乳腺癌化疗敏感性及预后因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:乳腺癌患者的耐药问题一直是多年来难以克服与解决的问题。本研究基于抗微管类药物(埃博霉素B和紫杉类)为主的化疗方案,分别从耐药蛋白及miRNA两个方面入手,进行耐药相关因素的分析。一、目前认为,埃博霉素B的耐药与MRP7蛋白可能相关,所以我们选择单纯应用埃博霉素B的患者,进行体内MRP7的检测,以期发现MRP7与埃博霉素B药代及药效的相关性。二、含紫杉类化疗方案是多数乳腺癌需要采用的方案,而luminal A型乳腺癌中只有部分患者会对该化疗方案敏感,另一部分患者对该方案并不敏感。本研究希望能够通过血清miRNA检测,筛查出对含紫杉类化疗方案耐药的标记miRNAs,从而更好地指导luminal A型乳腺癌的临床化疗。
     方法:一、结合我科进行的埃博霉素B的Ⅰ期临床试验,采集患者不同时间点的血样,进行药代动力学检测。采用免疫组化及流式细胞仪检测MRP7蛋白在组织及外周血的表达,研究MRP7的表达与埃博霉素B药代动力学及疗效的关系。采用Winnonlin药代动力学统计软件拟合血药浓度-时间数据,求得注射用埃博霉素B在人体内的上述药代动力学参数,其中AUC采用梯形面积法估算。运用置信区间法评价药动学参数与给药剂量的相关性。回归分析得到标准曲线回归方程。组间比较采用双变量spearman相关分析法。所有检验取双侧检验,检验水准为α=0.05,P<0.05表示有统计学意义。二、留取我院接受葸环联合紫杉(AT)方案新辅助化疗的luminal A型乳腺癌患者的血清标本,根据疗效分为治疗敏感组与耐药组,提取血清中总RNA。选取敏感组和耐药组准确配对的患者血清各6份,预扩后,采用TaqMan Real-time PCR芯片pool法检测差异表达的1microRNA。挑选出临床病理因素匹配均衡的敏感组38例,耐药组30例,针对芯片筛选出来差异明显的miRNAs,利用荧光定量PCR方法进行扩大样本量的验证。对验证结果证实差异表达的miRNAs进行分析,探讨其对于新辅助化疗疗效的预测价值。采用RQ manager1.2和Data AsistV2.0软件对microRNA芯片结果进行分析。SPSS16.0软件进行数据统计分析。临床病理特征变量采用统计描述,计量资料的比较采用t检验(Student's t test);连续变量两组间差异比较采用非参数检验中Mann-Whitney U检验。P值为双侧性,小于0.05认为有统计学意义。
     结果:1、药代动力学方面:流式细胞仪检测外周血中的MRP7的平均荧光强度与药代动力学参数AUCC(P=0.001)、t1/2β(P=0.039)、Cmax(P=0.017)以及Cl(P=0.001)之间明显相关。其中,MRP7与AUC、t1/2β、Cmax呈负相关,与Cl呈正相关。流式细胞荧光阳性染色细胞数与Cl呈现正相关(P=0.026),而组织中MRP7表达并未显示出与药代动力学参数的明显相关性。疗效方面:17例患者的MRP7在组织中的表达程度均较高,仅有1例显示出局部缓解(PR)的患者,其MRP7的组织表达相对较低,外周血的MRP7平均荧光强度相对较弱,显示出MRP7在外周血及组织的表达与疗效可能存在相关性。同时,这一例有效患者的AUC、t1/2β在同一剂量组的三例患者中最高,Cl在全组17例患者中最低,预示着AUC、t1/2β及Cl等药代动力学参数可能与疗效具有相关性。2、基于芯片表达谱差异,从217个差异表达的microRNAs中,我们挑选出9个组间表达差异更为明显的miRNAs,在68例lumina1A型乳腺癌患者(耐药组30例,敏感组38例)中进行验证。结果显示let-7b、miR-205、 miR-19a和miR-27a在化疗耐药组和敏感组之间表达差异明显,具有统计学意义(P<0.05)。其中,miR-19a与miR-27a在耐药组的表达为化疗敏感组的1.56倍,差异更为显著。
     结论:1、乳腺癌患者体内的MRP7表达对埃博霉素的药代动力学有影响,也有影响疗效的趋势。同时,药代动力学与疗效之间也可能存在相关性。2、luminal A型乳腺癌患者血清中的(?)miR-27a-3p、miR-19a-3p、miR-205-5p及let-7b-5p表达与紫杉联合蒽环类化疗方案的敏感性相关。
     目的:研究乳腺癌合并腹股沟淋巴结转移患者的临床表现、病理学特点和影响预后的因素。
     方法:收集1999年1月至2010年12月收治的17例乳腺癌合并腹股沟淋巴结转移患者的临床资料,分析其临床病理特征和预后影响因素。
     结果:17例伴有腹股沟淋巴结转移的乳腺癌患者占同期乳腺癌患者收治总数的0.11%,其中合并其他部位转移15例(88.2%),单纯腹股沟淋巴结转移2例(11.8%)。17例患者均接受了雌激素受体(ER)和(或)孕激素受体(PR)检测,10例(58.8%)阳性,7例(41.2%)阴性。13例患者接受了表皮生长因子受体2(HER-2)检测,其中4例(30.8%)阳性。16例患者接受手术治疗,术中发现9例患者的腋窝淋巴结转移≥4枚。17例患者均接受化疗。中位随访时间为156个月,全组患者的5年生存率为49.9%。单因素分析结果显示,腋窝转移淋巴结≥4枚、ER和(或)PR阴性、辅助化疗周期数≤6个、确诊时分期为Ⅲ、Ⅳ期以及发现乳腺癌至腹股沟淋巴结转移的时间≤36个月为患者无进展生存时间(PFS)的不良预后因素(均P<0.05)。腋窝转移淋巴结≥4枚、ER和(或)PR阴性、辅助化疗周期数≤6个、首次复发为多发远处转移、发现乳腺癌至腹股沟淋巴结转移的时间≤36个月以及合并胸腔积液为患者总生存的不良预后因素(均P<0.05)。多因素分析结果显示,发现乳腺癌至腹股沟淋巴结转移的时间是影响患者无进展生存时间(PFS)的独立预后因素(P<0.05)。
     结论:影响乳腺癌合并腹股沟淋巴结转移患者预后的主要因素为腋窝淋巴结转移数目、激素受体状态、辅助化疗周期数、首次复发转移类型、发现乳腺癌至腹股沟淋巴结转移的时间以及是否有胸腔积液。术后定时全面复查、对高危人群及时给予强化治疗对改善患者的预后可能有一定的积极意义,但也需要探索更为合理的个体化综合治疗方案。
Background and purpose:It is difficult to overcome the problem of drug-resistance in breast cancer patients. This study is based on the anti-microtubules drugs(including epothilone B and taxanes), for the aim to analysize the resistant factors including resistant protein and miRNA. First, it was reported that MRP7may contribute to the resistance of epothilone B,so the patients with epothilone B only in one of our phase I clinical trials were enrolled in our study.We detect the expression of MRP7in vivo and hope to find the relationship between epothilone B and MRP7. Second, taxanes based chemotherapy was one of the most common choices in breast cancer treatment. The type of luminal A was only partly sensitive to chemotherapy, including taxanes based chemotherapy. The aim of our study is to find the biomarkers of chemotherapy resistance by detecting miRNAs in serum, which may give direction to clinical treatment choice in the type of luminal A breast cancer patients.
     Methods:First, based on the epothilone B phase I clinical trial in our department, we collected blood samples from patients at different time points, to detect the pharmaco kinetic parameters. We want to find the relationship between MRP7expression and epothilone B pharmacokinetics as well as efficacy by detecting MRP7protein expression in cancer tissue and peripheral blood with immunohistochemistry and flow cytometry respectively. Winnonlin pharmacokinetic statistics software was used to make blood drug concentration-time curve fit. To get pharmacokinetic parameters of epothilone B in vivo, the trapezoidal area method was used to estimate AUC. Confidence interval method was used to evaluate the relationship between pharmacokinetic parameters and drug doses. Standard curve regression equation was obtained by regression analysis. Double variable spearman correlation analysis was used between two groups. All inspection was bilateral, with standards of alpha=0.05, P<0.05indicates statistical significance. Secondly, obtain the serum sample of luminal A type breast cancer patients who received anthracycline combined with taxanes (AT) regimen before surgery. Based on the sensitivity differences to AT regimen, sensitive and resistant groups were separated, total RNA in serum was extracted. As a pool,6samples of accurate matching patients were selected in sensitive and resistant groups respectively. After pre-amplification, TaqMan Real-time PCR chip was used to detect differentially expressed miRNAs. Selected38cases from sensitive group, and30cases from drug-resistant group with well-balanced clinical pathologic features. Fluorescence quantitative polymerase chain reaction (PCR) was used to verify the miRNAs with apparent differences from chip screening in a larger sample size. Analyze the results after confirmation and explore the predictive value of these miRNAs in chemosensitivity. RQ manager1.2and Data Asist V2.0software was used to analyze the chip. SPSS16.0software was used for statistical analysis. Statistical description was used to describe the clinical pathological features, t test (Student's t test) was used to analyze measurement data; Mann-Whitney U in nonparametric test was used to analyze the continuous variable. P value was bilateral tested less than0.05was regarded as statistical significance.
     Results:First, pharmacokinetic:we found the average fluorescence intensity from peripheral blood MRP7and the pharmacokinetic parameters including AUC (P=0.001), t1/2β (P=0.039), the Cmax (P=0.017) and Cl (P=0.001) were significantly correlated. Negative correlation was found in the MRP7fluorescence intensity and AUC, t1/2β, Cmax, and positive correlation was found both in MRP7fluorescence intensity and positive staining cells with Cl (P=0.026). However, MRP7in tissue does not show obvious correlation with pharmacokinetic parameters. Efficacy:MRP7expression levels in tissue were high in all of the17patients. But for the only one who got partial response (PR), her MRP7expression in tissue was relatively low, and MRP7average fluorescence intensity was relatively weak in peripheral blood. These data showed that MRP7expression may have relationship with efficacy. At the same time, the AUC, tl/2β in the only patient who got response were the highest in the three patients with same dose level, and her Cl was the lowest in all of the17patients. These data indicated that the pharmacokinetic parameters of AUC, tl/2(3and Cl might have correlation with efficacy. Second, based on217differentially expressed microRNAs screened by miRNA chip, we selected9miRNAs which show more apparent differences between the two groups, and gave validation in68cases of type luminal A breast cancer (30cases from resistant group,38cases from sensitive group). Results show that the let-7b, miR-205, miR-19a and miR-27a were obviously different between the two groups. The difference was statistically significant (P<0.05). Among them, miR-19a and miR-27a showed more significant difference with1.56fold between the two groups than the other two miRNAs.
     Conclusion:First, MRP7expression may influence drug pharmacokinetic parameters in breast cancer patients, and may have a tendency to affect efficacy. At the same time, there may be correlation between pharmacokinetic and efficacy. Second, miR-27a-3p%miR-19a-3p/、miR-205-5p and let-7b-5p miRNAs in serum of breast cancer patients with luminal A type are associated with chemosensitivity.
     Objective To analyze the clinicopathological feature and prognostic factors of breast cancer patients with inguinal lymph node metastasis.
     Methods From January1999to December2010,17breast cancer patients with inguinal lymph node metastasis were treated in our cancer center. All of the patients had a history of breast cancer without the other primary cancer. Clinicopathological characteristics, prognostic factors were surveyed.
     Results The frequency of breast cancer cases who occurred inguinal lymph node metastasis was0.11%in the period.2patients (11.8%) had inguinal lymph node metastasis only, multi-sites metastases were observed in the remaining15(88.2%) patients. The number of ER and/or PR-positive and negative were10(58.8%) and7(41.2%) respectively, and in the13cases who underwent HER-2test, the number of HER-2-positive was4(30.8%). For the16patients who underwent surgery,9patients were detected metastatic axillary lymph nodes equal or greater than4. All of the17patients were treated with chemotherapy. The median follow-up time was156months. The5year overall survival was49.9%. Univariate analysis revealed that metastatic axillary lymph nodes>4, ER and (or)PR negative, adjuvant chemotherapy<6cycles, disease stage as III/IV at diagnosis and the period from diagnosis of breast cancer to the occurrence of inguinal lymph node metastasis<36months were predictors of shorter PFS (P<0.050). Metastatic axillary lymph nodes>4, ER and (or)PR negative, adjuvant chemotherapy≤6cycles, primary recurrence as multiple distant metastases, the period from diagnosis of breast cancer to the occurrence of inguinal lymph nodes metastasis≤<36months and pleural effusion were predictors of shorter OS (P<0.05).Multivariate analysis revealed that the period from diagnosis of breast cancer to the occurrence of inguinal lymph node metastasis was the only independent prognostic factor concerning PFS(P<0.05).
     Conclusions The prognostic factors of breast cancer patients with inguinal lymph node metastasis included the number of metastatic axillary lymph nodes, ER and (or) PR status, the cycles of adjuvant chemotherapy, type of primary recurrence, the period from diagnosis of breast cancer to the occurrence of inguinal lymph node metastasis and pleural effusion. Regular and complete physical examination after surgery as well as prompt intensive treatment for high-risk patients may have positive significance in the treatment of such type of patients, still, a type of more reasonable and individualized treatment must be in need in future.
引文
1. De Souza R, Zahedi P, Badame RM, Allen C, Piqutte-Miller M. Chemotherapy dosing schedule influences drug resistance development in ovarian cancer. Mol Cancer Ther. Jul 2011;10(7):1289-1299.
    2. Risinger AL, Jackson EM, Polin LA, et al. The taccalonolides:microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res. Nov 1 2008;68(21):8881-8888.
    3. Roche H, Conte P, Perez EA, et al. Ixabepilone plus capecitabine in metastatic breast cancer patients with reduced performance status previously treated with anthracyclines and taxanes: a pooled analysis by performance status of efficacy and safety data from 2 phase III studies. Breast Cancer Res Treat. Feb 2011; 125(3):755-765.
    4. Rak Tkaczuk KH. Ixabepilone as monotherapy or in combination with capecitabine for the treatment of advanced breast cancer. Breast Cancer (Auckl).2011;5:1-14.
    5. Hopper-Borge E, Xu X, Shen T, Shi Z, Chen ZS, Kruh GD. Human multidrug resistance protein 7 (ABCC10) is a resistance factor for nucleoside analogues and epothilone B. Cancer Res. Jan 1 2009;69(1):178-184.
    6. Hopper-Borge EA, Churchill T, Paulose C, et al. Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res. May 15 2011;71(10):3649-3657.
    7. Kao HH, Huang JD, Chang MS. cDNA cloning and genomic organization of the murine MRP7, a new ATP-binding cassette transporter. Gene. Mar 20 2002;286(2):299-306.
    8.徐兵河.蒽环类耐药乳腺癌的治疗策略.中华肿瘤杂志:2007;29(4):241-244.
    9. Filipits M, Pohl G, Rudas M, et al. Clinical role of multidrug resistance protein 1 expression in chemotherapy resistance in early-stage breast cancer:the Austrian Breast and Colorectal Cancer Study Group. JClin Oncol. Feb 20 2005;23(6):1161-1168.
    10. Rudas M, Filipits M, Taucher S, et al. Expression of MRP1, LRP and Pgp in breast carcinoma patients treated with preoperative chemotherapy. Breast Cancer Res Treat. Sep 2003;81(2):149-157.
    11. Jordan MA. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents. Jan 2002;2(1):1-17.
    12. Crown J, O'Leary M, Ooi WS. Docetaxel and paclitaxel in the treatment of breast cancer:a review of clinical experience. Oncologist.2004;9 Suppl 2:24-32.
    13. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. JPathol. Jan 2005;205(2):275-292.
    14. Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer. Mar 2003;10(1):43-73.
    15. HoXe G BN, Gerth K, Reichenbach H. Inventors;GBF. Epothilone, deren Herstellungsverfahren sowie diese Verbindungen enthaltende Mittel. World patent application. Octorber 14 1993.
    16. Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H. Epothilons A and B:antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. JAntibiot (Tokyo). Jun 1996;49(6):560-563.
    17. Bode CJ, Gupta ML, Jr., Reiff EA, Suprenant KA, Georg GI, Himes RH. Epothilone and paclitaxel:unexpected differences in promoting the assembly and stabilization of yeast microtubules. Biochemistry. Mar 26 2002;41(12):3870-3874.
    18. Jordan M MH, Ni L, Castenada S, Inigo I, Kan D, Lewin A, Ryseck R, Kramer R, Wilson L, Lee FY. The Pat-21 breast cancer model derived from a patient with primary Taxol(?) resistance recapitμlates the phenotype of its origin, has altered beta-tubulin expression and is sensitive to ixabepilone. In:Proceedings of american association cancer research 97th annual meeting:LB-280.2006.
    19. Lee FY, Borzilleri R, Fairchild CR, et al. BMS-247550:a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res. May 2001;7(5):1429-1437.
    20. Wartmann M, Altmann KH. The biology and medicinal chemistry of epothilones. Curr Med Chem Anticancer Agents. Jan 2002;2(1):123-148.
    21. Oguri. ABCC10/MRP7 is associated with vinorelbine resistance in non-small cell lung cancer. Oncology Reports.1994.
    22. Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene. Oct 20 2003;22(47):7537-7552.
    23. Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability:transporters as gatekeepers in the gut. Gut. Dec 2003;52(12):1788-1795.
    24. Horikawa M, Kato Y, Tyson CA, Sugiyama Y. The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents:probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab Pharmacokinet.2002;17(1):23-33.
    25. Alexiou GA, Goussia A, Voulgaris S, et al. Prognostic significance of MRP5 immunohistochemical expression in glioblastoma. Cancer Chemother Pharmacol. May 2012;69(5):1387-1391.
    26.王永学,潘凌亚.小样本前瞻性检测卵巢巢癌患者肿瘤组织和外周血中铂类耐药标记蛋白annexin A3的表达及其相关耐药机制的探讨.北京协和医学院 博士学位论文.2011.
    27.郭鹏.非小细胞肺癌外周血淋巴细胞与组织学多药耐药蛋白检测的相关性研究.四川大学 临床医学硕士学位论文 2004.
    28.陈增,苏颖,林可焰,林华妹.肺癌组织及外周血多药耐药基因相关蛋白的表达及其相关性研究.福建医药杂志,2011;33(5).
    29.尹格平,陈诵芬,孙晓明,李秀云,袁玮.卵巢癌组织及外周血淋巴细胞多药耐药基因表达蛋白的定量研究.中华妇产科杂志.1998(5).
    30.马飞,廖玉倩,樊英,王迎红,梁建明,马洁,徐兵河.外周血P糖蛋白功能检测及其与乳腺癌多药耐药性的关系.CHINESE JOURNAL OF ONCOLOGY.2010;32(7).
    31. Ogston KN, Miller ID, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy:prognostic significance and survival. Breast. Oct 2003;12(5):320-327.
    32. Hu Z, Dong J, Wang LE, et al. Serum microRNA profiling and breast cancer risk:the use of miR-484/191 as endogenous controls. Carcinogenesis. Apr 2012;33(4):828-834.
    33. Liang Z, Li Y, Huang K, Wagar N, Shim H. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. Dec 2011;28(12):3091-3100.
    34. Xu BH, Zhang P. [Molecular subtypes and individualized treatment of breast cancer]. Zhonghua Zhong Liu Za Zhi. Sep 2010;32(9):641-644.
    35. Choi BH, Kim CG, Lim Y, Shin SY, Lee YH. Curcumin down-regulates the multidrug-resistance mdrlb gene by inhibiting the PI3K/Akt/NF kappa B pathway. Cancer Lett. Jan 182008;259(1):111-118.
    36. Lee JT, Jr., Steelman LS, McCubrey JA. Phosphatidylinositol 3'-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. Nov 15 2004;64(22):8397-8404.
    37. Takada T, Suzuki H, Gotoh Y, Sugiyama Y. Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos. Jul 2005;33(7):905-909.
    38. Olive V, Bennett MJ, Walker JC, et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. Dec 15 2009;23(24):2839-2849.
    39. Hong L, Lai M, Chen M, et al. The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res. Nov 1 2010;70(21):8547-8557.
    40. Dimmeler S, Zeiher AM. Akt takes center stage in angiogenesis signaling. Circ Res. Jan 7-21 2000;86(1):4-5.
    41. Schwarzenbach H, Milde-Langosch K, Steinbach B, Muller V, Pantel K. Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat. Aug 2012;134(3):933-941.
    42. Mo W, Zhang J, Li X, et al. Identification of Novel AR-Targeted MicroRNAs Mediating Androgen Signalling through Critical Pathways to Regulate Cell Viability in Prostate Cancer. PLoS One.2013;8(2):e56592.
    43. Ouchida M, Kanzaki H, Ito S, et al. Novel direct targets of miR-19a identified in breast cancer cells by a quantitative proteomic approach. PLoS One.2012;7(8):e44095.
    44. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. Nov 15 2007;67(22):11001-11011.
    45. Mertens-Talcott SU, Noratto GD, Li X, Angel-Morales G, Bertoldi MC, Safe S. Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo:Role of Sp transcription factors and microRNA-27a:ZBTB10. Mol Carcinog. Mar 72012.
    46. Banerjee N, Talcott S, Safe S, Mertens-Talcott SU. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo:potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res Treat. Nov 2012;136(1):21-34.
    47. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs-the micro steering wheel of tumour metastases. Nat Rev Cancer. Apr 2009;9(4):293-302.
    48. Wang B, Ma N, Wang Y. Association Between the hsa-mir-27a Variant and Breast Cancer Risk:a Meta-analysis. Asian Pac J Cancer Prev.2012; 13(12):6207-6210.
    49. Oh JE, Han JA, Hwang ES. Downregulation of transcription factor, Spl, during cellular senescence. Biochem Biophys Res Commun. Feb 2 2007;353(1):86-91.
    50. Li X, Mertens-Talcott SU, Zhang S, Kim K, Ball J, Safe S. MicroRNA-27a Indirectly Regulates Estrogen Receptor{alpha} Expression and Hormone Responsiveness in MCF-7 Breast Cancer Cells. Endocrinology. Jun 2010; 151 (6):2462-2473.
    51. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. JBiol Chem. Aug 28 2009;284(35):23204-23216.
    52. Zhao HH, Herrera RE, Coronado-Heinsohn E, et al. Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. JBiol Chem. Jul 27 2001;276(30):27907-27912.
    53. Tang W, Zhu J, Su S, et al. MiR-27 as a prognostic marker for breast cancer progression and patient survival. PLoS One.2012;7(12):e51702.
    54. Zhu H, Wu H, Liu X, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. Sep 1 2008;76(5):582-588.
    55. Yang JM, Vassil AD, Hait WN. Activation of phospholipase C induces the expression of the multidrug resistance (MDR1) gene through the Raf-MAPK pathway. Mol Pharmacol. Oct 2001;60(4):674-680.
    1. Dymarskii L, Migmanova N, Semiglazov VF. [Metastasis of breast cancer to inguinal lymph nodes and ovaries]. Vestn Khir Im II Grek. Feb 1985;134(2):59-60.
    2. Witte MH, Way DL, Witte CL, Bernas M. Lymphangiogenesis:mechanisms, significance and clinical implications. EXS.1997;79:65-112.
    3. Liotta LA, Steeg PS, Stetler-Stevenson W G. Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation. Cell. Jan 25 1991;64 (2):327-336.
    4. Jebbin NJ, Adotey JM. Metastatic carcinoma of the breast with inguinal lymph node involvement:a report of two cases. Niger J Clin Pract. Dec 2008;11(4):383-385.
    5. Baba M, Tatsuta M, Miya A, et al. A case of breast cancer diagnosed by inguinal lymph node metastasis. Breast Cancer.2000;7 (2):173-175.
    6. Kilciksiz S, Gokce T, Kinay M. Isolated inguinal lymph node metastasis from breast carcinoma--case report and review of the literature. J BUON. Apr-Jun 2006; 11(2):229-232.
    1. Yu X-Q, Xue CC, Wang G, Zhou S-F. Multidrug Resistance Associated Proteins as Determining Factors of Pharmacokinetics and Pharmacodynamics of Drugs. Current Drug Metabolism.2007;8:787-802.
    2. Higgins CF. ABC transporters:from microorganisms to man. Annu Rev Cell Biol. 1992;8:67-113.
    3. Abraham EH, Sterling KM, Kim RJ, et al. Erythrocyte membrane ATP binding cassette (ABC) proteins:MRP1 and CFTR as well as CD39 (ecto-apyrase) involved in RBC ATP transport and elevated blood plasma ATP of cystic fibrosis. Blood Cells Mol Dis. Jan-Feb 2001;27(1):165-180.
    4. Altenberg GA. Structure of multidrug-resistance proteins of the ATP-binding cassette (ABC) superfamily. Curr Med Chem Anticancer Agents. Jan 2004;4(1):53-62.
    5. Hopper E, Belinsky MG, Zeng H, Tosolini A, Testa JR, Kruh GD. Analysis of the structure and expression pattern of MRP7 (ABCC10), a new member of the MRP subfamily. Cancer Lett. Jan 26 2001;162(2):181-191.
    6. Bera TK, Lee S, Salvatore G, Lee B, Pastan I. MRP8, a new member of ABC transporter superfamily, identified by EST database mining and gene prediction program, is highly expressed in breast cancer. Mol Med. Aug 2001;7(8):509-516.
    7. Tammur J, Prades C, Arnould I, et al. Two new genes from the human ATP-binding cassette transporter superfamily, ABCC11 and ABCC12, tandemly duplicated on chromosome 16q12. Gene. Jul 25 2001;273(1):89-96.
    8. Yabuuchi H, Shimizu H, Takayanagi S, Ishikawa T. Multiple splicing variants of two new human ATP-binding cassette transporters, ABCC11 and ABCC12. Biochem Biophys Res Commun. Nov 9 2001;288(4):933-939.
    9. Bakos E, Evers R, Szakacs G, et al. Functional multidrug resistance protein (MRP1) lacking the N-terminal transmembrane domain. J Biol Chem. Nov 27 1998;273(48):32167-32175.
    10. Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS. ABCC10, ABCC11, and ABCC12. Pflugers Arch. Feb 2007;453(5):675-684.
    11. Hopper-Borge E. Analysis of the Drug Resistance Profile of Multidrug Resistance Protein 7 (ABCC10):Resistance to Docetaxel. Cancer Research.2004;64(14):4927-4930.
    12. Zelcer N, Saeki T, Reid G, Beijnen JH, Borst P. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem. Dec 7 2001;276(49):46400-46407.
    13. Hopper-Borge E, Xu X, Shen T, Shi Z, Chen ZS, Kruh GD. Human Multidrug Resistance Protein 7 (ABCC10) Is a Resistance Factor for Nucleoside Analogues and Epothilone B. Cancer Research.2009;69(1):178-184.
    14. Chen ZS, Hopper-Borge E, Belinsky MG, Shchaveleva I, Kotova E, Kruh GD. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol. Feb 2003;63(2):351-358.
    15. Kao HH, Huang JD, Chang MS. cDNA cloning and genomic organization of the murine MRP7, a new ATP-binding cassette transporter. Gene. Mar 20 2002;286(2):299-306.
    16. Albermann N, Schmitz-Winnenthal FH, Z'Graggen K, et al. Expression of the drug transporters MDR1/ABCB1, MRP1/ABCC1, MRP2/ABCC2, BCRP/ABCG2, and PXR in peripheral blood mononuclear cells and their relationship with the expression in intestine and liver. Biochem Pharmacol. Sep 15 2005;70(6):949-958.
    17. De Moerloose B, Dhooge C, Philippe J. Discordance of P-glycoprotein expression and function in acute leukemia. Adv Exp Med Biol.1999;457:107-118.
    18. Meaden ER, Hoggard PG, Khoo SH, Back DJ. Determination of P-gp and MRP1 expression and function in peripheral blood mononuclear cells in vivo. J Immunol Methods. Apr 1 2002;262(1-2):159-165.
    19. Barrand MA, Bagrij T, Neo SY. Multidrug resistance-associated protein:a protein distinct from P-glycoprotein involved in cytotoxic drug expulsion. Gen Pharmacol. May 1997;28(5):639-645.
    20. Maher JM, Slitt AL, Cherrington NJ, Cheng X, Klaassen CD. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos. Jul 2005;33(7):947-955.
    21. Maher JM. Tissue Distribution and Hepatic and Renal Ontogeny of the Multidrug Resistance-Associated Protein (Mrp) Family in Mice. Drug Metabolism and Disposition. 2005;33(7):947-955.
    22. Augustine LM, Markelewicz RJ, Jr., Boekelheide K, Cherrington NJ. Xenobiotic and endobiotic transporter mRNA expression in the blood-testis barrier. Drug Metab Dispos. Jan 2005;33(1):182-189.
    23. Honscha KU, Schirmer A, Reischauer A, Schoon HA, Einspanier A, Gabel G. Expression of ABC-Transport Proteins in Canine Mammary Cancer:Consequences for Chemotherapy. Reproduction in Domestic Animals.2009;44:218-223.
    24. Liptrott NJ, Pushpakom S, Wyen C, et al. Association of ABCC10 polymorphisms with nevirapine plasma concentrations in the German Competence Network for HIV/AIDS. Pharmacogenetics and Genomics.2012;22(1):10-19.
    25. Bleasby K, Castle JC, Roberts CJ, et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species:a resource for investigations into drug disposition. Xenobiotica. Oct-Nov 2006;36(10-11):963-988.
    26. Takayanagi S, Kataoka T, Ohara O, Oishi M, Kuo MT, Ishikawa T. Human ATP-binding cassette transporter ABCC10:expression profile and p53-dependent upregulation. JExp Ther Oncol. Oct 2004;4(3):239-246.
    27. Dabrowska M, Sirotnak FM. Regulation of transcription of the human MRP7 gene. Gene. 2004;341:129-139.
    28. Oguri. ABCC10/MRP7 is associated with vinorelbine resistance in non-small cell lung cancer. Oncology Reports.1994.
    29. Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene. Oct 20 2003;22(47):7537-7552.
    30. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene. Oct 20 2003;22(47):7280-7295.
    31. Lee K, Klein-Szanto AJ, Kruh GD. Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells. JNatl Cancer Inst. Dec 6 2000;92(23):1934-1940.
    32. Schuetz JD, Connelly MC, Sun D, et al. MRP4:A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med. Sep 1999;5(9):1048-1051.
    33. Wijnholds J, Mol CA, van Deemter L, et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci USA. Jun 20 2000;97(13):7476-7481.
    34. Guo Y, Kotova E, Chen ZS, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl)adenine. J Biol Chem. Aug 8 2003;278(32):29509-29514.
    35. Goodin S, Kane MP, Rubin EH. Epothilones:mechanism of action and biologic activity. J Clin Oncol. May 152004;22(10):2015-2025.
    36. Oguri T, Ozasa H, Uemura T, et al. MRP7/ABCC10 expression is a predictive biomarker for the resistance to paclitaxel in non-small cell lung cancer. Mol Cancer Ther. May 2008;7(5):1150-1155.
    37. Hopper-Borge EA, Churchill T, Paulose C, et al. Contribution of Abcc10 (Mrp7) to in vivo paclitaxel resistance as assessed in Abcc10(-/-) mice. Cancer Res. May 15 2011;71(10):3649-3657.
    38. Hlavata I, Mohelnikova-Duchonova B, Vaclavikova R, et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. Mar 2012;27(2):187-196.
    39. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight? Nat Rev Genet. Feb 2008;9(2):102-114.
    40. Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. Sep 32004;305(5689):1437-1441.
    41. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. Jul 23 2004;15(2):185-197.
    42. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. Sep 4 2008;455(7209):58-63.
    43. Wu S, Huang S, Ding J, et al. Multiple microRNAs modulate p21Cipl/Wafl expression by directly targeting its 3'untranslated region, Oncogene. Apr 15 2010;29(15):2302-2308.
    44. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. Nov 2006;6(11):857-866.
    45. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. Jun 9 2005;435(7043):834-838.
    46. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. Mar 2 2004;101(9):2999-3004.
    47. Liu FS. Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review. Taiwan J Obstet Gynecol. Sep 2009;48(3):239-244.
    48. Ranade AR, Cherba D, Sridhar S, et al. MicroRNA 92a-2*:a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J Thorac Oncol. Aug2010;5(8):1273-1278.
    49. Sarkar FH, Li Y, Wang Z, Kong D, Ali S. Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat.Jun 2010;13(3):57-66.
    50. Song B, Wang Y, Xi Y, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. Nov 19 2009;28(46):4065-4074
    51. Song B, Wang Y, Titmus MA, et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer.2010;9:96.
    52. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. Oct 2008; 18(10):997-1006.
    53. Wu X, Xiao H. miRNAs modulate the drug response of tumor cells. Sci China C Life Sci. Sep 2009;52(9):797-801.
    54. Jackman D, Pao W, Riely GJ, et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol. Jan 10 2010;28(2):357-360.
    55. Weiss G NK, Edwards D, Boisvert S, Sima C. microRNA biomarkers associated with vandetanib, sunitinib, and/or erlotinib resistance. AACR/IASLC.2010.
    56. Nelson K SC, Edwards D, Weiss G. microRNA biomarkers associated with sunitinib resistance in non-small cell lung cancer. AACR.2010;abstract 3048.
    57. Bourguignon LY, Spevak CC, Wong G, Xia W, Gilad E. Hyaluronan-CD44 interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. JBiol Chem. Sep 25 2009;284(39):26533-26546.
    58. Sumaiyah R W-CH, Dihua U. MiR-21 upreguiation in breast cancer cells leads to PTEN loss and Herceptin resistance. AACR.2010;abstract 4033.
    59. Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY. MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene. Feb 17 2011;30(7):822-831.
    60. Choi BH, Kim CG, Lim Y, Shin SY, Lee YH. Curcumin down-regulates the multidrug-resistance mdrlb gene by inhibiting the PI3K/Akt/NF kappa B pathway. Cancer Lett. Jan 18 2008;259(1):111-118.
    61. Lee JT, Jr., Steelman LS, McCubrey JA. Phosphatidylinositol 3'-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. Nov 15 2004;64(22):8397-8404.
    62. Takada T, Suzuki H, Gotoh Y, Sugiyama Y. Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos. Jul 2005;33(7):905-909.
    63. Liang Z, Li Y, Huang K, Wagar N, Shim H. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. Dec 2011;28(12):3091-3100.
    64. Zhang X, Yashiro M, Qiu H, Nishii T, Matsuzaki T, Hirakawa K. Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res. Mar 2010;30(3):915-921.
    65. Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. Jul 2008;7(7):2152-2159.
    66. Zhu H, Wu H, Liu X, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. Sep 1 2008;76(5):582-588.
    67. Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. Jun 2009;75(6):1374-1379.
    68. Liang Z, Wu H, Xia J, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. Mar 15 2010;79(6):817-824.
    69. Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bakl) expression. J Biol Chem. Jul 9 2010;285(28):21496-21507.
    70. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer. Apr 2009;9(4):293-302.
    71. Goto T, Takano M, Albergaria A, et al. Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene. Jan 3 2008;27(1):9-19.
    72. Goto T, Takano M, Hirata J, Tsuda H. The involvement of FOXO1 in cytotoxic stress and drug-resistance induced by paclitaxel in ovarian cancers. Br J Cancer. Mar 25 2008;98(6):1068-1075.
    73. Mazumdar A, Kumar R. Estrogen regulation of Pakl and FKHR pathways in breast cancer cells. FEBS Lett. Jan 30 2003;535(1-3):6-10.
    74. Lengyel F, Vertes Z, Kovacs KA, Kornyei JL, Sumegi B, Vertes M. Effect of estrogen and inhibition of phosphatidylinositol-3 kinase on Akt and FOXO1 in rat uterus. Steroids. May 2007;72(5):422-428.
    75. Jackson JG, Kreisberg JI, Koterba AP, Yee D, Brattain MG Phosphorylation and nuclear exclusion of the forkhead transcription factor FKHR after epidermal growth factor treatment in human breast cancer cells. Oncogene. Sep 212000;19(40):4574-4581.
    76. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. JBiol Chem. Aug 28 2009;284(35):23204-23216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700