心肌纤维与Ⅰ型胶原纤维的超微结构及生物力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌节周期性的收缩力可经由近邻的胞外基质和心肌纤维传导至整个心脏组织,从而迫使心脏壁收缩并将血液压出心室,是心脏搏动的原动力。肌纤维和胶原纤维超微结构及生物力学特性的病理性变化往往会影响纤维对外界刺激信号的应答,从而影响心脏搏动的规律性,造成心脏功能紊乱。而胶原蛋白纤维是肌内膜的主要成分,要深入研究心肌纤维的功能,还必须研究心肌外层的胶原纤维膜的超分子结构与力学特性,这些信息将有助于人们更好地了解胶原蛋白结构影响肌细胞-肌细胞、肌细胞-基质通讯的途径,以及胶原蛋白在心肌组织生长、发育、病变和修复/再生过程中所起的作用,为临床治疗提供科学依据。
     本研究以肌纤维和胶原纤维为主要研究对象,采用原子力显微镜高分辨成像和纳米压痕技术,研究了牛心心肌纤维、昆虫飞行肌纤维、鼠尾肌腱胶原蛋白纤维在不同生理状态的表面超微结构、压弹性和粘弹性,尝试找到肌纤维收缩过程中肌节长度、纤维直径等参数之间的关系;找到抗I型胶原蛋白抗体在胶原蛋白纤维上的结合位点并得到二者之间的特异性作用力;从而建立心肌纤维和胶原蛋白纤维的超微结构、力学特性和生理状态之间的内在联系。通过研究,获得了以下主要进展:
     (1)不同生理状态下,牛心肌纤维的肌节长度大致在1.22μm~1.33μm,其中松弛状态的肌节长度相对于僵直态有大约9%的增长,该结果提示,肌动蛋白和肌球蛋白会随着生理条件的变化而不断交替形成横桥,从而形成力学传导以应对外界环境的变化和信号刺激;与位置相关的压弹性曲线与AFM高度图的剖面曲线在外形上具有很高的相似性,相邻最大弹性系数点之间的距离与剖面分析得到的肌节长度非常接近,该结果显示了肌节的空间周期性和力学周期性的统一;源于AFM研究的肌纤维结构和弹性参数将会推动人们对生物结构、生物力学和生理功能之间关系的认识,为心脏疾病的基础研究和临床治疗提供更多的线索。
     (2)飞行肌肌原纤维在僵直态、松弛态和三种活化态的肌节长度分别为:2.10±0.05μm(僵直态)、3.10±0.10μm(松弛态)、2.50±0.15μm(活化态, 2mM Ca2+)、2.60±0.25μm(活化态, 5mM Ca2+)和2.55±0.15μm(活化态, 10mM Ca2+),并得到得到5mM Ca2+浓度为合适的肌纤维活化浓度;另外,不论飞行肌纤维处于什么生理状态,A带的长度始终保持在1.50μm左右,而I带的长度则有较大的变化(0.7μm~1.6μm),该现象符合肌动蛋白纤维与肌球蛋白纤维在重叠区相对滑移的力学和空间结构模型。
     AFM高度图剖面分析的结果显示,不同生理状态下,肌原纤维内部肌动蛋白粗纤维之间的最小距离分别为53nm(松弛态)、58.5nm(僵直态)、56.7nm(活化态, 2mMCa2+)、54.8nm(活化态, 5mM Ca2+)和55.6nm(活化态, 10mM Ca2+),进而结合同根纤维的肌节长度变化建立了肌纤维的钙离子诱导等体积伸缩模型;根据沿肌球蛋白纤维纵向的剖面曲线分析图,找到了横桥在肌球蛋白纤维表面的位置及其周期性间距为37.5±0.5nm;另外,在同一生理状态下,肌原纤维的弹性系数和杨氏模量的大小关系满足:Z线>M线>重叠区>I带;同一肌节位置在不同活化态下的弹性系数和杨氏模量的大小关系基本满足:活化态(5mM Ca2+)>活化态(2mM Ca2+)>活化态(10mM Ca2+)。
     (3)固定在云母片上的胶原纤维在空气中自然干燥时,胶原纤维的D单元长度在干燥的过程中并无显著变化,基本稳定在66.67nm;而间隙带的深度则有一定的增加,从4.4nm逐渐增加到4.7nm,增幅达7%;变化最为明显的则是纤维的直径,从201nm降到了187nm,减幅达到7%,尽管如此,由于D单元长度并无变化,因而该方法(样品制备和空气中成像)依然适于研究胶原纤维的纵向精细结构。
     文中采用抗I型胶原蛋白抗体偶联金纳米颗粒对胶原蛋白纤维成功实现了定位标记,AFM研究发现,抗体作用时间不同的纤维样品表面上的金纳米颗粒分布密度有较大差别。抗体作用时间越长,金颗粒的密度越大;其中,抗体作用时间等于2h的金纳米颗粒密度与厂家提供的标准结合密度很接近,但从实际的AFM图像质量可知,抗体作用时间为1h的金颗粒密度更适合做抗体结合位置的统计分析。以抗体作用时间为1h的样品作为研究对像的实验结果显示,与抗体结合的金颗粒主要分布在胶原纤维的重叠区,显示出抗I型胶原蛋白抗体对胶原纤维重叠区的结合特异性。
     (4)用未加修饰的探针对抗体结合时间不同的胶原纤维样品进行了成像,分别得到了高分辨的高度图和低分辨的摩擦图,二者分别从结构细节和总体力学特性上反映出抗体在胶原纤维上的结合位点主要集中在重叠区。而未加修饰探针的单点力学测量结果显示,胶原纤维表面结合的抗体对肌原纤维压弹性的测量几乎没有影响;但对于粘附力的收集结果却有显著的影响,特别是在重叠区,随着抗体结合时间的增加,探针与胶原纤维间的粘附力相对于探针与天然纤维样品之间的粘附力分别增加了17.8%、48.9%和82.2%,而间隙带的粘附力则保持相对稳定,说明抗体主要分布在重叠区,与前述高度图和摩擦图的结果保持一致。最后,本论文重点研究了抗体与胶原蛋白的结合力。主要用抗I型胶原蛋白抗体对探针进行了修饰,并用修饰过的探针进行探针-天然胶原纤维间的粘附力(结合力)测量,统计结果显示,单个抗I型胶原蛋白抗体与胶原纤维重叠区的结合力约等于250pN。
Cardiac muscle fibers consist of bundles of myofibrils in which runs a series of sarcomeres where the contractile forces are produced by cyclic interactions between actin (thin filament) and myosin (thick filament) in overlap, and then transmitted to extracellular matrix and adjacent fibers and to the heart wall to squeeze out the blood filled in the heart cavity through a series of sarcomeres. Since the elastic properties influence the response of fibers to applied forces and may cause cardiac dysfunction, it is of importance to study the elastic behavior of fibers in response to forces in both directions. As the main component of endomysium, collagen fiber should be studied to make sure the function of cardiac muscle. The ultrastructural and biomechnical studies on collagen fiber would help us to understand how collagen affect on the conmunication pathway between cardiac muscle cells and extracellular matrix, and how collagen play a key role on tissue growth, development, disease, repaire and regeneration. Both of them will provide a scientific basis for clinical treatment.
     In this study, surface ultrastructure and biomechanics of bovine cardiac muscle fibers, insect flight muscle and rat tail tendon collagen I fibers in different physiological conditions were examined with high resolution atomic force microscopy and nanoindentation in order to find the relation among fiber ultrastructure, biomechanics and physiological function. Through the studies above, several important results were achieved as follows:
     (1) Sarcomere length of 1.22±0.02μm (n=5) in rigor with a significant 9% increase in sarcomere length in relaxing state (1.33±0.03μm, n=5), indicating that overlap move with the changing physiological conditions. Compression elasticity curves along with sarcomere locations have been taken by AFM compression processing. Coefficient of Z-line, I-band, Overlap, and M-line are 25±2pN/nm, 8±1pN/nm, 10±1pN/nm, and 17±1.5pN/nm respectively in rigor state, and 18±2.5pN/nm, 4±0.5pN/nm, 6±1pN/nm, and 11±0.5pN/nm respectively in relaxing state. Young’s Modulus in Z-line, I-band, Overlap, and M-line are 115±12kPa, 48±9kPa, 52±8kPa, and 90±12kPa respectively in rigor, and 98±10kPa, 23±4kPa, 42±4kPa, and 65±7kPa respectively in relaxing state. The elasticity curves has shown a similar appearance to the section analysis profile of AFM height images of sarcomere and the distance between adjacent largest coefficient and Young’s Modulus is equal to the sarcomere length measured from the AFM height images using section analysis, indicating that mechanic properties of fibers have a similar periodicity to the topography of fibers.
     (2) Sarcomere length of insect flight muscle fiber in rigor, relaxed and 3 activated states were 2.10±0.05μm(rigor), 3.10±0.10μm(relaxed), 2.50±0.15μm(activated, 2mM Ca2+), 2.60±0.25μm(activated, 5mM Ca2+) and 2.55±0.15μm(activated, 10mM Ca2+) respectively. A-band kept 1.50μm in length whatever the physiological state the flight muscle fibers be at when A-band had changed from 0.7μm to 1.6μm,which was consistent with the slip model of the mechanical and space structure of actin and myosin filaments (i.e. thin and thick filaments) in overlap zone. The spacing between the adjacent thick filaments were 53nm(relaxed)、58.5nm(rigor)、56.7nm(activated, 2mM Ca2+)、54.8nm(activated, 5mM Ca2+) and 55.6nm(activated, 10mM Ca2+), then a equal volume contractile model was introduced according to the change of sarcomere length. And the distance of 37.5±0.5nm between adjacent crossbridges on myosin filament was achieved. And the Young’s Modulus of the same muscle fiber in the same physiological state in different sarcomere locations were in the order of Z-line>M-line>overlap>I-band;the value in the same loaction were in the order of activated(5mM Ca2+)>activated(2mM Ca2+)> activated (10mM Ca2+)。
     (3) D-spacing length of air-dried collagen fiber kept around 66.67nm in different drying time, when the gap depth increased from 4.4nm to 4.7nm (~7%) and the diameter decreased from 201nm to 187nm (~7%). 1h antibody binded collagen fibers were chosed to analysis the binding position of antibody according to the image quality, and the overlap was determined to be the binding location of anti-collagen I antibody on collagen I fiber through the amplifier(gold nanoparticles) and high resolution atomic force microscopy.
     (4) Friction and hieght images of labeled samples using unfunctionized tips showed us the overlaps were the binding location of antibody on collagen fibers. And the adhesive force on overlap increased by 17.8%、48.9% and 82.2% in 20min, 1h and 2h labeling time respectively,which demonstrated that the antibody were fixed to overlap zone. And single interaction between antibody and collagen fiber was ~ 250pN acording to the results from the force-distance curves recorded with the tip functionized by anti-collagen I antibody.
引文
Addae-Mensah KA, Wikswo JP. 2008. Measurement techniques for cellular biomechanics in vitro. Exp. Biol. Med. 233: 792~809
    Akiyama N, Ohnuki Y, Kunioka Y, Saeki Y, Yamada T, 2006. Transverse stiffness of myofibrils of skeletal and cardiac muscles studied by atomic force microscopy. J. Physiol. Sci. 56: 145–151
    AL-Khayat HA, Hudson L, Reedy MK, Irving TC, Squire JM. 2003. Myosin head configuration in relaxed insect flight muscle: X-ray modeled resting crossbridges in a pre-power stroke state are poised for actin binding. Biophys. J., 85: 1063–1079
    Antipova O, Orgel JPRO. 2010. In situ D-periodic molecular structure of type II collagen. J Biol. Chem. 285: 7087~7096
    Arai T, Tomitori M. 1998. Removal of contamination and oxide layers from UHV~AFM tips. Appl. Phys. A 66: S319–S323
    Arkawa H, Umemura K, Ikai A. 1992. Protein images obtained by STM, AFM and TEM. Nature, 358:171~173
    Au-yeung KL, Sze KY, Sham MH, Chan BP. 2010. Development of a Micromanipulator-Based Loading Device for Mechanoregulation Study of Human Mesenchymal Stem Cells in Three-Dimensional Collagen Constructs. Tissue Eng. C-Methods, 16: 93-107
    Avci R, Schweitzer M, Boyd RD, Wittmeyer J, Steele A, Toporski J, Beech I, Arce FT, Spangler B, ?Cole KM, McKay DS. 2004. Comparison of Antibody-Antigen Interactions on Collagen Measured by Conventional Immunological Techniques and Atomic Force Microscopy. Langmuir, 20: 11053~11063
    Axelrod D. 1983. Lateral motion of membrane proteins and biological function. J Membr. Biol., 75: 1~10
    Baaijens F, Bouten C, Driessen N. 2010. Modeling collagen remodeling. J Biomech. 43: 166-175 Bacabac RG, Mizuno D, Schmidt CF, Mackintosh FC, Van Loon JJWA, Klein-Nulend J, Smit TH. 2008. Round versus flat: Bone cell morphology, elasticity, and mechanosensing. J. Biomech., 41: 1590~1598
    Bevilacqua MP, Stengelin S, Gimbrone MA, Seed B. 1989. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science, 243: 1160~1165
    Bevilacqua MP. 1993. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol, 11: 767~804 Binnig G, Quate CF, Gerber C. 1986. Atomic Force Microscope. Phys. Rev. Lett. 56: 930~933.
    Boland T, Ratner BD. 1995. Direct measurement of hydrogen binding in DNA nucleotide base by Atomic Force Microscope. Proc. Natl. Acad. Sci. U.S.A., 12: 5297~5299.
    Brady AJ. 1991. Length dependence of passive stiffness in single cardiac myocytes. Am. J. Physiol. Heart. Circ. Physiol. 260: 1062~1071.
    Brandao MM, Fontes A, Barjas-Castro ML, Barbosa LC, Costa FF, Cesar CL, Saad STO. 2003. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. Eur. J Hematology, 70: 207~211
    Burkholder TJ, Lieber RL. 2001. Sarcomere length operating range of vertebrate muscles during movement. J. Exp. Biol. 204: 1529~1536.
    Cai XF, Gao SJ, Cai JY, Wu YZ, Deng H. 2009. Artesunate induced morphological and mechanical changes of Jurkat cell studied by AFM. Scanning 31, 83~89
    Carrion V M. 2000. Mechanical design of proteins studied by single mole force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol., 74: 63~91
    Chan WP, Dickinson MH. 1996. In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. J. Exp. Biol. 199: 2767~2774.
    Chaudhry B, Ashton H, Muhamed A, Yost M, Bull S, Frankel D. 2009. Nanoscale viscoelastic properties of an aligned collagen scaffold. J Mater. Sci.: Mater. Med. 20: 257~263.
    Choi JB, Youn I, Cao L, Leddy HA, Gilchrist CL, Setton LA, Guilak F. 2007. Zonal changes in the three~dimensional morphology of the chondron under compression: The relationship among cellular, pericellular, and extracellular deformation in articular cartilage. J Biomech. 40: 2596~2603
    Chung SW, Presley AD, Elhadj S, Hok S, Hah SS, Chernov AA, Francis MB, Eaton BE, Feldheim DL, Deyoreo JJ. 2008. Scanning probe~based fabrication of 3D nanostructures via affinity templates, functional RNA, and meniscus~mediated surface remodeling. Scanning 30: 159~171
    Coles JM, Blum JJ, Jay GD, Darling EM, Guilak F, Zauscher S. 2008. In situ friction measurement on murine cartilage by atomic force microscopy. J Biomech. 41: 541~548
    Craig JA, Rexeisen EL, Mardilovich A, Shroff K, Kokkoli E. 2008. Effect of linker and spacer on the design of a fibronectin-mimetic peptide evaluated via cell studies and AFM adhesion forces. Langmuir, 24: 10282-10292
    Dammer U, Popescu O, Wagner P, Anselmetti D, Guntherodt HJ, Misevic GN. 1995. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science, 267:1173~1175
    Davis JJ, Allen H, Hill O, Powell T. 2001. High resolution scanning force microscopy of cardiac myocytes. Cell Biol. Int., 25: 1271–1277.
    Defranchi E, Bonaccurso E, Tedesco M, Canto M, Pavan E, Raiteri R, Reggiani C. 2005. Imaging and elasticity measurements of the sarcolemma of fully differentiated skeletal muscle fibres. Microsc. Res. Tech., 67: 27–35.
    Dial KP, Biewener AA. 1993. Pectoralis muscle force and power output during different modes of flight in pigeons (Columba livia). J. Exp. Biol. 176: 31~54.
    Dickinson MH, Hyatt CJ, Lehmann FO, Moore JR, Reedy MC, Simcox A, Tohtong R, Vigoreaux JO, Yamashita H, Maughan DW. 1997. Phosphorylation~dependent power output of transgenic flies: an integrated study. Biophys. J., 73: 3122–3134
    Dow JW, Harding NG, Powell T. 1981. Isolated cardiac muscle fibers~I Preparation of adult cardiac muscle fibers and their homology with intact tissue. Cardiovasc Res., 15: 483–514.
    Drakova D, Doyen G. 2004. Theory of long~range forces in AFM and current versus distance curves in STM on Au(111). Surf. Sci., 566~568(Part 1): 45~51
    Dudley R. 2002. The Biomechanics of Insect Flight. Princeton: Princeton University Press. Dupres V, Alsteens D, Andre G, Verbelen C, Dufrene YF. 2009. Fishing single molecules on live cells. Nano Today, 4: 262~268
    Edman KA, Nilsson E. 1971. Time course of the active state in relation to muscle length and movement: a comparative study on skeletal muscle and myocardium. Cardiovasc. Res. 1 (Suppl. 1): 3~10.
    Elliott JT, Woodward JT, Umarji A, Mei Y, Tona A. 2007. The effect of surface chemistry on theformation of thin films of native fibrillar collagen. Biomaterials, 28: 576~585
    Engel A, Lyubchenko Y, Müller D. 1999. Atomic Force Microscope: A powerful tool observes biomolecules at work. Trends Cell Biol., 9: 77~80
    Engler AJ, Carag~Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE. 2008. Embryonic cardiomyocytes beat best on a matrix with heart~like elasticity: scar~like rigidity inhibits beating. J Cell Sci. 121: 3794~3802
    Exposito JY, Valcourt U, Cluzel C, Lethias C. 2010. The Fibrillar Collagen Family. Int J Mol. Sci. 11: 407~426
    Farman GP, Allen EJ, Gore D, Irving TC, De Tombe PP. 2007. Interfilament spacing is preserved during sarcomere length isometric contractions in rat cardiac trabeculae. Biophys. J. 92: L73~L75.
    Farman GP, Walker JS, De Tombe PP, Irving TC. 2006. Impact of osmotic compression on sarcomere structure and myofilament calcium sensitivity of isolated rat myocardium. Am. J. Physiol. Heart Circ. Physiol. 291: 1847~1855.
    Farman GP. 2004. Structural basis of calcium sensitivity in striated muscle. [PhD thesis]. Chicago:Illinois Institute of Technology.
    Feng SC, Vorburger TV, Joung CB, Dixson RG, Fu J, Ma L. 2008. Computational models of a nano probe tip for static behaviors. Scanning 30: 47~55
    Fisher TE. 2000. Stretching single molecule into novel conformations using atomic force microscopy. Nat. Struc. Biol., 7: 719~723
    Francis LW, Lewis PD, Wright CJ, Conlan RS. 2010. Atomic force microscopy comes of age. Biol. Cell, 102:133~143
    Franz CM, Puech PH. 2008. Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics. Cell. Mol. Bioeng. 1: 289-300
    Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM. 1994. Functional group imaging by chemical force microscopy. Science, 265: 2071~2072.
    Fukuda N, Wu YM, Farman G., Irving TC, Granzier H. 2003. Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle. J. Physiol.-London. 553: 147~154.
    Fung CKM, Seiffert-Sinha K, Lai KWC, Yang RG, Panyard D, Zhang JB, Xi N, Sinha AA. 2010. Investigation of human keratinocyte cell adhesion using atomic force microscopy. Nanomedicine, 6: 191-200
    Fung YC. 1993. Biomechanics~mechanical properties of living tissue. 2nd Edition., New York: Springer Press:1~250
    Gaczynska M, Osmulski PA. 2008. AFM of biological complexes: What can we learn? Curr. Opin. Colloid & Interf. Sci., 13: 351~367
    Gan Y. 2009. Atomic and subnanometer resolution in ambient conditions by atomic force microscopy. Surf. Sci. Rep. 64: 99~121
    Garcia TI, Oberhauser AF, Braun W. 2009. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains. Protein: Struc. Func. Bioinf. 75: 706~718
    Gavara N, Roca-Cusachs P, Sunyer R, Farre R, Navajas D. 2008. Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys. J., 95: 464~471
    Giberson RT, Demaree RS. 1994. The influence of immunogold particle size on labeling density. Microsc. Res. Tech., 27: 355~357
    Gilmour KM, Ellington CP. 1993. In vivo muscle length changes in bumblebees and the in vitro effects on work and power. J. Exp. Biol. 183: 101~113.
    Gordon AM, Homsher EM, Regnier M. 2000. Regulation of contraction in striated muscle. Physiol. Rev. 80: 853~924.
    Gordon AM, Huxley AF, Julian FJ. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J. Physiol. 184: 170~192.
    Grant CA, Brockwell DJ, Radford SE, Thomson NH. 2008. Effects of hydration on the mechanical response of individual collagen fibrils. Appl. Phys. Lett., 92: 233902~3
    Guo HL, Cao QH, Ren DT, Liu GQ, Duan JF, Li ZL, Zhang DZ, Han XH. 2003. Measurements of leucocyte membrane elasticity based on the optical tweezers. Chin. Sci. Bull. 48: 503~508
    Haaheim J, Nafday OA. 2008. Dip pen Nanolithography (R): A "Desktop Nanofab (TM)" approach using high-throughput flexible nanopatterning. Scanning, 30: 137~150
    Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V. 1994. Tapping model atomic force microscope in liquids [J]. Appl. Phys. Lett., 13:1738~1740
    Hardmeier R, Redl H, Marlovits S. 2010. Effects of mechanical loading on collagen propeptides processing in cartilage repair. J. Tissue Eng. Regener. Med. 4: 1-11
    Harris JR, Reiber A. 2007. Influence of saline and pH on collagen type I fibrillogenesis in vitro, Fibril polymorphism and colloidal gold labelling. Micron, 38:513–521
    Heim AJ, Matthews WG. 2006. Determination of the elastic modulus of native collagen fibrils via radial indentation. Appl. Phys. Lett. 89: 181902~4
    Heinrich B, Bartholomew GA. 1971. An analysis of pre-flight warm-up in the sphinx moth Manduca sexta. J. Exp. Biol. 55: 223~239.
    Heinz WF, Hoh JH. 1999. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol., 17:143~50.
    Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U. 2007. Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol., 8: 562~573
    Hertz H. 1881. Uber den Kontakt elastischer Korper. J. Reine. Angew. Math. 92: 156–171.
    Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. 1996. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 93:3477~3481.
    Hinterdorfer P, Gruber HJ, Kienberger F, Kada G, Riener C, Borken C, Schindler H. 2002. Surface attachment of ligands and receptors for molecular recognition force microscopy. Colloids Surf. B, 23: 115~123.
    Hsiao SC, Crow AK, Lam WA, Bertozzi CR, Fletcher DA, Francis MB. 2008. DNA-Coated AFM Cantilevers for the Investigation of Cell Adhesion and the Patterning of Live Cells. Angewandte Chemie-International Edition, 47: 8473-8477
    Humphris ADL, Antognozzi M, McMaster TJ, Miles MJ. 2002. Transverse dynamic force spectroscopy: a novel approach to determining the complex stiffness of a single molecule. Langmuir, 18: 1729~1733.
    Hutter JL, Bechhorfer J. 1993. Calibration of atomic force microscope tips. Rev Sci Instrum, 64: 1868~1871
    Huxley HE. 1969. The mechanism of muscular contraction. Science, 164: 1356–1366. Huxley HE. 2004. Fifty years of muscle and the sliding filament hypothesis. Eur. J Biochem., 271: 1043~1415
    Irving M, Lombardi V, Piazzesi G, Ferenczi MA. 1992. Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature, 357: 156~158.
    Irving TC, 1998. Bright prospects for biological non-crystalline diffraction. Nat. Struct. Biol. 5: 648~650.
    Irving TC, Konhilas JP, Perry D, Fischetti R, De Tombe PP. 2000. Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium. Am. J. Physiol. Heart Circ. Physiol. 279: 2568~2573.
    Ishijima A, Doi T, Sakurada K, Yanagida T. 1991. Sub-piconewton force fluctuations of actomyosin in vitro Nature 352: 301~306
    Janmey PA, McCulloch CA. 2007. Cell mechanics: Integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9: 1~34
    Jones R, Pollock H, Geldart D. 2004. Frictional forces between cohesive powder particles studied by AFM. Ultramicroscopy, 100: 59~78
    Josephson RK, Ellington CP. 1997. Power output from a flight muscle of the bumblebee Bombus terrestris I. Some features of the dorsoventral flight muscle. J. Exp. Biol. 200: 1215~1226.
    Josephson RK, Malamud JG, Stokes DR. 2000. Asynchronous muscle: a primer. J. Exp. Biol. 203: 2713~2722.
    Josephson RK, Stokes DR. 1987. The contractile properties of a crab respiratory muscle. J. Exp. Biol. 131: 265~287.
    Kim H, Arakawa H, Osada T, Ikai A. 2003. Quantification of cell adhesion force with AFM: distribution of vitronectin receptors on a living MC3T3~E1 cell. Ultramicroscopy, 97: 359~363
    Knoll A, Magerle R, Krausch G. 2001. Tapping mode atomic force microscopy on polymers: Where is the true sample surface? Macromolecules 34: 4159~4165
    Konhilas JP, Irving TC, De Tombe PP. 2002. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: Role of interfilament spacing. Circulation Res. 90: 59~65.
    Kowalewski T, Legleiter J. 2006. Imaging stability and average probe-sample force in tapping mode atomic force microscopy. J. Appl. Phys. 99: 064903~6
    Kreplak L, Nyland LR, Contompasis JL, Vigoreaux JO. 2009. Nanomechanics of Native Thick Filaments from Indirect Flight Muscles. J. Mol. Biol. 386: 1403~1410
    Kufer SK, Puchner EM, Gumpp H, Liedl T, Gaub HE. 2008. Single-molecule cut-and-paste surface assembly. Science, 319: 594~596
    Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. 2007. Atomic force microscopy probing of cell elasticity. Micron 38: 824~833
    Layland J, Young IA, Altringham JD. 1995. The length dependence of work production in rat papillary muscles in vitro. J. Exp. Biol. 198: 2491~2499.
    Leake MC, Wilson D, Bullard B, Simmons RM. 2003. The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Lett. 535: 55~60
    Leake MC, Wilson D, Bullard B, Simmons RM. 2004. The elasticity of single titin molecules using a two-bead optical tweezers assay. Biophys. J. 87: 1112~1135
    Lee G, Abdi K, Jiang Y, Michaely P, Bennett V, Marszalek PE. 2006. Nanospring behaviour of ankyrin repeats. Nature, 440: 246~249
    Lee WK, Sheehan PE. 2008. Scanning probe lithography of polymers: Tailoring morphology and functionality at the nanometer scale. Scanning 30: 172~183
    Lennard-Jones JE. 1924. On the Determination of Molecular Fields. II. From the Equation of State of a Gas. Proc. R. Soc. Lond. A, 106: 463~477
    Lennard-Jones JE. 1931. Cohesion. Proceedings of the Physical Society, 43: 461~482.
    Lieber SC, Aubry N, Pain J, Diaz G, Kim SJ, Vatner SF. 2004. Aging increases stiffness of cardiac myocytes measured by atomic force microscopy nanoindentation. Am. J. Physiol. Heart. Circ. Physiol. 287: 645~651.
    Linari M, Reedy MK, Reedy MC, Lombardi V, Piazzesi G. 2004. Ca-activation and stretch-activation in insect flight muscle. Biophys. J. 87: 1101~1111
    Liu J, Reedy MC, Goldman YE, Franzini-Armstrong C, Sasaki H, Tregear RT, Lucaveche C, Winkler H, Baumann BAJ, Squire JM, Irving TC, Reedy MK, Taylor KA. 2004. Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. J Struc. Biol., 147: 268~282
    Lutz GJ, Rome LC. 1994. Built for jumping: the design of the frog muscular system. Science 263: 370~372.
    Ma SY, Cai JY, Zhan XW, Wu YZ. 2009. Effects of etchant on the nanostructure of dentin: an atomic force microscope study. Scanning 31: 28~34
    Marchetti S, Sbrana F, Raccis R, Lanzi L, Gambi CMC, Vassalli M, Tiribilli B, Pacini A, Toscano A. 2008. Dynamic light scattering and atomic force microscopy imaging on fragments of beta-connectin from human cardiac muscle. Phys. Rev. E, 77: 021910~3
    Marszalek P E. 1999. Atomic levers control pyranosering conformations [J]. Proc. Natl. Acad. Sci. U.S.A., 96: 7894~77898
    Martin Y, Wichrama HK. 1987. Magnetic imaging by force microscopy with 1000-A resolution. Appl. Phys .Lett. 50: 1455~1458.
    Martin Y, Wichrama HK. 1988. High-resolution magnetic imaging of domains in TBFE by force microscopy. Appl. Phys .Lett. 52: 244~246.
    Mathur AB, Collinsworth AM, Reichert WM, Kraus WE, Truskey GA. 2001. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J Biomech. 34: 1545~1553.
    Maughan DW, Godt R. 1981. Radial forces within muscle fibers in rigor. J. Gen. Physiol. 77: 49~64.
    McCrea MJ, Heath JE. 1971. Dependence of flight on temperature regulation in the moth, Manduca sexta. J. Exp. Biol. 54: 415~435.
    McDaniel DP, Shaw GA, Elliott JT, Bhadriraju K, Meuse C, Chung KH, Plant AL. 2007. The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys. J. 92: 1759~1769
    Mendez-Vilas A, Gonzalez-Martin ML, Labajos-Broncano L, Nuevo MJ. 2004. Artifacts in AFMimages revealed using friction maps, Appl. Surf. Sci., 238: 42~46
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E. 1999. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature, 397: 50~53
    Miller A, Tregear RT. 1970. Evidence concerning crossbridge attachment during muscle contraction. Nature 226: 1060~1061.
    Millman BM. 1998. The filament lattice of striated muscle. Physiol. Rev. 78: 359~391.
    Moller C, Allen M, Elings V, Engel A, Muller DJ. 1999. Tapping-mode atomic force microscopy produces faithful high resolution images of protein surfaces. Biophys. J, 77: 1150~1158
    Muller DJ, Dufrene YF. 2008. Atomic force microscopy as a multifunctional molecular toolbox in nano-biotechnology. Nature Nanobiotechnology 3: 261~269
    Muller DJ, Engel A. 2008a. Strategies to prepare and characterize native membrane proteins and protein membranes by AFM. Curr. Opin. Colloid & Interf. Sci., 13: 338-350
    Muller DJ, Helenius J, Alsteens D, Dufrene YF. 2009b. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5: 383-390
    Muller DJ, Janovjak H, Lehto T. 2002. Observing structure, function and assembly of single proteins by AFM. Prog. Biophys. Mol. Biol. 79: 1~43
    Muller DJ, Krieg M, Alsteens D, Dufrene YF. 2009a. New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr. Opin. Biotechnol. 20: 4-13
    Muller DJ, Sapra KT, Scheuring S. 2006. Single-molecule studies of membrane proteins. Curr. Opin. Struc. Biol. 16: 489~495
    Nafday OA, Haaheim JR, Villagran F. 2009. Site-Specific Dual Ink Dip Pen Nanolithography (TM). Scanning 31: 122~126
    Ng L, Hung HH, Sprunt A, Chubinskaya S, Ortiz C, Grodzinsky A. 2007. Nanomechanical properties of individual chondrocytes and their developing growth factor~stimulated pericellular matrix. J. Biomech. 40: 1011~1023
    Nie HY, McIntyre NS. 2007. Unstable amplitude and noisy image induced by probe pollutant in dynamic force mode atomic force microscopy. Rev. Sci. Instrum. 78: 023701~6
    Nishida M. 2009. Biomechanics. J Artificial Organs, 12: 23~26
    Nishimura S, Nagai S, Katoh M, Yamashita H, Saeki Y, Okada J, Hisada T, Nagai R, Sugiura S. 2006.
    Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circulation Res. 98, 81~87
    Nüesch H. 1953. The morphology of the thorax of Telea Polyphemus (Lepidoptera). I. Skeleton and muscles. J. Morph. Philadelphia 93: 589~608.
    Nyland LR, Maughan DW. 2000. Morphology and transverse stiffness of drosophila myofibrils measured by atomic force microscopy. Biophys. J. 78: 1490–1497.
    Oestehelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ. 2000. Unfolding pathway of individual bacteriorhodopsins. Science, 288: 143~146
    Ohnesorge FM, H?rber JK, H?berle W, Czerny CP, Smith DP, Binnig G. 1997. AFM review study on pox viruses and living cells. Biophys. J, 73: 2183~2194.
    Olson JM, Marsh RL. 1993. Contractile properties of the striated adductor muscle in the bay scallop Argopectten irradians at several temperatures. J. Exp. Biol. 176: 175~193.
    Orgel JP, Wess TJ, Miller A. 2000. The in situ conformation and axial location of the intermolecular cross-linked non-helical telopeptides of type I collagen. Structure, 8: 137~142
    Orgel JPRO, Miller A, Irving TC, Fischetti RF, Hammersley AP, Wess TJ. 2001. The in situ supermolecular structure of type I collagen. Structure 9: 1061~1069
    Orgel JPRO, Irving TC, Miller A, Wess TJ. 2006. Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. U.S.A., 103: 9001~9005
    Orgel JPRO, Eid A, Antipova O, Bella J, Scott JE. 2009. Decorin core protein (decoron) shape complements collagen fibril surface structure and nediates its binding. PLoS ONE, 4: e7028-9
    Pablo J, Colchero J, Gómez-Herrero J, BaróAM. 1998. Jumping mode scanning force microscopy. Appl. Phys. Lett., 73: 3300~3302
    Pelled G, Tai K, Sheyn D, Zilberman Y, Kumbar S, Nair LS, Laurencin CT, Gazit D, Ortiz C. 2007. Structural and nanoindentation studies of stem cell-based tissue-engineered bone. J. Biomech. 40: 399~411.
    Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK. 2004. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science, 305: 1147~1150
    Perumal S, Antipova O, Orgel JPRO. 2008. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. U.S.A., 105: 2824~2829
    Peter J, Peter A. 1997. Geometry effects on the van der Waals force in atomic force microscopy. Phys. Rev. B, 56: 4159~4165
    Plant AL, Bhadriraju K, Spurlin TA, Elliott JT. 2009. Cell response to matrix mechanics: Focus on collagen. Biochem. Biophys. Acta-Mol. Cell Res. 1793: 893-902
    Pope LH, Davies MC, Laughton CA, Roberts CJ, Tendler SJB, Williams PM. 1999. Intercalation-induced changes in DNA super-coiling observed in real-time by atomic force microscopy. Analytica Chimica Acta, 400: 27~32
    Rack PMH, Westbury DR. 1969. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J. Physiol. 204: 443~460.
    Radmacher M, Fritz M, Cleveland JP, Walters DA, Hansma PK. 1994. Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with the atomic force microscope. Langmuir, 10: 3809~3814
    Reedy MK, Lucaveche C, Naber N, Cooke R. 1992. Insect crossbridges, relaxed by spin-labeled nucleotide, show well-ordered 90 degrees state by X-ray diffraction and electron microscopy, but spectra of electron paramagnetic resonance probes report disorder. J Mol Biol. 227: 678~697
    Rheuben MB, Kammer AE. 1987. Structure and innervation of the third axillary muscle of Manduca relative to its role in turning flight. J. Exp. Biol. 131: 373~402.
    Rico F, Roca-Cusachs P, Sunyer R, Farre R, Navajas D. 2007. Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J. Mol. Recognit. 20: 459~466
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 276: 1109~1112
    Riener CK, Kada G, Stroh CM, Kienberger F, Hinterdorfer P, Schindler H, Schutz GJ, Schmidt T, Hahn CD, Gruber HJ. 2002. Bioconjugation for biospecific detection of single molecules in atomic force microscopy (AFM) and in single dye tracing (SDT). Recent Res. Dev. Bioconjugate Chem. 2002, 1: 133~149
    Riener CK, Kienberger F, Hahn CD, Buchinger GM, Egwim IOC, Haselgrubler T, Ebner A, RomaninC, Klampfl C, Lackner B, Prinz H, Blaas D, Hinterdorfer P, Gruber HJ. 2003. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Anal. Chim. Acta, 497: 101~114
    Roark RJ, 1965. Formulas for stress and strain. New York: McGraw-Hill Publisher: 1~120
    Rome LC. , Sosnicki AA. 1991. Myofilament overlap in swimming carp. II. Sarcomere length changes during swimming. Am. J. Physiol. 260: C289~C296.
    Rozhok S, Sun P, Piner R, Lieberman M, Mirkin CA. 2004. AFM study of water meniscus formation between an AFM probe and NaCl substrate. J. Phys. Chem. B 108: 7814~7819
    Sacks MS, Merryman WD, Schmidt DE. 2009. On the biomechanics of heart valve function. J Biomech. 42: 1804~1824
    Sato K, Adachi T, Ueda D, Hojo M, Tomita Y. 2007. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells. J Biomech. 40: 1246~1255
    Schmitz H, Lucaveche C, Reedy MK, Taylor KA. 1994. Oblique section 3-D reconstruction of relaxed insect flight muscle reveals the cross-bridge lattice in helical registration. Biophys. J. 67: 1620~1633.
    Seo JH, Matsuno R, Takai M, Ishihara K. 2009. Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane). Biomaterials, 30: 5330-5340
    Shao JY. 2009. Biomechanics of Leukocyte and Endothelial Cell Surface. Curr. Topics Membranes, 64: 25~45
    Shibata-Seki T, Watanabe W, Masai J. 1994. Imaging of cells with atomic force microscopy operated at “tapping”mode. J. Vac. Sci. Technol. B, 12: 1530~1534
    Shoulders MD, Raines RT. 2009. Collagen Structure and Stability. Annual Rev. Biochem. 78: 929-958
    Shroff S, Saner DR, Lal R. 1995. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am. J. Physiol. 269, c286–c292.
    Simon A, Durrieu MC. 2006. Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron 37: 1~13
    Sirghi L, Kylin O, Gilliland D, Ceccone G, Rossi F. 2006. Cleaning and hydrophilization of atomic force microscopy silicon probes. J. Phys. Chem. B 110: 25975~25981
    Sistiabudi R, Ivanisevic A. 2008. Collagen-binding peptide interaction with retinal tissue surfaces. Langmuir, 24: 1591~1594
    Smith ST, Howard LP. 1994. A precision, low-force balance and its application to atomic force microscope probe calibration. Rev Sci Instrum, 65: 903~904
    Smith SB, Cui YJ, Bustamante C. 1996. Overstretching B-DNA: the elastic response of individual double stranded and single stranded DNA molecules. Science, 271: 795~798
    Sotomayor M, Schulten K. 2008. The allosteric role of the Ca2+ switch in adhesion and elasticity of C-cadherin. Biophys. J. 94: 4621~4633
    Springer TA. 1995. Traffic signal on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol, 57: 827~872
    Squire JM, Knupp C, Roessle M, Al-Khayat HA, Irving TC, Eakins F, Mok NS, Harford JJ, Reedy MK. 2005. X-ray diffraction studies of striated muscles. Sliding Filament Mechanism in Muscle Contraction. 565: 45~60.
    Squire JM. 1997. Architecture and function in the muscle sarcomere. Curr. Opin. Struct. Biol. 7: 247–257.
    Strasser S,Zink A, Janko M, Heckl WM, Thalhammer S. 2007. Structural investigations on native collagen type I fibrils using AFM. Biochem. Biophys. Res. Comm. 354: 27~32
    Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, Antipova O, Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marini JC, Antonioe JDS. 2008. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol. Chem., 283: 21187~21197
    Tao ZH, Bhushan B. 2006. Wetting properties of AFM probes by means of contact angle measurement. J. Phys. D: Appl. Phys. 39: 3858~3862
    Thie M, Rospel R, Dettmann W, Benoit M, Ludwig M, Gaub HE, Denker HW. 1998. Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. Hum. Respond., 13: 3211~3214
    Tiribilli B, Bani D, Quercioli F, Ghirelli A, Vassalli M. 2005. Atomic force microscopy of histological sections using a chemical etching method. Ultramicroscopy, 102: 227~232
    Tozeren A. 1990. Cell-cell, cell-substrate adhesion: theoretical and experimental considerations. J Biomech. Eng, 112: 311~321
    Tregear RT, Edwards R, Irving T, Poole K, Reedy MC, Schmitz H, Towns-Andrews E, Reedy MK. 1998. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle. Biophys. J. 74: 1439~1451
    Tsukruk VV, Shulha H, Zhai X. 2003. Nanoscale stiffness of individual dendritic molecules and their aggregates. Appl. Phys. Lett., 82: 907~909
    Tu MS, Daniel TL. 2004. Cardiac~like behavior of an insect flight muscle. J. Exp. Biol. 207: 2455~2464
    Tublitz NJ, Truman JW. 1985. Identification of neurons containing cardioacceleratory peptides (CAPS) in the ventral nerve cord of the tobacco hawkmoth, Manduca-sexta. J. Exp. Biol. 116: 395~410
    Tullman JA, Finney WF, Lin YJ, Bishnoi SW. 2007. Tunable assembly of peptide coated gold nanoparticles. Plasmonics, 2: 119~127.
    Twardowski T, Fertala A, Orgel JPRO, Antonio JDS. 2007. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Current Pharmaceutical Design, 13: 3608~3621
    Umemura K, Arakawa H. 1993. High resolution images of cell surface using a tapping mode atomic force microscope. Japan J Appl Phys, 32: 1711~1714
    Wendler G, Muller M, Dombrowski U. 1993. The activity of pleurodorsal muscles during flight and at rest in the moth Manduca sexta (L.). J. Comp. Physiol. A 173: 65~75.
    Wenger MPE, Bozec L, Horton MA, Mesquida P. 2007. Mechanical Properties of Collagen Fibrils. Biophys. J. 93: 1255~1263
    Wenger MPE, Horton MA, Mesquida P. 2008. Nanoscale scraping and dissection of collagen fibrils. Nanotechnology 19: 384006~11
    Wilbur JL. 1995. Scanning Force Microscopes Can Image Patterned Self-Assembled Monolayer. Langmuir, 1: 825 ~ 831
    Williamson MR, Dial KP, Biewener AA. 2001. Pectoralis muscle performance during ascending and slow level flight in mallards (Anas platyrhynchos). J. Exp. Biol. 204: 495~507.
    Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J, Deryugina E, Friedl P. 2009. Collagen-based cell migration models in vitro and in vivo. Seminars in Cell & Developmental Biol. 20: 931~941
    Wong J, Chilkoti A, Moy VT. 1999. Direct force measurements of the streptavidin biotin interaction [J]. Bimolecular Engineering, 10: 1645~1655
    Woolfson DN. 2010. Building Fibrous Biomaterials From alpha-Helical and Collagen-Like Coiled-Coil Peptides. Biopolymers, 94: 118-127
    Wu JG, Li YM, Lu D, Liu Z, Cheng ZD, He LQ. 2009. Measurement of the membrane elasticity of red blood cell with osmotic pressure by optical tweezers. Cryoletters, 30: 89~95
    Wu YZ, Hu Y, Cai J, Ma SY, Wang XP, Chen Y. 2008. The analysis of morphological distortion during AFM study of cells. Scanning 30: 426~432.
    Xu C, Jones RL, Batteas JD. 2008. Dynamic variations in adhesion of self-assembled monolayer on nanoasperities probed by atomic force Microscopy. Scanning 30: 106~117
    Yang FZ, Wornyo E, Gall K, King WP. 2008. Thermomechanical formation and recovery of nanoindents in a shape memory polymer studied using a heated tip. Scanning 30: 197~202
    Yoshikawa Y, Yasuike T, Yagi A, Yamada T. 1999. Transverse elasticity of myofibrils of rabbit skeletal muscle studied by atomic force microscopy. Biochem. Biophys. Res. Commun. 256: 13~19.
    Zhou H, Li XF, Li YM, Lou LR, Yue JC. 2001. A new method to measure red cell membrane elasticity using single optical tweezers. Prog. Biochem. Biophys. 28: 904~907
    Zhou X, Sun J, Mi L. 2005. Investigation of the compression elasticity of single biomacromolecules by atomic force microscopy. J Chin. Elect. Micro. Soc., 24: 238~242.
    Zhu J, Sun R. 2005. Introduction to atomic force microscope and its manipulation. Life Sci. Instrum., 3: 22~26
    Zhu J, Sun R. 2005a. Applications of laser optical tweezers technique in single molecule and single cell science. Laser J., 26: 30~32
    Zhu J, Guo L, Zhang B, Hu J, Wang G. 2007. Microscale biomechanics measurements with atomic force microscopy and the concerned techniques. Life Sci. Instrum., 5: 3~9
    Zhu J, Guo LH, Lan L, Wang GD, Guo L. 2008a. Observing biophysical properties of swine myocardium and mitochondria with tapping mode scanning probe microscope. FASEB J. 22: S801~S801
    Zhu J, Guo LH, Wang GD. 2008b. Study on the original height and compression elasticity of the DNA strands with atomic force microscopy. Chin. J Appl. Mech. 25: 172~177.
    Zhu J, Sabharwal T, Guo L, Kalyanasundaram A, Wang G. 2009a. Gloss phenomena and image analysis of atomic force microscopy in molecular and cell biology. Scanning 31: 49~58
    Zhu J, Sabharwal T, Guo LH, Kalyanasundaram A. 2009b. Morphology and mechanical properties of cardiac myofibers investigated by atomic force microscopy and synchrotron X-ray diffraction. J. Mol. Cell. Cardiol., 46:S42~S42.
    Zhu J, Sabharwal T, Kalyanasundaram A, Guo L, Wang G. 2009c. Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy. J. Biomech. 42: 2143~2150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700