等.血管内皮生长因子复合纳米羟基磷灰石人工骨修复兔桡骨缺损[J].中国组织工程研究与临床康复,2008,12(32):6209-6212.
    [93].赵栋,刘强BMP/VEGF复合异种骨修复大段骨缺损的实验研究[J].山西医科大学学报.2004;35(6):553-555.
    [94]. Yeh LC.Osteogenic protein-1 increases gene expression of vascular endothelial growth factor in primary cultures of fetal rat calvariacells[J].Mol Cell Endocrinol.1999; 153(1-2):113-124.
    [95].孙玉鹏,胡蕴玉-,马福成,等TGF2B复合牛松质骨载体修复节段性骨缺损的实验研究[J].中华骨科杂志,1996;16(9):574-577.
    [96].刘亮,王东.大段同种异体骨移植复合BMP-2和TGF-β对兔桡骨中段骨缺损愈合的影响[J].中国矫形外科杂志.2007;15(9):702-705.
    [97].易诚青,杜靖远,郑启新,等.转化生长因子-β1转基因生物衍生型移植体修复骨缺损[J].中华实验外科杂志.2006;23(2):157-159.
    [98].卢向东,刘强.珊瑚羟基磷灰石结合重组合人胰岛素样生长因子-I修复兔骨缺损的实验研究[J].山西医科大学学报.2004;35(3):278-280.
    [99].储诚兵,陈艺新,尹培荣.胰岛素样生长因子-1(IGF-1)对成骨细胞的成骨影响[J].中国矫形外科杂志.2002;10(11):1104-1105.
    [100].陈艺新,郭涛,尹培荣,等.血小板衍生性生长因子(PDGF)与胰岛素样生长因子-I(IGF-I)对成骨细胞增殖及分化的影响[J].中华创伤骨科杂志.2003;5(4):354-356.
    [1].叶永平,陈丹,符臣学,等.不同颈椎前路融合植骨92例并发症分析:钛网植骨与整块自体骨植骨比较[J].中国组织工程研究与临床康.2010;14(9):1617-120.
    [2]. Mankin HJ,Doppelt SH,Tomford WW. Clinical experience with allograft implantation.The first ten years[J].Clin Orthop,1983,(174):69274.
    [3]. Mankin HJ. The clinical use of frozen cadaveric allografts in the management of bone tumors:an overview in limb salvage majior reconstrctions in oncologic and nontumoral conditions[J].New York:Springer,1991.327.
    [4]. Alexander DI, Manson NA, Mitchell MJ. Efficacy of calcium sulfate plus decompression bone in lumbar and lumbosacral spinal fusion:preliminary results in 40 patients[J].Can J Surg.2001;44(4):262-266.
    [5]. Bose B. Results of a Calcium Sulfate Bone Graft Substitute Used to Promote Posterolateral Lumbar Spinal Fusion[J]. Neurosurgery Quarterly.2003;13(4):251-256.
    [6]. Chen WJ, Tsai TT, Chen LH,et al. The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion[J].Spine (Phila Pa 1976).2005;30(20):2293-2297.
    [7].曹谊林.骨组织工程在骨科的应用[J].临床外科杂志.2008;16(1):21-23.
    [8]. Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors[J]. Tissue Eng 2001;7(6):679-689.
    [9].丁焕文,王迎军.组织工程骨软骨复合组织构建研究进展[J].国外医学(骨科学分册).2005;26(1):45-47.
    [10].丁焕文,唐春雷,赵中岳,等.个性化组织工程支架CAD设计与RP制作的方法研究[J].生物骨科材料与临床研究.2005;2(1):1-4.
    [11]. Sun W, Lal P.Recent development on computer aided tissue ngineering--a review[J]. Comput Methods Programs Biomed.2002;67(2):85-103.
    [12]. Sun W, Darling A, Starly B, Nam J.Computer-aided tissue engineering:overview, scope and challenges[J]. Biotechnol Appl Biochem.2004;39(Pt 1):29-47.
    [13].孙伟.计算机辅助组织工程在组织支架仿生建模和设计中的应用[J].医用生物力学.2005;20(4)247-255.
    [14].丁焕文,唐春雷,赵中岳,等.个性化组织工程支架CAD设计与RP制作的方法研究[J].生物骨科材料与临床研究.2005;2(1):1-4.
    [15].柴岗,张艳,胡晓洁.等.基于点云数据建立颅骨缺损数字模型[J].组织工程与重建外科杂志.2005;1(3):151-153.
    [16]. CHI-MUN CHEAH, CHEE-KAI CHUA,KAH-FAI LEONG,et al. Automatic Algorithm for Generating Complex Polyhedral Scaffold Structures for Tissue Engineering[J]. TISSUE ENGINEERING.2004; 10:596-609.
    [17]. Ding Huanwen,Zhao Zhongyue,Tang Chunlei, et al.Fabrication of Customized Anatomical Shaped Bone Tissue Engineering Scaffolds by Using Reverse Engineering and Rapid Prototyping Technology[J]. Chinese Journal of Clinical Oncology and Rehabilitation. 2006; 10(5):178-181.
    [18]. Hung CT, Lima EG, Mauck RL, et al. Anatomically shaped osteochondral constructs for art icular cartilage repair[J]. J Biomech.,2003,36 (12):1853-1864.
    [19]. Chua CK, Leong KF, Cheah CM, et al. Development of a tissue engineering scaffold structure library for rapid prototyping. Part2:Parametric library and assembly program[J].Int J A dvanced Manufacturing Techno logy,2003,21 (4):302-312.
    [20].丁焕文,唐春雷,赵中岳,等.个性化组织工程支架CAD设计与RP制作的方法研究[J].生物骨科材料与临床研究.2005;2(1):1-4.
    [21].吴懋亮,刘廷章,石钢生.仿生支架微孔结构CAD设计方法[J].机械科学与技术.2006;25(11):1285-1287.
    [22]. Wettergreen,Bucklen,Sun,et al.Computer Aided Tissue Engineering of a Human Vertebral Body[J].Annals of Biomedical Engineering.2005;33(10):1333-1343.
    [23].Melchels,Bertoldi,Gabbrielli.Mathematically defined tissue engineering scaffold architectures prepared by stereolithography[J]. Biomaterials.2010;10:6909-6916.
    [24].李祥,李迪尘,张彦东,等.骨组织微结构观察分析及仿生支架立体光固化间接制造[J].北京生物医学工程.2006;25(2):164-167.
    [25]. Hutmacher DW, Schantz T, Zein I,et al. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling[J].J Biomed Mater Res.2001;55(2):203-216.
    [26]. Schantz JT, Brandwood A, Hutmacher DW,et al.Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med.2005; 16(9):807-819.
    [27]. KalitaSJ,Bose Susmita,Hosick HL,et al.Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling[J].Materials and Engineering C.2003;23:611-620.
    [28]. Cao T, Ho KH, Teoh SH.Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling[J].Tissue Eng.2003;9(Suppl 1):103-112.
    [29]. Wiria FE,Leong KF,Chua CK,et al.Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering[J]. Acta Biomater.2007;3(1):1-12.
    [30]. Williams JM, Adewunmi A, Schek RM, et al.Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering[J]. Biomaterials,2005;26(12):4817-4827.
    [31]. Seitz H, Rieder W, Irsen S, et al. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering[J]. J Biomed Mater Res Part B:Appl Biomater, 2005,74:782-788.
    [32]. Charriere,et al.Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties [J]. Biomaterials.2003;24:809-817.
    [33]. Khalyfa A,Vogt S,Weisser J,et al.Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants[J].J Mater Sci Mater Med.2007;18(5):909-916.
    [34]. Chu TMG,Halloran JW,Hollister SJ,et al. Hydroxyapatite implants with designed internal architecture[J]. J Mater Sci:Mater Med,2001,12:471-478.
    [35]. Chu TMG,Orton DG,Hollister SJ,et al.Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures [J]. Biomaterials,2002,23: 1283-1293.
    [36]. Li X, Li DC, Lu BH, et al. Stereolithography rapid prototyping indirect fabrication approach of scaffolds with controlled microstructure[J]. Chin J Mech Eng,2005,41(11): 86-90.
    [37]. Li X, Li DC, Lu BC, et al. Fabrication and evaluation of calcium phosphate cement scaffold with controlled internal channel architecture and complex shape[J].Proc IMechE Part H:J Engineering in Medicine,2007,221(8):951-958.
    [38].吴懋亮,史振升,朱东波.仿生支架力学性能测试与分析[J].中国机械工程.2006;17:21-24.
    [39]. W Sun, B Starly, J Nam,et al.Bio-CAD modeling and its applications in computer-aided tissue engineering[J]. Computer-Aided Design.2005;37:1097-1114.
    [40].丁焕文,王迎军,尹庆水.计算机辅助组织工程学研究的最新进展[J].中国修复重建外科杂志.2006;20(5):574-577.
    [41].王彩梅,毛恩荣,周殿阁.个体化人工膝关节假体的计算机辅助设计[J].中国组织工程研究与临床康复.2008;12(44):8661-8665.
    [42].王钧,韦建和.基于电子版X光片的个性化人工假体的计算机辅助设计[J].上海生物医学工程杂志.2005;26(3):168-169.
    [43].黄雪梅,林艳萍,王成焘.基于逆向工程的个性化人工膝关节CAD建模[J].机械设计与研究.2004;20(4):81-82.
    [44].朱云仙,何亚飞,王成焘.个性化人工髋关节的设计与制造[J].机械制造.2003;41(8):29-31.
    [45].郑小飞,黄华扬,万磊.计算机辅助下Chiari骨盆截骨和股骨短缩旋转截骨治疗儿童髋臼发育不良并髋关节脱位的初步应用[J].中国骨与关节损伤杂志.2010;25(10):885-888.
    [46].李景欣,瞿东滨,王博亮,等.计算机辅助设计在强直性脊柱炎后凸畸形矫形手术中的应用[J].中国临床解剖学杂志.2008;26(6):619-623.
    [47].章莹,夏远军,万磊,等.计算机三维仿真技术在复杂足踝部骨折手术中的应用[J].中国骨科临床与基础研究杂志.2010;2(2):98-101.
    [48].陆声,徐永清,张元智,等.数字化导航模板在上颈椎椎弓根定位中的初步临床应用[J].中华外科杂志.2009;47(5):251-254.
    [49]. 陈玉兵,陆声,徐永清等.个体化导航模板辅助腰椎椎弓根螺钉置钉准确性实验研究[J].中国脊柱脊髓杂志.2009;19(8):623-626.
    [50].丁焕文,涂强,王迎军,等.数字化骨科手术新方法的建立及其临床广泛应用.中国骨科临床与基础研究杂志.2010;2(2):92-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700