表达cdk5-siRNA重组腺相关病毒载体的构建及CDK在NPC神经变性中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     了解npc小鼠不同年龄阶段cdk活化所导致的神经元细胞骨架损害的程度。以便进一步探索NPC的发病机制和新的治疗策略。
     方法
     在小鼠出生后的1、2、3、4和5周处死所有同龄的小鼠,然后采用PCR的方法鉴定基因型,保留npc-/-小鼠和相应数量的同龄野生型小鼠(每年龄组至少4只)的脑组织做免疫组织化学染色,观察cdk活化所致的球状神经轴突出现的时间和数目。
     结果
     在3周npc小脑即可检测到cdk的异常活化所引起的球状神经轴突,且在小脑较脑干出现早、数量更多。球状神经轴突数目随着小鼠的年龄增大越来越多。
     结论
     ①npc小鼠自3周龄开始出现神经元细胞骨架损害及cdk激活;②病变的严重程度随年龄增长而增加。
     目的
     构建能表达cdk5特异性siRNA(cdk5-siRNA)的II型重组腺相关病毒载体,体外观察其对cdk5基因的特异性沉默作用。
     方法
     设计一段在体内能转录出特异性cdk5-siRNA的寡核苷酸序列,人工合成该序列后采用基因克隆技术,将其克隆至通用RNA i表达质粒pSilencer-U6中,构建出质粒pSilencer-U6-cdk5-siRNA。同时将EGFP连入表达质粒pAAV-MCS,得到质粒pAAV-MCS-EGFP。然后通过PCR从pSilencer-U6-cdk5-siRNA中扩增出U6-cdk5-siRNA片段,并将其克隆至pAAV-MCS-EGFP,构建出表达质粒pAAV-MCS- EGFP-cdk5-siRNA-U6。重组质粒通过酶切,测序鉴定后与该系统中的控制质粒pAAV-RC﹑辅助质粒pHelper用磷酸钙法共转染HEK293细胞,包装得到表达cdk5-siRNA的II型重组腺相关病毒载体(rAAV2-cdk5-siRNA)。重组病毒纯化后通过斑点杂交法测定滴度,病毒感染体外培养的PC12细胞,Western blot检测其抑制cdk5表达的特异性和效果。
     结果
     各质粒构建正确,成功包装出重组腺相关病毒载体rAAV2-cdk5-siRNA,病毒滴度达2×1012v.g/ml,重组病毒能感染体外培养的PC12细胞,并能明显而特异性下调cdk5的表达。
    
     结论
     构建的重组腺相关病毒载体rAAV2-cdk5-siRNA能明显干扰细胞内cdk5的表达,为进一步探索cdk在神经变性过程中的地位和神经变性疾病基因治疗的可行性奠定了基础。
Objective
     Investigate the impairment of neuronal cytoskeleton caused by activation of cdks in different aged npc mice ,in order to study the pathogenesis and explore the new therapies for NPC.
     Methods
     Sacrifice all sibling mice in one breeding cage at the age of 1、2、3、4 and 5 week, keep the npc-/- mice and same aged wild type mice as control (at least 4 mice per group). Use PCR for genotyping and immunohistochemistry for the study of spheroid caused by activation of cdk.
     Results
     Axonal spheroids caused by activation of cdk can be found as early as 3 weeks age in npc mice.The pathology is more obvious in the cerebellum compared to pons.The number of spheroids increased as the mice grow up.
     Conclusion
     ①The impairment of neuronal cytoskeleton and cdk activation can be found in npc mice as early as 3 weeks age.②The severity of pathology increased along with the increase of age.
     Objective
     To construct the adeno-associated virus vector encoding the small interfering RNA(siRNA) specific for cyclin dependent kinase5(CDK5) gene and to observe its silencing effect on cdk5 gene in vitro,in order to explore the role of the CDK5 in the neurodegenerative disease.
     Methods
     The specific cdk5-siRNA sequence was cloned into the plasmid of pAAV-MCS-EGFP in AAV Helper-Free System to construct the rAAV2 expression plasmid pAAV-MCS-EGFP-U6-cdk5-siRNA. The recombinant plasmids were identified by DNA sequencing and restriction digestion. Then the packaging cell line (HEK293 cell) was co-transfected with the pAAV-MCS-cdk5-siRNA together with the control plasmid pAAV-RC and pHelper by phosphate-calcium deposit method. The titer was measured by dot hybridization. Infected the PC12 cell using recombinant adeno-associated virus, at 72h after infection, the expression of cdk5 was detected by Western-blot.
     Results
     All plasmids and the recombinant adeno-associated virus vector carrying the cdk5-siRNA sequences were constructed successfully, the viral titer was 4×1013,it can infect the PC12 cell and down-regulated the expression of the cdk5 gene in PC12 cell.
     Conclusion
     The recombinant adeno-associated virus vector rAAV-cdk5-siRNA can interfere with the expression of cdk5 gene significantly, which lays the basis for its application in the treatment of the neurodegenerative disease.
引文
1 Sturley SL, Patterson MC, Balch W, et al. The pathophysiology and mechanisms of NP-C disease. Biochim Biophys Acta, 2004, 1685(1-3):83-7.
    2 Tseng, H. C.,Zhou, Y.,Shen, Y. and 11. Tsai, L. H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Lett. 523, 58-62 (2002).
    3 German, D. C., et al. Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease. J Comp Neurol. 433, 415-25. (2001)
    4 Nakamura, S., et al., Cyclin-dependent kinase 5 in Lewy body-like inclusions in anterior horn cells of a patient with sporadic amyotrophic lateral sclerosis. Neurology, 1997. 48(1): p. 267-70.
    5 Bu, B., et al. Niemann-Pick disease type C yields possible clue for why cerebellar neurons do not form neurofibrillary tangles. Neurobiol Dis. 11, 285-97 (2002).
    6 Borghi, R., et al., Increase of cdk5 is related to neurofibrillary pathology in progressive supranuclear palsy. Neurology, 2002. 58(4): p. 589-92.
    7 Nguyen, M.D., R.C. Lariviere, and J.P. Julien, Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron, 2001. 30(1): p. 135-47.
    8 Nakamura, S., et al., Cyclin-dependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy. J Neuropathol Exp Neurol, 1998. 57(7): p. 690-8.
    9 Tseng, H. C.,Zhou, Y.,Shen, Y. and 11. Tsai, L. H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Lett. 523, 58-62 (2002).
    10 Bu, B.,Li, J.,Davies, P. and Vincent, I. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci. 22, 6515-25 (2002).
    11 Klunemann, H., B.B, Z.M and I.V. Cell cycle markers and neurofibrillary tangles in Niemann-Pick Type. Under review 2003.
    12 Elleder M, Jirasek A: Neuropathology of various types of Niemann-Pick disease. Acta Neuropathol Suppl 1981, 7:201-203
    13 Yang Y, Geldmacher DS, Herrup K: DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci 2001, 21:2661-2668.
    14 Tomashevski A, Husseman JW, Zheng J-H, Vincent I: Constitutive Wee1 activity in adult brain neurons with M phase-type alterations in Alzheimer neurodegeneration. J Alzheimer's disease 2001, 3:195-206
    15 Bu B, Li J, Davies P, Vincent I: Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci 2002, 22:6515-6525
    16 Lee MS, Tsai LH: Cdk5: One of the links between senile plaques and neurofibrillary tangles? J Alzheimers Dis 2003, 5:127-137
    17 Nguyen MD, Boudreau M, Kriz J, Couillard-Despres S, Kaplan DR, Julien JP: Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1. J Neurosci 2003, 23:2131-2140
    18 Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, O'Hare MJ, Callaghan S, Slack RS, Przedborski S, Anisman H, Park DS: Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2003, 100:13650-13655
    1. Lee MS, Tsai LH: Cdk5: One of the links between senile plaques and neurofibrillary tangles? J Alzheimers Dis 2003, 5:127-137
    2. Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999, 402:615-622.
    3. Hannon GJ RNA interference (J). Nature, 2002, 418(6894):244-251.
    4. Chamberlin NL, Du B, Lacalle S, et al. Reconbinant adeno-associated virus vector: use for transgene expression and antergrade tract tracing in the CNS. Brain Res, 1998, 793(1-2):169-175
    5. Goldman JE, Yen SH: Cytoskeletal protein abnormalities in neurodegenerative diseases. Ann Neurol 1986, 19:209-223
    6. Trojanowski JQ, Lee VM: Phosphorylation of neuronal cytoskeletal proteins in Alzheimer's disease and Lewy body dementias. Ann N Y Acad Sci 1994, 747:92-109
    7. Nakamura S , Kawamoto Y, Nakano S , et al. p35nck5a and cyclin2 dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson’s disease. Acta Neuropathol , 1997 ,94?153~157.
    8. Borghi R , Giliberto L , Assini A , et al. Increase of cdk5 is re2 lated to neurofibrillary pathology in progressive supranuclear palsy. Neurology , 2002 , 58?589~592.
    9. Borghi, R., et al., Increase of cdk5 is related to neurofibrillary pathology in progressive supranuclear palsy. Neurology, 2002. 58(4): p. 589-92.
    10. guyen, M.D., R.C. Lariviere, and J.P. Julien, Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron, 2001. 30(1): p. 135-47.
    11. akamura, S., et al., Cyclin-dependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy. J Neuropathol Exp Neurol, 1998. 57(7): p. 690-8.
    12. Tseng, H. C.,Zhou, Y.,Shen, Y. and 11. Tsai, L. H. A survey of Cdk5 activator p35 and p25 levels in Alzheimer's disease brains. FEBS Lett. 523, 58-62 (2002).
    13. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391 (66690): 806-11.
    14. Tuschl T. RNA interference and small interfering RNAs. Chembiochem, 2001, 2(4):239-45.
    15. Hutvagner G, Zamore PD. RNAi : nature abhors a double - strand[J ] . Curr Opin Genetics & Development ,2002 ,12∶ 225-232.
    16. Hammond SM , Caudy AA , Hannon GJ . Post - transcriptional gene silencing by double - stranded RNA[J ] . Nature Rev Gen ,2001 ,2∶110~119.
    17. Sharp PA. RNA interference - 2001[J ] . Genes Dev ,2001 ,15 ∶4 85~490.
    18. Nykanen A , Haley B , Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway [J ] . Cell , 2001 , 107∶ 309-321.
    19. Elbashir S M , Harborth J , Lendeckel W, et al . Duplexes of 212 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature , 2001 , 411 (6836) : 494~498
    20. Fire A , Xu S , Montgomery M K, et al . Potent and specific genetic interference by double2stranded RNA in Caenorhabditiselegans. Nature , 1998 , 391 (6669) : 806~811
    21. Yu J Y, DeRuiter S L , Turner D L. RNA interference by expression of short interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA , 2002 , 99 (9) : 6047-6052
    22. Yang D , Buchholz F , Huang Z , et al . Short RNA duplexes produced by hydrolysis with Escherichia coli RNase Ⅲ mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA , 2002 , 99 (15) : 9942~99477
    23. Sui G, Soohoo C , Affar E B , et al . A DNA vector2based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA , 2002 , 99 (8) : 5515~5520
    24. Castanotto D , Li H , Rossi J J . Functional siRNA expression from transfectedPCR products. RNA , 2002 , 8 (11) : 1454~1460
    25. PassiniMA, Watson DJ, Vite CH, et al. Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in comp lementary patterns of neuronal transduction to AAV2 and total long2term correction of storage lesions in the brains of beta2 glucuronidase2deficientmice. J Virol, 2003, 77: 703427040.
    26. Tenenbaum L, Chtarto A, Lehtonen E, et al. Recombinant AAV2 mediated gene delivery to the central nervous system. J Gene Med, 2004, 6 ( Supp l 1)
    27. W ang X S, Khuntirat B, et al. Characterization of wild-type adeno-associated virus 2 like particles generated during recombinant viral vector production and strategies fo r their elim ination [J ]. J V iro l, 1998, 72: 5472.
    28. Grimm D, Kleinschm idt J A. P rogress in adeno-associated virus type vector production: p rom ises and p ro spects for clinical use [ J ]. Hum Gene Ther, 1999, 10:2445.
    29. L i J , Samulsk i R J , Xiao X. Ro le for highly regulated rep gene exp ression in adeno-associated virus vecto r p roduction [J ]. J V iro l, 1997, 71: 5236.
    30. A uricch io A , H ildingerM ,O ′conno r E, et al. Iso lation of h igh lyinfectious and pure adeno2associated virus type 2 vecto rs with asingle step gravity-flow co lumn [J ]. Hum Gene Ther, 2001 , 12(1) : 71276.
    31. Rosenfeld MR, Bergman I, Schramm L, et al. Adeno2associated viral vector gene transfer into lep tomeningeal xenografts. J Neurooncol, 1997, 34: 13921.
    32. LoWD, Qu G, Sferra TJ, et al. Adeno2associated virus2mediated gene transfer to the brain: duration and modulation of exp ression. Hum Gene Ther, 1999, 10: 2012213.
    33. Marco A, Passini and John H. wolfe. Widespread Gene Delivery and Structure-specific patterns of Expression in the brain after Intrarentrialar Injections of Neonatal mice with Andeno-Associated virus Vestor. J. Virol 2001, 12:75(24)12382-12392.
    1. Sturley SL, Patterson MC, Balch W, et al. The pathophysiology and mechanisms of NP-C disease. Biochim Biophys Acta, 2004, 1685(1-3):83-7.
    2. Davies JP, Ioannou YA. Topological analysis of Niemanni-Pick C1 protein. J Biol Chem, 2000, 275(32): 24367-74.
    3. Yang CC, Su YN, Chiou PC, et al. Six novel NPC1 mutations in Chinese patients with Niemann-Pick disease type C. J Neurol Neurosurg Psychiatry, 2005, 76(4): 592-5.
    4. Vies JP, Ioannou YA. Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of HMG-CoA and SCAP. J Biol Chem, 2000, 275(32): 24367-74.
    5. Chikh K, Rodriguez C, Vey S, et al. Niemann-Pick type C disease: subcellular location and functional characterization of NPC2 proteins with naturally occurring missense mutations. Hum Mutat, 2005, 26(1):20-28.
    6. Friedland N, Liou HL, Lobel P, et al. Structure of a cholesterol-binding protein deficient in Niemann-Pick type C2 disease. Proc Natl Acad Sci, 2003, 100(5): 2512-7.
    7. Gevry N, Lacroix D, Song JH, et al. Porcine Niemann-pick-C1 protein is expressed in steroidogenic tissues and modulated by camp. Endocrinology, 2002, 143(2): 708-16.
    8. Ong WY, Sundaram RK, Huang E, et al. Neuronal localization and association of Niemann-Pick C2 protein(HE/NPC2) with the postsynaptic density. Neuroscience, 2004, 128(3): 561-570.
    9. Yiannis A. The structure and function of the Niemann-Pick C1 protein. Molecular Genetics and Metabolism, 2000, 71(2): 175-181.
    10. Bi X, Liu J, Yao Y, et al. Deregulation of the phosphatidylinositol-3 kinse signaling cascade is associated with neurodegeneration in npc-/- mouse brain. Am J Pathol, 2005, 167(4):1081-92.
    11. Karten B, Vance DE, Campenot RB, et al. Trafficking of cholesterol from cellbodies to distal axons in Niemann-Pick C1-deficient neurons. J Biol Chem, 2003, 278(6):4168-75.
    12. Tashiro Y, Yamazaki T, Shimada Y, et al. Axon-dominant localization of cell-surface cholesterol in cultured hippocampal neurons and its disappearance in Niemann-Pick type C model cells. Eur J Neurosci, 2004, 20(8): 2015-21.
    13. Marjorie CG, Robert M, Steven UW. Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent. Current Biology, 2003, 13(15): 1324-9.
    14. Liu Y, Wu YP, Wada R, et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann–Pick C disease mouse. Hum Mol Genet, 2000, 9(7): 1087-92.
    15. Tamura H, Takahashi T, Ban N, et al. Niemann-Pick type C disease: Novel NPC1 mutations and characterization of the concomitant acid sphingomyelinase deficiency. Mol Genet Metab, 2005, 86(5): 416-21.
    16. Loftus SK, Erickson RP, Walkley SU, et al. Rescure of neurodegeneration in Niemann-Pick C mice by a prion-promoter-driven Npc1 cDNA transgene. Hum Mol Genet, 2002, 11(24): 3107-14.
    17. Benitez KG, Ramirez RG, Ortiz L, et al. The neuronal cytoskeleton as a potential therapeutical target in neurodenerative disease and schizophrenia. Curr Drug Targets CNS Neurol Disord, 2004, 3(6): 515-33.
    18. Smith PD, O’Hare MJ, Park DS. Emerging pathogenic role for cyclin dependent kiases in neurodegeneration. Cell Cycle, 2004, 3(3): 289-91.
    19. Zhu X, McShea A, Harris PL, et al. Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer’s disease. J Neurosci Res, 2004, 75(5): 698-703.
    20. Fischer A, Sananbenesi F, Pang PT, et al. Opposing Roles of transient and Prolonged Expression of p25 in Synaptic Plasticity and Hippocampus-Dependent Memory. Neuron, 2005, 48(5): 825-38.
    21. Noble W, Olm V, Takata K, et al. Cdk5 is a factor in tau aggregation and tangle formation in vivo. Neuron, 2003, 38(4): 555-65.
    22. Goedert M. Neurofibrillary pathology of Alzheimer’s disease and othertauopathies. Prog Brain Res, 1998, 117: 287-306.
    23. Zhang M, Jin L, Chakrabarty P, et al. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick type C Mice. American Journal of Pathology, 2004, 165(3): 843-853.
    24. Vincent I, Pae CI, Hallows JL. The cell cycle and human neurodegenerative disease. Prog Cell Cycle Res, 2003, 5:31–34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700