杭州湾湿地四种湿地环境土壤呼吸特征以及土壤活性有机碳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地作为陆地生态系统碳循环的重要组成部分,包括由淹水而引起的厌氧环境及由水淹而引起的耐水淹型植物。湿地只占陆地表面积很少的部分,但却是巨大的陆地碳库,约为整个土壤碳库的3%~68%。湿地生态系统90%以上的碳储量储存在土壤中,是多种温室气体的源和汇。多数湿地都是温室气体的“汇”,受到人类活动的干扰后,随着水分减少和土壤氧化性能增强,植物残体及泥炭的分解速率将会大大提高,结果导致湿地土壤有机碳的损失,而成为温室气体的“源”。全球气候变暖也加剧了湿地碳排放。目前由于气候变暖,湿地水温及土壤温度升高湿地能量平衡受到影响,导致湿地地表水水位及积水面积变化,进而影响了温室气体排放强度及湿地碳循环模式。杭州湾湿地是我国滨海湿地主要分布区之一,也是受人类活动影响最剧烈的区域之一。改革开放以来已围垦1.33万hm2,分10次向北推移海岸线达16km左右,围垦面积约占城市面积的60%还多。本研究选取杭州湾南岸未围垦的四种湿地环境芦苇、互花米草、海三棱藨草以及光滩作为研究对象,采用LI-6400连接土壤呼吸室进行连续12个月的土壤CO2测定,同时分析土壤活性有机碳含量、土壤酶活性以及其他相关理化指标,以揭示杭州湾典型湿地土壤呼吸特征、土壤CO2年排放量以及湿地土壤碳密度分布状况。主要研究结论如下(1)2010年1~12月利用Li-6400光合仪连接09土壤呼吸室对杭州湾四种湿地环境(芦苇、互花米草、海三棱藨草)以及对照(光滩)进行了连续12个月的土壤呼吸测定。结果表明:湿地夏季土壤呼吸速率日动态表现为昼高夜低,均呈明显的单峰曲线变化。与土壤温度的日动态变化趋势相近,在13:00~14:00之间达到峰值,在凌晨2:00-4:00之间到达低谷。四种湿地环境土壤日平均呼吸速率大小顺序为芦苇(8.34±4.53)umol/(m2.s)>互花米草(7.49±4.21)umol/(m2.s)>海三棱藨草(4.42±2.40)umol/(m2.s)>光滩(2.33±1.53)umol/(m2.s)。四种湿地环境土壤呼吸季节动态变化趋势表现为单峰曲线,从整年来看,土壤呼吸速率在4月到10月份相对较高,7月份达到最高值。从四季来看,四种湿地环境土壤呼吸速率大小顺序为:夏季>秋季>春季>冬季。四种湿地环境土壤呼吸速率与气温、土壤10cm处温度均有显著的指数函数相关性。其中,芦苇湿地,互花米草湿地,光滩湿地土壤10cm处温度与呼吸速率的相关性大于气温与土壤呼吸速率的相关性。海三棱藨草湿地土壤温度与土壤呼吸速率的相关性(R2=0.366)小于气温与土壤呼吸速率的相关性(R2=0.5773)。芦苇、互花米草、海三棱蔗草、光滩四种湿地土壤CO2年通量分别为6483.40 g/m2.a,5228.96 g/m2.a,2295.48 g/m2.a,975.48g/m2.a。
     (2)2010年从1月到12月采集四种湿地环境芦苇、互花米草、海三棱藨草以及光滩湿地的土壤,测定四种湿地环境的土壤活性有机碳含量季节变化、四种土壤酶活性的年变化以及土壤基本理化性质,结果表明:四种湿地环境土壤微生物量碳年平均含量为:互花米草(143.79 mg/kg)>海三棱藨草(138.39 mg/kg)>芦苇(135.52 mg/kg)>光滩(133.03 mg/kg);土壤溶解性碳年平均含量为:芦苇(319.33 mg/kg)>互花米草(316.47 mg/kg)>海三棱藨草(286.98 mg/kg)>光滩(278.20 mg/kg);总有机碳年平均含量为:芦苇(7.87 g/kg)>光滩(7.65g/kg)>互花米草(7.39 g/kg)>海三棱藨草(6.81 g/kg)。四种湿地环境土壤总有机碳年变化小,含量相对稳定,而微生物量碳(变异系数>70%)和溶解性碳(变异系数50%)年变异较大。四种湿地环境土壤磷酸酶活性、脲酶活性、β-葡萄糖苷酶活性以及蔗糖酶活性年变异系数(C.V)都在50%以上,甚至超过100%。土壤微生物量碳与土壤磷酸酶、脲酶、β-葡萄糖苷酶以及蔗糖酶活性呈显著性负相关,不同季节相关性有差异。土壤溶解性碳与土壤磷酸酶、脲酶、β-葡萄糖苷酶活性在夏季呈显著的正相关关系。四种湿地0-5cm表层土壤碳密度大小为:芦苇湿地(37.8 t/ha)>互花米草湿地(36.2 t/ha)>海三棱藨草湿地(32.9 t/ha)>光滩(24.9 t/ha);10-20cm深度土壤碳密度为芦苇湿地(92.3 t/ha)>海三棱藨草(86.8 t/ha)>互花米草(82.3 t/ha)>光滩(78.2 t/ha)。
     (3)采用开顶式增温法对杭州湾湿地芦苇群落进行短期的模拟增温处理,研究土壤CO2以及土壤酶活性对模拟增温的响应,结果表明:经过短期的模拟增温处理,土壤呼吸速率比常温下提高了17.36%。土壤10cm深度温度与土壤呼吸速率的相关性比气温与土壤呼吸速率的相关性更好;增温处理下的土壤温度敏感性指数高于常温状态;土壤磷酸酶、脲酶、β-葡萄糖苷酶以及蔗糖酶活性在短期的模拟增温后都有不同程度的提高。
     综上所述,本研究对杭州湾湿地土壤CO2排放情况以及土壤活性有机碳储存规律进行了研究,得出了滨海湿地十壤CO2的年排放规律以及活性有机碳储存的年变化规律,同时明确了该区域湿地固碳潜力。研究结果将有助于区内湿地保护与利用的科学布局,同时也为实施湿地碳增汇减排工程提供了理论指导和基础数据支撑,对湿地管理具有重要的实践意义。
As the important part of the ecosystems carbon cycle, wetland ecosystem include water resistant flooded plant and its emvironment. The area of wetland is a few part of of the land surface,and its soil carbon library is huge,about the whole soil carbon library 3%~68%. There are more than 90 percent of the wetland ecosystem carbon storage store in soil, and the wetland ecosystem is the source and remit of a variety of greenhouse gas. Owing to the interferencing,the moisture reduce, the soil oxidation plant residues strenthen, the decompositon rate of plant residues and peat improve,and soil organic carbon wastage,then more greenhouse gas come from the wetland. Global warming has increased wetland carbon emissions.At present due to climate warming, wetland soil temperature and temperature of wetland energy balance affected, surface water and water area of wetland changes, which has affected the greenhouse gas emissions intensity and wetland carbon cycle mode. Hangzhou bay wetland is one of the main coastal wetland, and is also one of the areas affected by human. Since the reform and opening, there are hm21.33 million wetland reclamation. The costline has remove to north about 10 times 16km.The area of reclamation accounts for about 60% of the city area. The research object are Phragmites communis(LW), Spartina alterniflora(MC), Scirpusm ariqueter(BC) and the beach(GT) in south of Hangzhou bay.We measured the soil respiration by LI-6400 connected with the soil respiration chamber, and determin ate the soil organic carbon and the activity of the soil enzyme, to reveal the characteristics of typical wetland soil respiration, soil emissions of CO2 in Volume and typical wetland soil carbon density distribution. The main conclusions are as follows:
     (1)The soil CO2 was determinated by Li-6400 photosynthesis system connecting 09 of soil respiration chamber from January 2010 to December on LW,MC,BC,GT wetland.The results showed that:the daly dynamic performance in day more than ningt in summer, showed a clear single peak curve. The daily soil temperature trends are similar, the peak between 13:00 and 14:00,2:00 to 4:00 in the trough between the arrival. The order of four kinds of wetlands soil respiration rate:LW (8.34±4.53) umol/(m2.s)> MC (7.49±4.21) umol/(m2.s)> BC (4.42±2.40) umol/(m2.s)> GT (2.33±1.53) umol/(m2.s).Seasonal dynamics trend of four kinds of soil respiration showed a single peak curve, from the point of view throughout the year, soil respiration rate in the April to October is relatively high, the highest value in July. And the order of the season variation is:summer> autumn> spring> winter.There is a significant corrlation on soil respiration with air temperature,soil temperature at 10 cm depth. The corrlation of soil respiraton with soil temperature is bigger than with the air temperature at LW,MC,GT wetland, and smaller at BC wetland (R-=0.5773).The soil CO2 at LW,MC,BC,GT in a year was 6483.40 g/m2.a,5228.96 g/m2.a,2295.48 g/m2.a,975.48 g/m2. a.
     (2) The soil was acquisited at LW,MC,BC,GT wetland from January 2010 to December, and determinate the soil organic carbon, the soil enzyme activity and the soil physical and chemical properties, the results show that:The soil microbial biomass carbon content of the annual average: MC(143.79 mg/kg)>BC(138.39 mg/kg)>LW(135.52 mg/kg)>GT(133.03 mg/kg); the average carbon content of soil dissolved as:LW (319.33 mg/kg)> MC(316.47 mg/kg)> BC (286.98 mg/kg)> GT(278.20 mg/kg); the average total organic carbon content:LW(7.87 g/kg)>GT (7.65 g/kg)> MC(7.39 g/kg)> BC(6.81 g/kg).The changes in soil organic carbon in the four wetland types is small, and relatively stable, while microbial biomass C and dissolved carbon of variable.The C.V of soil phosphatase activity, urease,β-glucosidase activity and invertase activity above 50%, even more than 100%.There is a significant negatively correlation on microbial biomass carbon with soil phosphatase, urease,β-glucosidase and the activity of invertase activity, and there is a significant positive correlation on soil soluble carbon with soil phosphatase, urease,β-glucosidase activity in summer.The soil carbon density between0-5cm depth:LW(37.8 t/ha)>MC(36.2 t/ha)>BC (32.9 t/ha)>GT(24.9 t/ha); 10-20cm depth of soil carbon density:LW(92.3 t/ha)>BC(86.8 t/ha)>MC(82.3 t/ha)>GT(78.2 t/ha).
     (3) To research the response of the soil CO2 and soil enzyme activity to the temperature,we warm artificial to the LW by open top container at Hangzhou bay wetland.the results show that:after the short-term simulated warming treatment, soil respiration rate than Increased 17.36%. There is a good correlation of soil respiration with soil temperature at 10 cm depth. The Q10 of warming is bigger than normal state.The phosphatase, urease,β-glucosidase and Invertase activity after simulated warming in the short term has a different degree.
     In summary, Soil CO2 emissions and soil active organic carbon storage were studied at Hangzhou bay wetland.We harvest the coastal wetlands of CO2 Emission of soil active organic carbon stocks and annual variation, and carbon sequestration potential of wetlands. These results help us to contribute to the adjustment of the region,and provide the basic data for carbon sinks and emission reduction measures.It is important for practice.
引文
[1]Franzen LG. The earth afford to lose the wetlands in the battle against the increasing greenhouse effect. Interna tional Peat Society Proceedings of International Peat Congress, Uppsala,1992:1-18。
    [2]Inubushi K, Furukawa Y, Hadi A, et al. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere,2003,52:603-608
    [3]Mitsch WJ. Wetlands. New York:Van Nostrand Rein hold Company Inc,1986
    [4]唐凯,丁丽佳,陈往溪.土壤呼吸研究概述[J].广东气象.2008,3(30):36-38.
    [5]张丽华,陈亚宁,李卫红等.干旱区荒漠生态系统的土壤呼吸[J].生态学报.2008,5(28):1912-1920.
    [6]ZakDR, Pregitzer R S, Curtis P S, et,al. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles[J]. Plant Soil,1993,151:105-117.
    [7]SohleniusB, SandorA. Ploughing of a perennial grassland-effect on the nematode fauna[J]. Pedobiol,1989,33(4): 199-210.
    [8]杨玉盛,董彬,谢锦升等.森林土壤呼吸及其对全球变化的响应.生态学报[J].2004,3(24):584-585.
    [9]王艳芬,纪宝明,陈佐忠等.锡林河流域放牧条件下CH4通量研究结果初报[J].植物生态学报.2000,24(6):693-696.
    [10]张金霞,曹广鸣,周党卫等.退化草地暗沃寒冻雏形土CO2释放的日变化和季节变化动态[J].土壤学报,2001,38(1):31-40.
    [11]徐洪灵,张宏.我国高寒草甸生态系统土壤呼吸研究进展[J].草业与畜牧.2009,2:1-5
    [12]李玉强,赵哈林,李玉霖等.沙地土壤呼吸观测和测定方法比较[J].干旱区地理.2008,5(31):681-684.
    [13]张志山,谭会娟,王新平等.沙漠人工植被区土壤呼吸初探[J].中国沙漠.2005,25(4):525-528.
    [14]谢静霞,翟翠霞,李彦等.盐生荒漠与绿洲农田土壤CO2通量的对比研究[J].自然科学进展.2008,3(18):262-268.
    [15]刘绍辉,方精云,清田信.北京山地温带森林土壤呼吸研究[J].植物生态学报,1998,22(2):119-126.
    [16]王淼,姬兰柱,李秋荣等.土壤温度和水分对长白山不同森林类型土壤呼吸研究[J].应用生态学报,2003,14(18):1234-1238.
    [17]蒋丽芬,石福臣.东北地区落叶松人工林的根呼吸[J].植物生理学通讯,2004,40(1):27-30.
    [18]刘建军,王德祥,雷瑞德等.秦岭天然油松、锐齿栎林地土壤呼吸与CO2释放[J].林业科学,2003,39(2):8-13.
    [19]王光军,天大轮,闫文德等.亚热带杉木林和马尾松群落十壤系统呼吸其影响因子[J].植物生态学报.2009,33(1):53-62.
    [20]王凤文,杨书运,徐小牛等.亚热带3种森林植被类型十壤的呼吸特征[J].贵州农业科学.2009,37(3):82-84.
    [21]骆士寿,陈步峰,李意德等.海南岛尖峰岭热带山地雨林土壤和凋落物土壤呼吸研究[J].生态学报,2001, 21(12):2013-2017.
    [22]杨玉盛,陈水光,董彬等.格氏拷天然林和人工林土壤呼吸对干湿交替的响应[J].生态学报,2004,24(5):954-958.
    [23]张慧东,周梅,赵鹏武等.寒温带兴安落叶松林土壤呼吸特征[J].林业科学.2008,9(44):142-145.
    [24]逻辑,杨忠,杨清伟.贡嘎山东坡峨眉冷杉林区土壤CO2排放[J].土壤学报,2000,37(3):402-409.
    [25]黎明.天鹅洲湿地生态系统C02通量动态变化及其影响因子评价[D].博士论文.湖北武汉:中国科学院武汉植物园,2007
    [26]傅丽娜.湖滨带土壤呼吸和土壤微生物量碳的动态研究[D].硕士论文.江苏南京:南京林业大学,2009.
    [27]谢艳兵,贾庆宇,周莉等.盘锦湿地芦苇群落土壤呼吸作用动态及其影响因子分析[J].气象与环境学报,2006,22(4):53-58.
    [28]宋长春,杨文燕,徐小锋等.沼泽湿地生态系统土壤CO2和CH4排放动态及影响因素[J].环境科学,2004,25(4):1-6.
    [29]王毅勇,宋长春,闰百兴等.三江平原不同土地利用方式下湿地土壤CO2通量研究[J].湿地科学,2003,1(2):111-114.
    [30]杨青,吕宪国.三江平原湿地生态系统土壤呼吸动态变化的初探[J].土壤通报,1999,30(6):254-256.
    [31]郝庆菊,王跃思,宋长春等.三江平原湿地土壤CO2和CH4排放的初步研究[J].农业环境科学学报,2004,23:846-85.
    [32]杨继松,刘景双,孙丽娜.三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放[J].生态学报.2008,2(28):806-810.
    [33]陈宝玉,王洪君,杨建等.土壤呼吸组分区分及其测定方法东北[J].林业大学学报.2009,1(37):97-98.
    [34]马涛.长江中游滩地不同土地利用方式土壤呼吸特征研究.硕士学位论文.2007.
    [35]Kelting D L, Burger J A, Edwards G S.1998. Estimating root respiration, microbial respiration in the rhizosphere and root free soil respiration in forest soils.Soil Biology and Biochemistry,30(7):961-968.
    [36]苏永红,冯起,朱高峰等.土壤呼吸与测定方法研究进展.中国沙漠[J].2008,1(28):57-61.
    [37]肖胜生,叶功富,董云社.木麻黄沿海防护林土壤呼吸动态及其关键因子[J].中国环境科学.2009,29(5):531-537.
    [38]王光军,田大伦,米凡等.枫香(L iqu idamba r formosana)和樟树(C innamomumcamphora)人工林土壤呼吸及其影响国子的比较[J].生态学报.2008,28(9):4107-4114.
    [39]Houghton, R.A.&D.L.Skole.1990. Carbon In The Earth as Transformed by Human Action Cambridge. Cambridge University Press.393-408.
    [40]蒋延玲,周广胜,赵敏等.长白山阔叶红松林生生态系统土壤呼吸作用研究[J].植物学报.2005,29(3):411-414.
    [41]孟磊,丁维新,蔡祖.长期施肥潮土土壤呼吸的温度和水分效应[J].生态环境.2008,17(2):693-698.
    [42]Davidson E A, E Belt&R D Boone.1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology,4:217-227.
    [43]Davidson E A, L V Verchot, J H Cattanio etal.2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia, Biogeochemistry,48:53-69.
    [44]Orchard V A&F J Cook.1983. Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry,22:153-160.
    [45]Gupta S R&J S Singh 1981. Soil respiration in a tropical grassland. Soil Biology and Biochemistry,13:261-268.
    [46]Edwards N T.1975.Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor.Soil Science Society America Proceedings,39:361-365.
    [47]Doran J W,L N Mielke&J F Power.1990.Microbial activity as regulated by soil water-filled pore space.In transactions of the 14th International congress of Soil Science.SymposiumⅢ-3.Ecology of soil Microorganism in the Microhabital Environments.94-99.
    [48]Linn D M&J W Doran.1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils.Soil Science Society of America Journal,48:1267-1272.
    [49]黄辉,杨玉盛,高人等.杉木林与楠木林土壤呼吸昼夜变化及与土温变化的关系[J].福建师范大学学报.2009,25(2):113-118.
    [50]Bauhaus J, Pare D, Cote L.1998. Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemistry,1077-1089.
    [51]RaichJW, Wtufekcioglu.2000. A Vegetation and soil respiration:Correlations and Controls. Bio-geochemistry,48: 71-90.
    [52]OhashiM, Gyokusen K, Saito A.2000. Contribution of root respiration to total soil respiraton in a Japanese cedar artificial forest.Ecological Research,15:323-333.
    [53]Kucera C L, Kirkham D R.1971. Soil respiration srudies in tallgrass prairie in Missouri.Ecology,52:912-915.
    [54]Boone R D, Naderhoffer K J, Canary J D etal.1998. Roots exert astrong influence on the temperature sensitivity of soil respiration. Nature,396:570-572.
    [55]Sims P.Bradford J.A.Carbon dioxide fluxes in a southern plains prairie[J]. Agricultural and Forest Meteorology, 2001,109:117-134.
    [56]黄靖宇,宋长春,张金波等.凋落物输入对三江平原弃耕农田土壤基础呼吸和活性炭组分的影响[J].生态学报.2008,7(28):3418-3423.
    [57]RaichJW, Nadelhoffer KJ.1989.Belowground carbon allocation inforest ecosystems:Global trends. Ecologr,70: 1346-1354.
    [58]Buchmann N.2000. Biotic and abiotic factors controlling soil respirationrates in Picea abies stands. Soil Biology and Biochemistry,32:1625-1635.
    [59]MAXM-C, WOODM, JARVIS S C. A microplate flurimetric assay forthe study of enzyme diversity in soils [J]. Soil Biology & Biochemistry,2001, (33):1633-1640.
    [60]DICK R P. Soil enzyme activities as indicators of soil quality [A]. in:J.W.Doran, D.C.Coleman, D.F. Bezdicek, B.A.Stewart (Eds.), Defining Soilqanlity for a sustaonable environment [M]. Americon society of Agronomy, Madison WI,1994, PP.107-124.
    [61]DICK R P. Soil enzyme activities as indicators of soil quality [A]. in:J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart (Eds.), Defining soil quality for a soil enzyme activities as integrative indicators of soil health [A]. inC.E. Pankhurstl, B.M. Double, V.V.S.R.Gupta (Eds.), Biological Indicators of Soil Health [M]. CAB International,Wallingford, UK,1997:121-156.
    [62]XIAO-HUA YAO, HANG MIN, ZHEN-HUA L, etal. Influence of acetamiprid on soil enzymatic activities and respiration [J]. European Journal of Soil Biology,2006(42):120-126.
    [63]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展,2005,20(7):778-785.
    [64]Schlesinger W H,Andrews J A.Soil respiration and the global carbon cycle[J].Biogeochemistry,2000,48:7-20.
    [65]CHRQST, R J. Environmental control of the synthesis and activity ofaquatic microbial ectoenzymes [A].in: Chrost, R.J.(Ed.), MicrobialEnzymes in Aquatic Environments [C]. Springer Verlag, New York,1991:29-53.
    [66]沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38
    [67]Wander M. M., Traina S. J., Stinner B. R., et al. The effects of organic and conventional management on biologi cally active soil organic matter fractions [J]. Soil Sci. Soc. Am. J.,1994,58:1130-1139.
    [68]Haynes R. J. Labile organic matter fractions as central components of the quality of agricultural soils:an over view [J]. Adv. Agron,2005,85:221-268.
    [69]Zhou G. M., Xu J. M., Jiang P. K. Effect of management practices on seasonal dynamics of organic carbon in soils under bamboo plantations[J]. Pedosphere,2006,16(4):525-531
    [70]Hayakawa K. Seasonal variations and dynamics of dissolved carbohydrates in Lake Biwa[J]. Organic Geochem-istry,2004,35:169-179
    [71]Piao H. C., Hong Y. T., Yuan Z. Y. Seasonal changes of microbialbiomass carbon related to climatic factors in soils from Karst areas of southwest China[J]. Biol. Fertil. Soils,2000,30:294-297
    [72]Janzen, H H, Campbell C A, Brandt SA, Lafond G P, Townley Smith, L. Light fraction organicmatter in soils from longterm crop rotations. SoilScience Society of America Journal,1992,56:1799-1806.
    [73]Biederbeck B O, Zentner R P. Labile soil organic matter as influenced by cropp ing p ractices in an arid environment. SoilBiology &Biochemistry,1994,26 (12):1647-1656.
    [74]Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropp ing on soil physical and chemical p roperties in northwestern New SouthWales. Australian Journal of Agricultural Research,1998,36 (4):669-681.
    [75]Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index.Auslralian Journal ofAgricultural Research,1995,46 (7):1459-1466.
    [76]WanderM M, Traina S J, StinnerB R. Organic and conventionalmanagement effects on biologically active soil organic matter pools. Soil ScienceSociety of America Journal,1994,58:1130-1139.
    [77]Coleman D C, Rcid C P P, Cole C. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research,1983,13:1-55.
    [78]赵劲松,袁星,张旭东,等.2003.土壤溶解性有机质的特性与环境意义[J].应用生态学报,14(1):126-130.
    [791王晶,谢宏图,朱平,等.2003.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,22(6):109-112.
    [80]Blair GJ, Lefroy RDB, Lisle L.1995. Labile soil carbon fractions based on the degree of oxidation and the development of a carbon management index for agricultural systems[J]. A us. J.A gric. Res. Ecol,46:1459-1466.
    [81]Anderson TH, Domsch KH.1990. Application of ecophysiological quotients (qCO2 and qD) on microbial biomasses fromsoils of different cropping histories [J]. Soil Biol. Biochem.,22:251-255.
    [82]高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J].水土保持学报,2006,20(1):76-79.
    [83]万忠梅,宋长春.土壤酶活性对生态环境的响应研究进展[J].土壤通报.2009,40(4):952-954.
    [84]Badia D V and A lcaniz J M. Basal and specificm icrobial resp iration in sem iarid agricultural so ils:O rganic amendment and irrigation management effects. Geom icrobiology J ou rnal,1993,11 (3):261-274.
    [85]Chagas C I, et al. T illage and cropp ing effeats on selected p roperties of an argiudo 11 in A rgentina. Comm unications in Soil S cience and P lant A naly sis,1995,26 (56):643-655.
    [86]A rmentano T V andM enges E S. Patterns of change in the carbon balance of o rganic so il2wetlands of the temperate zone.J. E col,1986,74:755-774.
    [87]Detw iler R P and Hall C A S. T rop ical fo rest and the global carbon cycle.S cience,1988,239:42-47.
    [88]张义辉,李洪建.陆地生态系统土壤呼吸研究进展.山西水土保持科技.2009,4:1-4.
    [89]Raich.J.W&W.H.Schlesinger.1992.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus,44(8):81-99
    [90]Musselman,R.C.&D.G fox.1991.A review of the role of temperate forests in the global CO2 balance.Journal of the Air&Waste Management Association,41:798-807.
    [91]Rustad,L,T,Huntington&R.D.Boone.2000. Controls on soil respiration:Implications for climate change. Biogeochemistry,48:1-6.
    [92]刘子刚.湿地生态系统碳储存和温室气体排放研究[J].地理科学,2004,24(5):634-639.
    [93]宋长春.湿地生态系统碳循环研究进展[J].地理科学,2003,23(5):622-628
    [94]田应兵,混地土壤碳循环研究进展[J].长江大学学报,2005,2(8):1-4.
    [95]宋长春.湿地生态系统对气候变化的响应[J].湿地科学,2003,1(2):122-127.
    [96]吴明.杭州湾滨海湿地生态特征及保护利用研究.浙江林业科技[J].2004,6(24):42-46
    [97]吴明,邵学新,胡锋等.围垦对杭州湾南岸滨海湿地养分分布的影响.土壤[J].2008,40(5):760-764.
    [98]潘新丽,林波,刘庆.模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响.应用生态学报 [J].2008,19(8):1637-1643.
    [99]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [100]许光辉,郑洪元,土壤微生物分析方法手册[M].1986,北京:农业出版社,
    [101]MCLATCHEY G P, REDDY K R. Regulation of or ganic matter decomposition and nutr ient release in a w etland soil[J]. Journal of Environmental Quality,1998,27(5):1268-1274.
    [102]Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass p rairie. Nature[J], 2001,413:622-625.
    [103]XuM, Qi Y. Spatial and seasonal variation ofQ10 determined by soil resp iration at a Sierra Nevadan forest. GlobalBiogeochemical Cycles[J].2001,15 (3):687-696.
    [104]李甲亮,陆兆华,王琳等.芦苇湿地酶活性动态变化及其净化功能相关性[J].中国海洋大学学报.2008,38(3):483-488.
    [105]田幼华,谢辉,吕光辉.艾比湖湿地典型群落土壤酶分布规律初探[J].干旱区资源与环境.2010,24(9):173-178.
    [106]Turner B L, Hopkins D W, H aygarth P M, e t al. β-glucosidaseact ivity in pasture soils [J].Applied soil ecology,2002,20:157-162.
    [107]周玮,周运超.北盘江卡斯特峡谷区不同植被类型的土壤酶活性[J].林业科学.2010,46(1):136-141.
    [108]Ross D J, Speir T W. Soil microbial biomass, C and N mineraliza2tion and enzyme activities in a calcareous [J] Soil Biology and Bio-chemistry,1995,27(11):1431-1443.
    [109]Kang H, Kim SY, Nathalie F, et al. Shifts of soil enzyme activitiesin wetlands exposed to elevated CO2 [J]. Science of the Total Environment,2005,337(123):20,207-212.
    [110]杨万勤,钟章成,韩玉萍.缙云山森林土壤酶活性的分布特征、季节动态及其与四川大头茶的关系研究[J].西南师范大学学报:自然科学版,1999,24(3):318-324.
    [111]高雪峰,张功,卢萍.短花针茅草原土壤的酶活性及其生态因子的季节动态变化研究[J].内蒙古师范大学学报:自然科学版,2006,35(2):226-229.
    [112]刘存歧,陆健健,李贺鹏.长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性[J].生态学报.2007,27(9):3663-3668.
    [113]汪青,刘敏,侯立军等.崇明东滩湿地CO2、CH4和N2O排放的时空差异[J].地理研究,2010,29(5):935-945.
    [114]张金波,宋长春,杨文燕..沼洋湿地垦殖对土壤碳动态的影响[J].地理科学.2006,26(3):340-343.
    [115]刘景双,杨继松,于君衬宝,王金达.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报.2003,17(3):5-8.
    [116]Ross D J, Speir T W. Soil microbial biomass, C and N mineraliza2tion and enzyme activities in a calcareous [J]. Soil Biology and Bio-chemistry,1995,27(11):1431-1443.
    [117]Kang H, Kim SY, Nathalie F, et al. Shifts of soil enzyme activitiesin wetlands exposed to elevated CO2 [J]. Science of the Total Environment,2005,337(123):20,207-212.
    [118]李甲亮,陆兆华,王琳等.芦苇湿地酶活性动态变化及其净化功能相关性[J].中国海洋大学学报.2008,38(3):483-488.
    [119]田幼华,谢辉,吕光辉.艾比湖湿地典型群落土壤酶分布规律初探[J].干旱区资源与环境.2010,24(9):173-178.
    [120]Turner B L, Hopkins D W, H aygarth P M, e t al. β-glucosidaseact ivity in pasture soils [J].Applied soil ecology,2002,20:157-162.
    [121]周玮,周运超.北盘江卡斯特峡谷区不同植被类型的土壤酶活性[J].林业科学.2010,46(1):136-141.
    [122]徐雁,向成华,李贤伟.土壤酶的研究概况[J].四川林业科技.2010,31(2):14-19.
    [123]刘存歧,陆健健,李贺鹏.长江口潮滩湿地土壤酶活性的陆向变化以及与环境因子的相关性[J].生态学报.2007,27(9):3663-3668.
    [124]高雪峰,张功,卢萍.短花针茅草原土壤的酶活性及其生态因子的季节动态变化研究[J].内蒙古师范大学学报:自然科学版,2006,35(2):226-229.
    [125]张金波,宋长春,杨文燕.沼泽湿地垦殖对土壤碳动态的影响[J].地理科学.2006,26(3):340-343.
    [126]刘景双,杨继松,于君宝,王金达.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报.2003,17(3):5-8.
    [127]HARRISON A F. Relationship between intensity of phosphatase activity and physico-chemical properties in woodland soils[J]. Soil Biology and Biochemistry,1983,15:93-99.
    [128]SPEIR T W, COWLING J C. Phosphatase activities of pasture plants and soils:relationship with plant productivity and soil P fertility indices[J]. Biology and Fertility of Soils,1991,12:189-194.
    [129]KRAMER S, GREEN D M. Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland[J]. Soil Biology and Biochemistry,2000,32:179-188.
    [130]Dick R P. Soil enzyme activities as indicators of soil quality. In:J. W. Doran, D. C. Coleman, D. F. Bezdicek, B. A. Stewart eds. Defining Soil Quality forA Sustainable Environment. American Society of Agronomy, Madison, W I,1994.107-124.
    [131]Dick R P. Soil enzyme activities as integrative indicators of soil health. In:C. E. Pankhurstl, B. M. Double, V. V. S. R. Gup ta eds. Biological Indicators of Soil Health. CAB International, Wallingford, UK,1997,121-156.
    [132]Xiao-hua Y, HangM, Zhen-hua L, et al. Influence of acetamip rid on soil enzymatic activities and resp iration. European Journal of Soil Biology,2006,42:120-126.
    [133]MaxMC, WoodM, Jarvis S C. A microp late flurimetric assay for the study of enzyme diversity in soils. SoilBiology &Biochemistry,2001,33:1633-1640.
    [134]关松荫.十壤酶及其研究法.北京:农业出版社,1986.274-323.
    [135]Coleman D C, Reid C P P, Cole C. Biological strategies of nutrient cycling in soil systems. Adwances in Ecological Research,1983,13:1-55.
    [136]WanderM M, Traina S J, Stinner B R, et al. The effects of organic and conventional management on biologically active soil organic matter fractions. Soil Sci Soc Am J,1994,58:1130-1139.
    [137]Zsolnay A.1996. Dissolved humus in soilwaters [C]//PiccoloA (ed.). Humus Substances in Terrestrial Ecosystems. Amsterdam:Elsevier.171-223.
    [138]柳敏,宇万太,姜子绍,等.土壤活性有机碳[J].生态学杂志,2006,25(11):1412-1417.
    [139]高俊琴,欧阳华,白军红.若尔盖高寒湿地土壤活性有机碳垂直分布特征[J].水土保持学报,2006,20(1):76-79.
    [140]GddeM, DavidM B, ChristM J et al.1996. Carbon mobiliza2tion from the forest floor under red sp ruce in the northeasternUSA [J]. Soil Biology and Biochemistry,28(9):1181-1189.
    [141]万忠梅,宋长春,郭跃东等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报.2008,28(12):5981-5985.
    [142]吴建国,吕佳佳.十壤有机碳和氮的分解对温度变化的响应机制.生态学杂志[J].2008,27(9):1601-161.
    [143]万忠梅,宋长春.小叶章湿地土壤酶活性分布特征及其与活性有机碳表征指标的关系.湿地科学[J].2008,6(2):249-255.
    [144]Kirschbaum MUF. Soil respiration under prolonged soil warming:Are rate reduction caused by acclimation or substrate loss. Global Change Biology[J].2004,10:1870-1877.
    [145]Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass prairie. Nature[J], 2001,413:622-625.
    [146]Rustad LE, Campbell JL, Marion GM, et al. A meta-a-nalysis of the response of soil resp iration, net nitrogen mineralization, and aboveground p lant growth to experi-mental ecosystem warming. Oecologia[J].2001,126:543-562.
    [147]OhashiM, Gyokusen K, Saito A.1999. Measurement of carbon dioxide evolution from a Japanese cedar (Cryptom eria japonica) forest floor using an open-flow chamber method. Forest Ecology and Management,123: 105-114.
    [148]Erland B, HakanW. Soil and rhizosphere microorganisms have the sameQ10 for resp iration in a model system. Global Change Biology[J].2003,9:1788-1791.
    [149]王德宣,宋长春,王跃思等.若尔盖高原泥炭沼洋湿地CO2呼吸通量特征.生态环境2005,14(6):880-883.
    [150]朱长春,阎百兴,王跃思,等.三江平原沼泽湿地CO2和CH4通量及影响因子[J].科学通报,2003,48(23):2473-2477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700