数控雕刻加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着生活水平的提高,人们对满足审美要求的雕刻类产品的需求出现前所未有的增长。传统手工雕刻生产效率低,不能满足日益增长的市场需求,数控雕刻加工就是在这一背景下诞生的。雕刻加工特色鲜明、专业性强,如果直接采用传统数控技术进行加工,通常难以胜任。为此,本文从工程实际出发,深入研究适合于雕刻行业的数控加工技术,主要内容与创新点概括如下。
     针对包含大量小圆弧和小线段的轮廓环,以改进扫描线求交算法为基础,提出一种复杂区域快速自动识别算法。对于输入的不合法环,算法能够报告全部出错点的精确位置,从而方便用户修正几何图形中存在的缺陷;对于输入的合法环,算法能够根据环之间的拓扑关系,在近似线性时间内快速自动识别出全部区域,区域之间可以多层嵌套。
     针对区域铣削加工问题,提出一种环切刀轨生成算法和一种光滑螺旋刀轨生成算法。本文环切刀轨生成算法具有运行效率高、零抬刀过渡、无残留加工区域的优点,并且适用于任意复杂区域的铣削加工。光滑螺旋刀轨生成算法以B样条理论为基础进行刀轨规划,所生成刀轨可任意阶连续,满足小刀具高速数控雕刻对刀轨光顺性的要求。
     在三维雕刻加工中采用先进行层切粗加工然后进行清根精加工的解决方案。提出了利用层切平面与凹雕型腔的交线和区域等距线间的等价关系计算层切刀轨,利用凹雕型腔棱线和区域中轴之间的等价关系,把清根加工刀轨计算问题转化为中轴遍历问题,降低了算法的复杂度,大幅度提高了刀轨计算效率。
     针对采用一般等距方法进行轮廓嵌套加工时,所加工出的凸台和凹槽在嵌套装配时易发生干涉的问题,提出一种基于凸凹轮廓协调等距的嵌套加工刀轨生成算法,该算法只需要三次等距运算即可计算出凸台和凹槽加工刀轨,确保加工出的凸台和凹槽在嵌套装配时肯定无干涉,且嵌套间隙均匀。
     针对立体浮雕建模与数控加工问题,提出一种几何浮雕和位图浮雕混合建模方法,通过浮雕曲面定义、浮雕曲面融合、艺术灰度图建模、图像轮廓提取等实现具有复杂细节的艺术类浮雕建模。基于反刀具等距投影法实现浮雕的无干涉精加工刀轨生成,特别适用于小刀具精雕细刻加工,并易于推广到任意类型的雕刻刀。
     论文研究提出的方法和算法已在自主开发的数控雕刻CAD/CAM系统中实现,并在生产中通过大量实例进行了验证。
In recent years, along with the raising of living standards, the demands for aesthetic engraving products have been continuously increasing. But the traditional manual engraving method is inefficient and far from meeting the huge market reqiurements. For this reason, numerical control ( NC ) engraving machining method has been adopted to improve the productivity of engraving industry. However, because of the special characteristics of engraving products, directly applying existing NC machining strategies to NC machining of engraving products is not feasible. This dissertation makes further researches on the key technologies of NC engraving machining to pursue comprehensive solution to digitized manufacture of engraving products. The main contents and achievements are as follows:
     Based on improved sweep-line intersection method, an algorithm is put forward on automated recognition of complex regions from planar profiles composed of arc and straight segments. For invalid input, the exact positions where intersections occur can be detected so that it is convenient for the user to eliminate any defect in profiles. For valid input, by quickly built spatial relationship between profiles, the regions can be recognized with approximately linear time consumption. The algorithm is also suitable for the recognition of multi-nest regions.
     An contour-parallel tool path planning algorithm and a smooth spiral tool path generation algorithm are put forward for area milling. The former can efficiently create uncut-free tool path without tool retractions, which is applicable to milling of arbitrary shaped machining area with multiple holes. The latter can generate Cn continuous tool path with no sharp turning corners via B-spline curve fitting, which is suitable for high speed engraving with small cutting tools.
     A tool path scheduling methodology for 3D engrave models is presented, which performs rough machining by z-level milling first, then finish machining corner uncut material with pencil tracing. Calculation of rough machining tool path is greatly simplified using equivalence relation between curves offset from engraved pocket boundary and the intersection curve of horizontal plane and engraved pocket. Generation of pencil cleanup tool path is simplified to medial axis travel problem using equivalence relation between edges of engraved pocket and medial axis of machining region. A simple medial axis traveling strategy is also presented.
     A new tool path generation algorithm is presented to eliminate interferences when nesting convex mold and concave die which are machined with tool paths calculated by offsetting the 2D profile directly. With this algorithm, after only three times of profile offsetting, both tool paths for machining convex mold and concave die can be calculated simultaneously. When convex mold and concave die which have been manufactured by this algorithm are assembled together, there are absolutely no interference, and the fit clearance is of uniform distribution.
     By means of introducing new conception including relief surface definition, relief surface blending, art-gray-photo modeling, image edge detection et al, an approach for 3D relief modeling is presented. Based on geometry-relief and photo-relief mixture modeling, the approach can be applied to generate artistic relief with complex surfaces. Using inverse tool offset and projection method, the generation of interference-free tool path for relief finish machining is achieved, which is particularly suitable for relief machining with small tools and is extendable to arbitrary shaped engraving tools.
     Based on the methods and algorithms proposed above, an NC engraving software has been developed. Practical examples show the validity and effectiveness of the system.
引文
[1] K. Tang, S. Chou, L. Chen. An algorithm for reducing tool retractions in zigzag pocket machining. Computer Aided Design, 1998, 30(2): 123-129
    [2] SC. Park, BK. Choi. Tool-path planning for direction-parallel area milling. Computer Aided Design, 2000, 32(1): 17-25
    [3] CS. Chiang, CM. Hoffman, RE. Lynch. How to compute offsets without self-intersec tion. Conference Proceedings on Curves and Surfaces in Computer Vision and Graphics 1992, Boston, MA: 76-87
    [4] BK. Choi, SC. Park. A pair-wise offset algorithm for 2D point sequence curve. Computer Aided Design, 1999, 31(12): 735-745
    [5] M. Held. Voronoi diagrams and offset curves of curvilinear polygons. Computer Aided Design, 1998, 30(4): 278-300
    [6] SC. Park, YC. Chung. Offset tool-path linking for pocket machining. Computer Aided Design, 2002, 34(4): 299-380
    [7] SC. Park, YC. Chung, BK. Choi. Contour-parallel offset machining without tool retractions. Computer Aided Design, 2003, 35(9): 841-849
    [8] K. Castelino, D. Roshan, K. Oaul. Tool-path optimization for minimizing airtime during machining. Journal of Manufacturing Systems, 2003, 33(3): 173-180
    [9] BK. Choi, BH. Kim. Die-cavity pocketing via cutting simulation. Computer Aided Design, 1997, 29(12): 837-846
    [10] HS. Choy, KW. Chan. A corner-looping based tool path for pocket milling. Computer Aided Design, 2003, 35(2): 155-166
    [11] MS. Seo, JS. Song, IR. Kim. Uncut free tool path planning for pocket using offset loops. SICE Annual Conference 2004, Sapporo: 2278-2284
    [12] SC. Park, BK. Choi. Uncut-free pocketing tool-paths generation using pairwise offset algorithm. Computer Aided Design, 2001, 33(10): 739-746
    [13] G. Elbera, E. Cohenb, S. Drake. MATHSM: medial axis transform toward high speed machining of pockets. Computer Aided Design, 2004, 37(5): 241-250
    [14] M. Bieterman. Mathematics in manufacturing: new approach cuts milling costs. Siam News, 2001, 34(7): 1-3
    [15] M. Bieterman, D. Sandstrom. A curvilinear tool-path method for pocket machining. Journal of Manufacturing Science and Engineering, 2003, 125 (11): 709-715
    [16] R. Narayanaswami, J. Pang. Multiresolution analysis as an approach for tool path palnning in NC machining. Computer Aided Design, 2003, 35(2): 167-178
    [17] J. Pang, R. Narayanaswami. Multiresolution offsetting and loose convex hull clipping for 2.5D NC maching. Computer Aided Design, 2004, 36(7): 625-637
    [18]周培德.计算几何——算法设计与分析.北京:清华大学出版社, 2005
    [19] F. Chazal, A. Lieutier. The“λ-medial axis”. Graphical Models, 2005, 67(4): 304-331
    [20] M. Held. VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry, 2001, 18(1): 95-123
    [21] D. Shaked, AM.Bruckstein. The curve axis. Computer Vision and Image understanding, 1996, 63(2): 367-379
    [22] R. Ramamurthy, RT. Farouki. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I: Theroetical foundations. Journal of Computational and Applied Mathematics, 1999, 102(1): 119-141
    [23] R. Ramamurthy, RT. Farouki. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries II: Detailed algorithm description. Journal of Computational and Applied Mathematics, 1999, 102(2): 253-277
    [24] WF. Degen. Exploiting curvatures to compute the medial axis for domains with smooth boundary. Computer Aided Geometry Degisn, 2004, 21(7): 641-660
    [25] M. Ramanathan, B. Gurnmoorthy. Constructing medial axis transform of planar domains with curved boundarues. Computer Aided Design, 2003, 35(7): 619-623
    [26] KW. Pratt. Digital Image Processing.北京:机械工业出版社, 2005
    [27] M. Melhi, SS. Ipson, W. Booth. A novel triangulation procedure for thinning hand-written text. Pattern Recognition Letters, 2001, 22(10): 1059-1071
    [28]孙博文,张军.图形图象的浮雕化处理.中国图象图形学报, 1998, 2(5): 425-426
    [29]洪文松,陈武凡.广义模糊算子法用于图象的浮雕显示.中国图象图形学报, 1998, 3(8): 655-657
    [30]赵玉刚,江士成,邢建国.文字、图案数控凹凸雕刻加工计算机辅助编程系统.机械科学与技术, 1999, 18(9): 855-857
    [31]林金明,谢明红,朱国力等.基于图像的刀具路径生成技术.制造业自动化, 2001, (11): 49-51
    [32]徐涛,邢汉承,骆明.用形态学边缘检测算子实现图像的浮雕显示.数据采集与处理, 2003, 18(3): 287-291
    [33]叶新东,王章野,汤锋.一种基于图像的3D浮雕效果绘制算法.计算机应用研究, 2005, (2): 227-228
    [34]何倩,罗宏志.基于图像的艺术造型方法的研究与实现.华中科技大学学报, 2001, 29(2): 84-86
    [35]王翔,黄华.基于微机和单片机的图像浮雕控制系统.电气传动, 2005, 35(5): 46-47
    [36]李欣欣.超大幅面激光雕刻机应用软件的研究[硕士学位论文].秦皇岛:燕山大学, 2005
    [37]郑魁敬.基于图象的平面图形数控加工技术研究[硕士学位论文].秦皇岛:燕山大学, 2001
    [38]严素蓉.基于图像建模与绘制方法的图像浮雕设计与实现[硕士学位论文].杭州:浙江大学, 2005
    [39]吴涛.数控石材雕刻机CAD/CAM系统研制[硕士学位论文].武汉:中国地质大学, 2004
    [40]朱晓荣.数字图像处理及其应用研究——基于图像处理的雕刻应用实现[硕士学位论文].南京:河海大学, 2001
    [41]李昇杰.平面图案的数控加工及其仿真算法的研究与实现[硕士学位论文].武汉:华中科技大学, 2002
    [42]屠礼彪.邮戳CAD/CAM系统关键技术研究[硕士学位论文].北京:北京邮电大学, 2000
    [43]张开敏.快速图像激光雕刻加工系统的开发与实现[硕士学位论文].武汉:武汉理工大学, 2005
    [44]秦远富.计算机浮雕设计CAD/CAM系统的研究和开发[硕士学位论文].成都:电子科技大学, 2000
    [45]孙秀斌.立体雕刻机CNC系统的软件开发[硕士学位论文].成都:电子科技大学, 2001
    [46]王海军.平面几何图案浮雕机CAD软件开发[硕士学位论文].成都:电子科技大学, 2001
    [47]匡平.家具浮雕CAD系统的研究与开发[硕士学位论文].成都:电子科技大学, 2003
    [48]马毅.三维浮雕CAD/CAM软件系统开发研究[硕士学位论文].成都:电子科技大学, 2003
    [49] BK. Choi, DH. Kim, RB. Jerard. C-space approach to tool-path generation for die and mould machining. Computer Aided Design, 1997, 29(9): 657-669
    [50] RJ. Cripps. Algorithms to support point-based CAD/CAM. International Journal of Machine Tools & Manufacture, 2003, 43(4): 425-432
    [51] M. Inui. Fast inverse offset computation using polygon rendering hardware. Computer Aided Design, 2003, 35(2): 191-201
    [52] X. Qu, B. Stucker. A 3D surface offset method for STL-format models. Rapid Prototyping Journal, 2003, 9(3): 133-141
    [53] SJ. Kim, MY. Yang. Triangular mesh offset for generalized cutter. Computer Aided Design, 2005, 37(10): 999-1014
    [54] AC. Lin, HT. Liu. Automatic generation of NC cutter path from massive data points. Computer Aided Design, 1998, 30(1): 77-90
    [55] AC. Lin, SY. Lin. Computer-aided mold engraving: from point-data smoothing, NC machining, to accuracy checking. Journal of Materials Processing Technology, 1999, 86(3): 101-114
    [56] CM. Chuang, HT. Yau. A new approach to z-level contour machining of triangulated surface models using fillet endmills. Computer Aided Design, 2005, 37(10): 1039-1051
    [57] SC. Park, YC. Chung. Tool path generation from measured data. Computer Aided Design, 2003, 35(5): 467-475
    [58] SC. Park. Tool path generation for z-constant contour machining. Computer Aided Design, 2003, 35(1): 27-36
    [59] SC. Park. Sculptured surface machining using triangular mesh slicing. Computer Aided Design, 2004, 36(3): 279-288
    [60] SC. Park. Pencil curve detection from visibility data. Computer Aided Design, 2005, 37(14): 1492-1498
    [61] CS. Jun, DS. Kim, SC. Park. A new curve-based approach to polyhedral machining.Computer Aided Design, 2002, 34(5): 379-389
    [62] DS. Kim, CS. Jun, S. Park. Tool path generation for clean-up machining by a curve-based approach. Computer Aided Design, 2005, 37(9): 967-973
    [63] HY. Feng, Z. Teng. Iso-planar piecewise linear NC tool path generation from discrete measured data points. Computer Aided Design, 2005, 37(1): 55-64
    [64] Y. Ren, HT. Yau, YS. Lee. Clean-up tool path generation by contraction tool method for machining complex polyhedral models. Computers in Industry, 2004, 54(1): 17-33
    [65]王爱玲,沈兴全,吴淑琴等.现代数控编程技术及应用.北京:国防工业出版社, 2005
    [66]王仁德,赵春雨,张耀满.机床数控技术.沈阳:东北大学出版社, 2002
    [67]王永章.机床的数字控制技术.哈尔滨:哈尔滨工业大学出版社, 1995
    [68]李克天,陈统坚,郑德涛.直线逼近曲线的原理及在加工凸轮中的应用.机械设计与制造, 2002, (1): 66-68
    [69]王东明.自由曲线拟合及加工编程软件.装备机械, 2004, (1): 41-44
    [70]杜家熙.等误差法进行非圆曲线轮廓的数据处理.机电一体化, 2001, (4): 67-68
    [71]范云霄,郑轶,于涛等.等误差直线逼近非圆曲线的节点计算及刀具轨迹模拟.工具技术, 2002, 36(8): 30-32
    [72]范云霄,郑轶,于涛等.数控加工节点计算机辅助计算及刀尖轨迹仿真.山东科技大学学报, 2002, 21(3): 77-79
    [73]何其宝.非圆曲线轮廓数控加工编程误差的控制.机械制造与自动化, 2006, 35(5): 72-74
    [74]周慧.非圆曲线的等误差直线逼近.现代制造工程, 2002, (3): 29-31
    [75]于洋,魏娟.等误差直线逼近非圆曲线节点计算新方法.组合机床与自动化加工技术, 2005, (5): 32-33
    [76]韩庆瑶,黄燕梅.复杂空间曲线的数控加工自动编程.机械设计与制造, 2005, (10): 132-133
    [77]黄燕梅. CNC系统中复杂空间曲线的自动编程处理.张家口职业技术学院学报, 2005, 18(1): 34-38
    [78]赵春华,吴晓光,唐波.数控编程中刀位轨迹最佳直线逼近方法的研究.三峡大学学报, 2002, 24(3): 257-259
    [79]安鲁陵.基于ACIS几何平台的CAD/CAM软件开发关键技术研究[博士学位论文].南京:南京航空航天大学, 2001
    [80]陈长青.数控雕刻编程技术研究与软件开发[硕士学位论文].南京:南京航空航天大学, 2006
    [81]徐啸峰,周儒荣,安鲁陵等.一种复杂平面型腔加工区域自动识别的算法.机械设计与制造工程, 2001, 30(2): 42-43
    [82]徐啸峰,周儒荣,安鲁陵等.基于ACIS几何平台的二维数控加工编程技术研究.机械科学与技术, 2002, 21(1): 150-154
    [83]宋馨来.基于微细电火花加工的CAD/CAM技术研究[硕士学位论文].南京:南京航空航天大学, 2005
    [84]王丽萍,孙国防,季绍坤.非圆曲线数控编程的等误差圆弧逼近法及其实现.现代制造工程, 2006, (10): 30-32
    [85]王得胜,周爱平.用圆弧逼近平面参数曲线的参数递增算法.机械工艺师, 2001, (5): 36-38
    [86]范云霄.非圆曲线的等误差圆弧逼近法及刀具轨迹仿真.煤矿机械, 2004, (12): 77-78
    [87]唐先春,梁兵,刘祚成.线切割系统中用圆弧代替非圆曲线的优化模型.机械, 2006, 33(12): 34-36
    [88]白海清.等误差面积法三点圆圆弧段逼近非圆曲线.现代制造工程, 2003, (9): 21-22
    [89]韩庆瑶,董云风,师向红.基于NURBS曲线的逼近研究.煤矿机械, 2006, 27(8): 50-53
    [90]韩庆瑶,贾桂红. NURBS曲线的数控加工编程预处理.机械设计与制造, 2005, (5): 99-101
    [91]乐英,韩庆瑶,王璋奇.数控加工中非圆曲线的最小二乘圆弧逼近.华北电力大学学报, 2006, 33(6): 102-104
    [92]刘书华,文良起,瞿建武.非圆曲线的最小二乘拟合法.新技术新工艺, 2001, (7): 12-14
    [93] YJ. Ahn, HQ. Kim, KY. Lee. G1 arc spline approximation of quadratic Bezier curves. Computer Aided Design, 1998, 30(8): 615-620
    [94]陈汉军,廖文和,周儒荣.任意平面曲线的圆弧逼近方法.南京航空航天大学学报, 1995, 27(6): 773-777
    [95]程晨.双圆弧逼近平面参数曲线的研究.现代机械, 2004, (5): 28-30
    [96]张莉彦,邱辉,陈虎等.平面曲线的双圆弧最佳逼近.组合机床与自动化加工技术, 2002, (12): 32-34
    [97]陈明君,赵清亮,董申等.基于双圆弧步长伸缩数控插补非圆曲线算法的研究.机械工程学报, 2003, 39(1): 111-116
    [98]郭文兰,张彤.曲线方程的双圆弧拟合算法及实现.哈尔滨理工大学学报, 2004, 9(6): 87-89
    [99]卢建彪,雍俊海.二次Bezier曲线的双圆弧样条插值二分算法.计算机应用研究, 2006, (8): 166-167
    [100] L. Piegl, W. Tiller. Biarc approximation of NURBS curves. Computer Aided Design, 2002, 34: 807-814
    [101] H. Park. Error-bounded biarc approximation of planar curves. Computer Aided Design, 2004, 36(14): 1241-1251
    [102]王国瑾,汪国昭,郑建民.计算机辅助几何设计.北京:高等教育出版社, 2001
    [103] M. Berg, M. Kreveld, M. Overmars, et al.计算几何——算法与应用.北京:清华大学出版社, 2005
    [104] J. Nievergelt, FP. Preparata. Plane-sweep algorithm for intersecting geometric figures. Communications of the ACM, 1982, 25(10): 739-741
    [105] BR. Vatti. A generic solution to polygon clipping. Communications of the ACM, 1992, 25(10): 739-747
    [106] G. Greiner, K. Hormann. Efficient clipping of arbitrary polygons. ACM Transactions on Graphics, 1998, 17(2): 71-83
    [107] SC. Park, H. Shin, BK. Choi. A sweep line algorithm for polygonal chain intersection and its applications. Proceedings of IFIP WG5.2 GEO-6 Conference 1998, Tokyo University: 187-195
    [108] SC. Park, H. Shin. Polygonal chain intersection. Computers & Graphics, 2002, 26(2): 341-350
    [109] T. Midany, A. Elkeran, H. Tawfik. A Sweep-Line Algorithm and Its Application to Spiral Pocketing. International Journal of CAD/CAM, 2002, 2(1): 23-28
    [110]陈正鸣,李春雷.多边形链求交的改进算法.计算机辅助设计与图形学学报, 2004, 16(12): 1713-1718
    [111]李春雷,陈正鸣.圆弧和直线段组成的封闭曲线快速求交.河海大学常州分校学报, 2003, 17(3): 10-14
    [112]李春雷,刘洲峰,许向勇.一种含有圆弧的曲线快速求交方法.计算机工程与应用, 2006, 42(14): 69-71
    [113]孙家广.计算机图形学(第三版).北京:清华大学出版社, 1998
    [114] PJ. Schneider, DH. Eberly.计算机图形学几何工具算法详解.北京:电子工业出版社, 2005
    [115]严蔚敏,吴伟民.数据结构(C语言版).北京:清华大学出版社, 2002
    [116] H. Persson. NC machining of arbitrarily shaped pockets. Computer Aided Design, 1978, 10(3): 169-174
    [117] DT. Lee. Madial axis transformation of a planar shape. IEEE Trans Pattern Anal Machine Intell, 1982, 4(4): 363-369
    [118] F. Steven. A sweepline algorithm for voronoi diagrams. Algorithmica, 1987, 2(2): 153-174
    [119] M. Held. On the computatational geometry of pocket machining. Lecture Notes in Computer Science. Berlin: Springer, 1991
    [120]付庄.基于Voronoi图的型腔加工轨迹规划、刀集判定及抽壳算法研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2000
    [121]杨工明. Voronoi图的生成及应用的研究[硕士学位论文].北京:北京航空航天大学, 2000
    [122]刘振凯.层去图象法快速反求系统与Voronoi图算法研究[博士后出站报告].西安:西安交通大学, 1999
    [123]杜永强. Voronoi图研究及其在RP螺旋扫描路径生成中的应用[硕士学位论文].镇江:江苏大学, 2005
    [124] J. Jeong, K. Kim. Generating tool paths for free-form pocket machining using z-buffer-based voronoi diagrams. International Journal of Advanced Manufacturing Technology, 1999, 15(2): 182-187
    [125] E. Kenneth, III. Hoff, T. Culver, et al. Fast computation of generalized voronoi diagrams using graphics hardware. Computer Graphics Proceedings Annual Conferrence Series SIGGRAPH99 1999: 277-286
    [126] K. Sugihara, M. Iri, H. Inagaki, et al. Topology-oriented implementation - an approach to robust geometric algorithms. Algorithmica, 2000, 24(1): 5-20
    [127] T. Imai. A topology oriented algorithm for the voronoi diagram of polygons. 8thCanad. Conf. Comput. Geom 1996, Ottawa, Canada: 107-112
    [128] M. Held. VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry, 2001, 18(1): 95-123
    [129] S. Sethia, M. Held, Joseph SB Mitchell. PVD: a stable implementation for computing voronoi diagrams of polygonal pockets. Lecture Notes In Computer Science, 2001, 21(53): 105-116
    [130] D. Kim. Polygon offsetting using a voronoi diagram and two stacks. Computer Aided Design, 1998, 30(4): 1069-1076
    [131]付庄,王树国,王剑英等.基于Voronoi图理论的最优刀具轨迹规划算法的研究.高技术通讯, 2000, (5): 57-59
    [132] F. Zhuang, W. Shuguo, W. Jianying, et al. The trimmed offset generating and the optimal tool path planning using voronoi diagram and three sacks. Chinese Journal of Mechanical Engineering, 2001, 14(4): 314-318
    [133] H. Martin, G L Lukics. Pocket machining based on contourparallel tool paths generated by means of proximity maps. Computer Aided Design, 1994, 26(3): 189-203
    [134] W. Tiller, E. Hanson. Offset of two dimensional profiles. IEEE Computer Graphics and Application, 1984, 4(9): 36-46
    [135] IK. Lee, MS. Kim, G. Elber. Planar curve offset based on circle approximation. Computer Aided Design, 1996, 28(8): 617-630
    [136] BK. Choi, SC. Park. A pair-wise offset algorithm for 2D point-sequence curve. Computer Aided Design, 1999, 31(12): 735-745
    [137] T. Maekawa, NM. Patrikalakis.计算机辅助设计与制造中的外形分析.北京:机械工业出版社, 2004
    [138]杜永强,王霄,刘会霞.多边形Voronoi图和中轴的特征从属性证明.计算机工程与应用, 2005, 41(27): 45-47
    [139] Y. Lai, J. Wu, J. Hung, et al. A simple method for invalid loops removal of planar offset curves. International Journal of Advanced Manufacturing Technology, 2005, 27(2): 1153-1162
    [140] MK. Guyder. Automating the optimization of 2 1/2 axis milling. Computers in Industry, 1990, 15(3): 163-168
    [141]郝泳涛,蒋莉莉,李启炎.轮廓平移无跳刀连接刀路环树优化算法.计算机辅助设计与图形学学报, 2005, 17(11): 2530-2536
    [142] H. Yongtao, J. Lili. Optimal algorithm for no toolretractions contour-parallel offset tool-path linking. Chinese Journal of Mechanical Engineering, 2007, 20(2): 21-25
    [143]安鲁陵,卫炜,周来水等.自由曲目型腔粗加工刀轨生成算法研究.南京航空航天大学学报, 2000, 32(6): 661-666
    [144] H. Wang, P. Jang, JA. Stori. A metric-based approach to two-dimensional (2D) tool-path optimization for high-speed machining. Journal of Manufacturing Science and Engineering, 2005, 127(2): 33-48
    [145] V. Pateloup, E. Duc, P. Ray. Corner optimization for pocket machining. International Journal of Machine Tools & Manufacture, 2004, 44(4): 1343-1353
    [146]安鲁陵,周来水,庄海军等.型腔高速铣削刀轨生成算法研究.计算机辅助设计与图形学学报, 2004, 16(9): 1202-1206
    [147] M. Bieterman, D. Sandstrom. A curvilinear tool-path method for pocket machining. Journal of Manufacturing Science and Engineering, 2003, 125 (11): 709-715
    [148] YW. Sun, DM. Guo, ZY. Jia. Spiral cutting operation strategy for machining of sculptured surfaces by conformal map approach. Journal of Materials Processing Technology, 2006, 180(5): 74-82
    [149] M. Salman.A. Mansor, S. Hinduja, O. Owodunni. Voronoi diagram-based tool path compensations for removing uncut material in 2.5D pocket machining. Computer Aided Design, 2006, 38(2): 194-209
    [150]谢叻,周来水,周儒荣.复杂型腔的余料加工方法.东南大学学报, 1999, 29(3): 63-67
    [151] A. Hatna, RJ Grieve, P. Broomhead. Automatic CNC milling of pockets: geometric and technological issues. Computer Integrated Manufacturing Systems, 1998, 11(4): 309-330
    [152] M. Boujelbene, A. Moisan, N. Tounsi, et al. Productivity enhancement in dies and molds manufacturing by the use of C1 continuous tool path. International Journal of Machine Tools & Manufacture, 2004, 44(1): 101-107
    [153]施法中.计算机辅助几何设计与非均匀有理B样条.北京:高等教育出版社, 2001
    [154]谢叻.基于Trimmed NURBS曲面造型的数控编程技术的研究与实现[博士学位论文].南京:南京航空航天大学, 1999
    [155]朱心雄.自由曲线曲面造型技术.北京:科学出版社, 2000
    [156] RT. Farouki, CA. Neff. Analytic properties of plane offset curves. Computer Aided Geometric Design, 1990, 7(1): 83-99
    [157]余学军. Voronoi图理论及CAS软件中图形学算法研究[博士学位论文].北京:北京大学, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700