碱矿渣—粘土复合胶凝材料固化Sr、Cs的机理与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放射性核素Sr、Cs的固化是核技术应用的关键环节之一。碱矿渣-粘土复合胶凝材料(AASCM)是具有低钙硅比(C/S)、富铝、富钠组成特征并集成了碱矿渣水泥的高强度、低孔隙率、较好抗侵蚀性与改性凹凸棒石粘土(M-ATT)、沸石(ZEO)良好吸附性能的一种新型放射性核素Sr、Cs的固化基材。研究其固化Sr、Cs的机理和性能,旨在为该材料的组成设计及工程应用提供理论依据和积累实验数据。
     应用静态吸附法,研究了改性凹凸棒石粘土、沸石等矿物材料吸附Sr、Cs的性能。结果表明:粘土等矿物材料的结构及其中所具有的阳离子的种类决定着它们吸附Sr、Cs的能力。结构中存在低价态取代高价态阳离子(如Al~(3+)取代Si~(4+)或Mg~(2+)取代Al~(3+))的同晶取代现象,形成取代结构吸附活性中心是使其具有较强吸附能力的前提。结构中的电荷数少,离子半径小的阳离子(如Na~+),其更易被交换,对提高其吸附Sr、Cs的能力有利。结构中存在微孔隙发育,具有一些通道(如沸石和凹凸棒石粘土),对吸附小于这些孔道直径的阳离子有益。层状结构的粘土矿物中,取代结构吸附活性中心与阳离子之间的电荷平衡方式为远程中和方式时,有利于阳离子的交换吸附。沸石、改性凹凸棒石粘土具有较强的吸附和选择性吸附Sr、Cs的能力,其中沸石类矿物吸附Sr的能力较强,而改性凹凸棒石粘土吸附Cs的能力较强。
     运用吸附-逐步浸出试验方法进行了AASCM的配方优化。沸石、改性凹凸棒石粘土及热活化高岭土与碱矿渣水泥复合构成的AASCM水化物的吸附性及在去离子水中抗浸出性较碱矿渣水泥高。在实验条件下,AASCM的组成(HAK/GBS)对其吸附-逐步浸出性能有较大影响。当HAK/GBS为0.176-0.25时,AASCM水化物粉体吸附Sr较好;当HAK/GBS为0.25时吸附Cs最佳。综合组成材料配比对碱矿渣-粘土复合胶凝材料水化物粉体的吸附-浸出及强度性能的影响,较为理想的材料配方为HAK:ZEO:M-ATT:GBS=15:5:10:70(此时HAK/GBS=0.214)。该配方的AASCM水化产物的平均CaO/SiO_2(C/S)为0.80,(CaO+Na_2O)/(SiO_2+Al_2O_3)[(C+N)/(S+A)]为0.75,Al_2O_3/SiO_2(A/S)为0.24。AASCM水化物粉体较之硅酸盐水泥(PC)、铝酸盐水泥(AC)、矿渣硅酸盐水泥(PSC)具有更强的对Sr、Cs的吸附性能。该配方的AASCM净浆28d的抗压强度达到80MPa以上,长期强度稳定。
     运用XRD、TG-DSC、FTIR、SEM等技术研究了AASCM的水化产物及SrO-CaO-SiO_2-H_2O的水热合成产物。结果表明:热活化高岭土的引入,实现了AASCM水化产物的富铝改性,使AASCM的水化产物具有低C/S、富铝、富钠特性。常温下,AASCM水化产物主要是(Na+Al)-C-S-H,可能存在结晶程度较差且极为分散的沸石类产物;80℃条件下,除了生成(Na+Al)-C-S-H之外,还存在钙十字沸石及菱沸石等水化产物。在80
Immobilization of radioactive nuclide like Sr and Cs is one of the important keys in the application of nuclear technology. Alkali-activated slag-clay minerals composite cement (AASCM) is a new matrix for solidifying Sr and Cs which has characteristics of low C/S, Na and Al enrichment and integrates high strength, low porosity, better resistance to corrosion of alkali-activated slag and good cation exchange adsorption of modified attapulgite(M-ATT) and zeolite(ZEO). The research on mechanism and properties of immobilizing Sr and Cs based on AASCM aims at obtaining theoretical basis and accumulating experimental data for its composition design and engineering application.The adsorption capacity of Sr and Cs in several kind of minerals such as ATT , ZEO etc. were studied by static adsorption method. The results reveal that the adsorption capacity of Sr and Cs are dependent on the structure and sorts of cation of the minerals. The substiruted-structural adsorption centers (SSAC) formed from substitution of high-valency cations by low-valency cations (such as Si~(4+) by Al~(3+) or Al~(3+) by Mg~(2+) ) in the structure of the are a prerequisite to the high adsorption capacity of the minerals. The cations with low-valency and small radius (such as Na~+) in the structure are more easily exchangeable and are more helpful to the adsorption capacity of Sr and Cs in the minerals. The channels in the structure of the minerals such as ZEO and ATT are favorable for adsorbing cation whose diameter is smaller than that of the channels. When the interaction of SSAC and the cations is long-range neutralization in the charge compensation way, the layer-structural clay minerals have higher cations exchange capacity. The adsorption capacity of Sr in ZEO group minerals is higher than that of Cs while the adsorption capacity of Sr in M-ATT is lower than that of Cs.The adsorption & step-by-step leaching experimental method was applied to the formula optimization of AASCM. The adsorption capacity and resistance to leaching in deionized water of AASCM which is integrated with ZEO, M-ATT, heat-activated kaolinite (HAK) and alkali-activated slag cement(AAS) are higher than AAS. Under the experimental conditions, the formula of AASCM has significant effects on adsorption & step-by-step leaching properties. When HAK/GBS ratio is in range of 0.176-0.25 in AASCM, the adsorption capacity of Sr is higher than at any other ratio while that of Cs at a HAK/GBS ratio of 0.25 is
    the highest in all investigated HAK/GBS ratios. In consideration of adsorption & step-by-step leaching and strength properties, the suggested formula HAK:ZEO: M-ATT:GBS ratio of AASCM =15:5:10:70 (HAK/GBS ratio is 0.214). The average C/S is 0.80 in the AASCM with suggested formulation while (C+N)/(S+A) is 0.75 and A/S is 0.24. The adsorption capacity of Sr and Cs in hydrated paste power of AASCM is higher than that of PC, AC and PSC. The 28-day compressive strength of the hardened AASCM paste is more than 80MPa and its long-term compressive strength of AASCM does not decrease.The hydration products of AASCM, the hydrothermally synthesized products of SrO-CaO-SiO2-H2O systems were studied by means of XRD, TG-DSC, FTIR and SEM. The results indicate that AASCM have characteristics of low C/S, Al and Na enrichment by introducing HAK. The major hydration products of AASCM cured at room temperatures are considered to be Na and Al substituted calcium silicate hydrate gels [(Na+Al)-C-S-H] and poorly-crystallized and well-dispersive products featuring zeolite may exist. Besides (Na+Al)-C-S-H, there are phillipsite-Ca and chabazite in the hardened AASCM cured at 80 °C. Under the hydrothermal conditions at 80 °C, when SrO reacts with CaO and SiC>2 which are elemental compositions of cements, calcium-strontium silicate hydrate solid solution can be produced and the structure of C-S-H gel will be more disorderly.The static adsorption behaviors of Sr and Cs in hydrated paste powder of AASCM were firstly investigated. The relationship between the adsorption capacity of Sr and Cs in the hydrothermally synthesized powder and the composition of Na2O-CaO-Al2O3-SiO2-H2O systems was studied. The immobilization mechanism of Sr and Cs was discussed. The results reveal that, under experimental conditions, the adsorption equilibrium time of Sr in hydrated paste powder of AASCM is longer than that of Cs. The adsorption capacity of Sr and Cs increases and adsorption ratios decrease with initial concentration of Sr and Cs. The adsorption capacity of Sr is more than twice that of Cs at the same conditions. So far as Cs is concerned, the adsorption equilibrium time shortens and the adsorption capacity and ratio decrease with temperature. The adsorption capacity reduces with the decrease of pH. In a certain range of Cs concentration, the adsorption isothermal curve of Cs in hydration products powder of AASCM is in conformity to Freudlich formula and the adsorption process is exothermal. The compositions of C-S-H have an obvious effect on adsorption properties. In the C-S-H with low C/S, Al and Na enrichment, a part of Na+ can replace Ca2+ in the Ca-0 sheets and Al3+ can replace Si4+ in the Si-0 tetrahedral. So, two kinds of SSAC are formed. Part of Ca2+ and the rest part of Na+ both exist between layers. The former have poorer exchangeability while the latter is exchangeable. The C-S-H with low C/S, rich-Na and Al
    together can possess high adsorption capacity of Sr and Cs. The high alkaline in hydrated AASCM paste benefits precipitation of Sr and adsorption of Cs.AASCM exhibits high resistance to gamma irradiation and better resistance to sulfate and acid corrosion than PC. Immobilization of simulated radioactive slurry (SRS) of Fe2O3#nH2O using AASCM is feasible. The application of AASCM in the solidification engineering is suitable below 20°C. When cement/sand ratio is 1:1 and W/C is 0.45, the flowability of the mixture meets the case of solidification engineering and the compressive strength of the waste forms containing 20% SRS meets the needs of GB14569.1-93 and its drying shrinkage rate is approximately equal to waste forms based on PC. When the compressive strength of the AASCM waste forms is approximately equal to that of PC, the former loads 5% SYS more than the latter does. The leaching rate of AASCM based waste forms is lower than that of PC. Sr2"1" in waste forms is bound more strongly than Cs+ in them. The accumulative leaching fractions of 137Cs in the waste forms based on AASCM and PC in 192 d are 1.21 * 10'2 cm and l^OMO'1 cm respectively, the former is 7.56% of the latter. The accumulative leaching fraction of 90Sr in the waste forms based on AASCM and PC are 9.65*10"4 cm and 3.42*10"3 cm respectively, the former is 28.22% of the latter. Compared with waste forms based on PC, the improvement degree of Cs retention in AASCM matrix is higher than that of Sr in it.
引文
1 李金铎.核能的和平利用是20世纪人类伟大成就[J].国防科技工业,2003,4:6-7
    2 朱永赡.核能发展与核废物安全处置[J].世界科技研究与发展,1998,05:38-41
    3 宋家树.21世纪能源结构与可持续发展问题[J].国际技术经济研究,1999,2(3):1-6
    4 谭衢霖,翟建平,余光平,涂俊.核能利用与我国可持续发展战略的关系.电力环境保护,2000,16(1):39-44
    5 赵仁恺.我国核电发展现状和展望[J].中国电力,1999,32(12):6-11
    6 罗上庚.核废物的安全与环境影响[J].安全与环境学报,2001,1(2):16-20
    7 徐国庆.缓冲/回填材料与添加剂的选择[J].铀矿地质,1996,7:238.
    8 Puch R and Jacobasson A. Bentonite-based buffer materials for isolating radioactive waste products at great depth. IAEA-SM-243/22
    9 B. Christianson, B. Torstenfelt. Diffusion of Nickel, Strontium, Iodine. Cesium and Americium in loosely compacted bentonite at high pH[J]. Radiochimica Acta. 1988, 44:219
    10 Ohashi Hiroshi.et.al.,The Dependence of diffusion coefficients of tritium and cesium on train size in compacted montmorillontie[A], in: Mater.Res.Soc.Symp.Proc., 1997:506
    11 Whang Jooho et. al. Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository[J]. J.Environ.Sci.Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2001, A36(5): 689-714
    12 Shahwan T, Sayan S, Erten H N, Hallam K R, Allen G C. Surface spectroscopic studies of Cs~+, and Ba~(2+) sorption on chlorite-illite mixed clay[J]. Radiochim Acta, 2000, 88:681-686.
    13 Hench L L, Clark D E, Harker A B. Review of nuclear waste solids[J]. Journal of Materials Science, 1986; 21:1457
    14 Westsic T et. al. The Disposal of Canada's Nuclear Fuel Waste: engineered Barriers Alternatives[R]. 1994, AECL-1078COG-93-8
    15 周文斌,刘晓东等译,核燃料和高放废物的地质处置[C].北京:原子能出版社,1999
    16 金承黎,易发成,李玉香.粘土矿物在核废物处理中的应用[J].矿产综合利用,2003,5:35-38
    17 袁慰顺,蒋栋才.从粘土吸Cs~+、Rb~+试验中看粘土的吸附性,浙江省地质科学研究所,(内部资料)1985。
    18 张英杰,于承峰.放射性锶和铯在花岗岩上的吸附与阻滞[J].核科学与工程,1990,10(3):265—272。
    19 范智文,任宪文,刘秀珍等.粘土作为高放废物处置回填材料的可行性研究[J].辐射防护,1992,12(4)272—275.
    20 苏锡光,龙会遵,朱振国等.放射性铯、锶在缓冲材料—膨润土中的扩散系数测定{A).第二次全国环境放射化学学术计论会论文集[C],苏州,1995:15
    21 苏锡光,龙会遵,朱振国等.放射性铯、锶及锕系元素在膨润土中的扩散系数研究[J].原子科学技术,1998,32:67—75。
    22 李利华,傅依备,周秀鹏,张东.锶、铯在回填材料中的吸附与迁移研究,中国工程物理研究院,1999科研报告9405087。
    23 宋如金.凹凸棒石粘土吸附铀的性能研究及应用[J].华东地质学院学报,1998,21(3):265—272。
    24 刘月妙等.我国高放废物处置库缓冲/回填材料压实膨胀特性研究[J].铀矿地质,2001,(1)1
    25 钱光人,李玉香,易发成等.放射性废物固化基材—富铝碱矿渣粘土矿物复合胶凝材料的研究.中国工程物理研究院,1999年科研报告
    26 易发成,李玉香,钱光人等.凹凸棒石粘土对中低放核素Sr、Cs的吸附研究[J].矿产综合利用,2002,1:16-20
    27 IAEA. Performance of high level waste and barriers under repository conditions. Final Report of a Co-Ordinated Research Program. 1984-1989, IAEA-TBCDOC-582, Vienna, IAEA, 1991:7.
    28 Anon. Chemical durability and related properties of solidified high level waste forms. IAEA Technical Report Series, No.257, Vicnnc: IAEA,1985.
    29 Marples J A C. Preparation, properties and disposal of high level waste[J]. Glass Techn, 1988;29:233
    30 Ewing P. C, Radioactive waste forms- a review and comparison. IAEA/SR-186/32, Vienna: IAEA, 1994.
    31 Weber W J, Ewing R C, Angell C A, etal Radioation Effects in Glasses Used for immobilization of High-level waste and plutonium Disposition[J]. J. Mater. Res., 1997,12:19-46
    32 何涌.高放废液玻璃固化体和矿物固化体性质的比较[J],辐射防护,2001 21(1):43—47。
    33 吴兆广,罗上庚,于承泽,盛嘉伟.模拟高放废物玻璃固化体在处置条件下的浸出行为研究(Ⅰ)[J].核科学与工程,1994,14(4):340—349。
    34 吴兆广,罗上庚,于承泽,盛嘉伟.模拟高放废物玻璃固化体在处置条件下的浸出行为研究(Ⅱ)[J].核科学与工程,1996,16(1):87—93。
    35 盛嘉伟 罗上庚 汤宝龙.高放废液的玻璃固化及固体的浸出行为与发展情况[J].硅酸盐学报,1997,25(1):83—88。
    36 盛嘉伟 罗上庚 汤宝龙等.90—91/U模拟高放玻璃固化体的浸出特性评价[J].核化学与放射化学,1995;17(1):1-5
    37 罗上庚.核废物的安全与环境影响[J].安全与环境学报,2001,(1)2:16-20
    38 Rinwood A E, Kesson S E, Reeve K D, et al. Synroc, In: Radioactive West forms for the future[M]. Edited by Lutze W. Edwing R C. New York: Elsevier Science Publishing Co., 1988
    39 Buykx W J, Hwkins K, Levinss, D M, etal. Titanate ceramic for the immobilization of sodium-bearing high-level nuclear waste[J]. J. Am. Ceram. Soc. 1988,71(8):678-688
    40 Vance E R, Stewart M W A, Lumpkin G K, et al. Immobilization of sodium and potassium in synroc[J]. J. Mater. Sci, 1991, 26:2694.
    41 Vance E R, Augel P I, Casidy D J, et al. Freudenbergite: a possible synroc phase for sodium-bearing high-level waste[J]. J Am Ceram Soc, 1994,77(6):1576-1580.
    42 李利宇,罗上庚,汪德熙.用人造岩石固化模拟高钠高放废液[J].清华大学学报(自然科学物版),1997,37(5):50—53。
    43 张传智,张宝善。郄东生等.高放废液合成岩石固化研究[J].辐射防护,1997,17(6):417—426。
    44 罗上庚.回归自然-人工岩石固化放射性废物[J].自然杂志,1998,20(3):87-90
    45 罗上庚,杨建文,朱鑫章.人工岩石固化包容锕系核素废物[J].化学学报,2000,58(12):1608-1614
    46 M. L. D. Gougar, B. E. Scheetz and D. M. Roy. Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review[J]. Waste Management, 1996, 16(4):295-303
    47 Cocke D L and Mollah M Y A. The chemistry and leaching mechanism of hazardous substances in cementitious solidification/stabilization systems. In: Spence R D (ed.), Chemical microstructure solidified waste forms[M]. Bova Raton, FL, Lewis publishers, 1993:187-242
    48 沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991:188-199,210
    49 P.Kumar Mehta.混凝土的结构、性能与材料[M].上海:同济大学出版社,1991:32
    50 Kumar A, Roy D M. Pore structure and ionic diffusion in admixture blended Portland cement system[A]. In: Proc. 8th Int. Cong. Chem. Cem.[C], Vol(Ⅴ), Rio de Janeiro, Brazil, 1986:73
    51 D. Bonen and S.L. Sarkar. In:M.W. Grutzeck and S.L. Sarkar(EDS), Advances on Cement and Concrete, Proceedings of an Engineering Foundation Conference, New Hampshire, Durham, 24-29 1994, American Society of Civil Engineers, 1994:481-498
    52 Broderson K, Nilddon K. Pores and cracks in cemented waste and concrete[J]. Cem. Concr. Res, 1992, 22(2/3):405
    53 Locoge P, Massat M, Ollivier J P, et al. Ion diffusion in microcracked concrete[J]. Cem. Concr. Res, 1992, 22(2/3):431
    54 Sarott F A, Bradbury M H, Pandolfo P, et al. Diffusion and adsorption studies on hardened cement paste and the effect of carbonation on diffusion rates[J]. Cem. Concr. Res., 1992,22(2/3):439
    55 Teng S P, Lee C H. Numerical analysis of through-diffusion experimental results[J]. Cem. Concr. Res., 1992, 22(2/3):445
    56 Ollivier J P, Massat M. Permeability and microstructure of concrete: a review of modeling[J]. Cem. Concr. Res., 1992,22(2/3):503
    57 Roy D M, Scheetz B E, et al. Leach characterization of cement encapsulated waste[A]. In: Conf on Leachability of Radioactive Solids[C], Gatlinburg, TN, 1980: 9
    58 Ghattas N K, Eskander S B, Bayoumi T A, et al. Improved cement barriers applied in nuclear wastes[J]. Cem. Concr. Res., 1992,22(2/3):311
    59 Glasser F P, Marr J. The alkali binding potential of OPC and blended cements[J]. Il Cement, 1985,2:85
    60 Silsbee M, Maler R I A, Roy D M. Composition of pore fluids extruded from slag-cement pastes[A]. In: Proc. 8th Int. Cong. Chem. Cem[C]., Vol(VI),Rio de Janeiro,Brazil,1986:263
    61 K. Sakr, M.S. Sayed, N. Hafez. Comparison studies between cement and cement-kaolinite properties for incor-poration of low-level radioactive wastes[J]. Cem Concr Res, 1997,27(12):1919-1926
    62 Plecas I., Pavlovic Radojko and Pavlovic Snezana.. Leaching behavior of ~60Co and ~137 from spent ion exchange resins in cement-bentonite clay matrix[J]. Journal of Nuclear Materials, 2004, 327(2-3): 171-174
    63 Plecas I., Peric A., Kostodinovic A., Drljaca J. and Glodic S.. Leaching behavior of ~60Co and ~137 from spent ion exchange resins in cement matrix[J]. Cement and Concrete Research, 1992, 22(5): 937-940
    64 Muroi Masayuki, Aoki M., Takizaa M., Takahashi M., Fumoto J., Fujita N., Ishigure K.and Niwa S.. Ion-migration through bentonite/zeolite and bentonite/quartz sand mixture[A]. in: Waste Management '84, Proceedings of the Symposium: Waste Isolation in the US Technical Prograns and Public Education(C). Tucson, AZ, USA, 1984: 495-501
    65 R.A. Olson, P.D. Tennis, D. Bonen, H.M. Jennings, T.O. Mason, B.J. Christensen, A.R. Brough and G.K. Sun. Early containment of high-alkaline solution simulating low-level radioactive waste in blend cement[J]. Journal of Hazardous Materials, 1997, 52: 223-236
    66 Nishi T, Matsauda M. Reduction of cesium leachability form cementitious resin forms using nature acid clay and zeolite[J]. Cem. Concr. Res., 1992, 22(2/3): 387
    67 Weeren H O, moon H G, McDaniel E W. Waste disposal by shale fracturing at ORNL[A]. In: McCarthy G J, ed. Sci. Basis for Nucl Waste Management I[C], Plenum Press, NY,1984:521
    68 A.R.Brough, A.Katz, T.Bakharev, GK.Sun, R.J.Kirkpatrick, L.J.Struble and J.F.Young. Microstructural aspects of zeolite formation in alkali activated cement containing high levels of fly ash[A]. In: Mater. Res. Soc. Symp. Proc. 370, Materials Research Society[C], Pittsburgh, PA, 1995: 199-208
    69 A.R.Brough, A.Katz, G.K.Sun,T.Bakharev, L.J.Struble, RJ.Kirkpatrick and J.F.Young. Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: Formation of zeolites and Al-substituted C-S-H[J]. Cem. Concr. Res., 2001,31:1437-1447
    70 R.A.Olson, P.D.Tennis, D.Bonen, H.M.Jennings, T.O.Mason, B.J.Christensen, A.R.Brough, GK.Sun and J.F.Young. Early containment of high-alkaline solution simulating low-level radioactive waste in blended cement[J]. Journal of Hazardous Materials, 1997,52(3):223-236
    71 Stinton D P, McDaniel E W, Weeren H O. Partitioning of cesium in phases by grouted waste injection[A]. In: Mc Vay G V,ed. Mater. Res. Symp. Proc.[C], Vol.26, North Holland, NY, 1984:521
    72 王显德,孙明生.十年来低、中水平放射性废液处理技术的研究和发展[J].核化学与放射化学,1990,12(3):65
    73 Wu Xuequan, et al. Alkali-activated slag cement based radioactive waste forms[J]. Cem. Concr. Res., 1991, 12:16-20
    74 Shen Xiaodong, Yan Sheng, Wu Xuequan et al. Immobilization of simulated high level waste into AASC waste form[J]. Cem. Concr. Res., 1994, 24:133-138
    75 沈晓东,严生,吴学权,唐明述,水泥固化体的铯的浸出行为[J],核科学与工程,1994:14(2):134—139。
    76 龚立,游志军,程理,郑军华,~(137)Cs和~(86)Sr的在水泥石上的吸附及从水泥固化体中的浸出[A].in:第二次全国环境放射化学学术计论会论文集[C],苏州,1995,38—39
    77 Qian Guangren, Li Yuxiang, et al. Improvement of metakaolin on radioactive Sr and Cs immobilization of alkali-activated slag matrix[J]. Journal of Hazardous Materials, 2002, 92 (3): 289—300
    78 李玉香,钱光人,易发成等.放射性废物固化材料—富铝碱矿渣粘土矿物复合胶凝材料的研究[J].核科学与工程,1999,4:379-384
    79 芦令超,沈晓东,严生,吴学权.模拟高放射性废物碱矿渣水泥基固化体的性能研究[J].硅酸盐学报,1997,25(2):139—145
    80 芦令超,沈晓东,严生,吴学权.模拟高放射性废物碱矿渣水泥基固化体的稳定性研究[J].硅酸盐通报,1999,(2):13—16
    81 Darryl D. Siemer. Hydroceramics, a "new" cementitious waste form material for U.S. defense-type reprocessing waste[J]. Materials Research Innovations, Volume 6, Number 3/September 2002:96-104
    82 J. Olanrewaju. Hydrothermal transformation & dissolution of hydrocerarnic waste forms for the INEEL calcined high-level nuclear waste[D]. Pennsylvania: The Pennsylvania State University, 2002
    83 S. Komarneni and D. M. Roy. Mechanisms of immobilization of nuclear waste elements by cement minerals, cement and mortar[J]. Cem. Concr. Res., 1981, 11:789-794
    84 R.W. Crawford, C. Mcculloch, M. Angus, F.P. Glasser and A.A. Rahman. Intrinsic sorption potential of cement components for ~(134)Cs[J]. Cem. Concr. Res., 1984, 14:595-599
    85 H.F.W. Taylor. Cement chemistry[M]. London: Thomas Telford Services Ltd.: 126-136,145
    86 Komarneni S, Roy D M and Roy R. Al-substituted tobermorite: shows cation exchange[J]. Cement and Concrete Research, 1982, 12:773-780
    87 O.P.Shrivastava, et al. Cesium selectivity of (Al+Na)-Substituted Tobermorite[J]. Cement and Concrete Research, 1994, 24(3): 573-579
    88 S. Komarneni, D.M.Roy. New tobermorite cation exchangers[J]. Journal of Materials Science, 1985, 20:2930-2936
    89 S. Komarneni S, Roy D M. Tobermorites: a new family of cation exchangers[J]. Science, 1983, 221:647
    90 史才军,傅国飞,唐明述等.SrO.SiO_2的水热合成[J].硅酸盐通报,1991,10(2):15
    91 Komarneni S, Roy R, Roy D M. Comments on:ion-exchange properties of Ca_5Si_6O_(18)H_2.4H_2O[J]. J. Mater. Sci., 1987, 6(1):91
    92 Komarneni S, Roy R, Roy D M. Pseudomorphism in xonotlite and tobermorite with Co~(2+) and Ni~(2+) exchange for Ca~(2+) at 25℃[J]. Cem. Concr. Res., 1986,16(1):47
    93 Michihiro M, Komarneni S, Roy R. Immobilization of Pb~(2+), Cd~(2+),Sr~(2+) and Ba~(2+) ions using calcite and aragonite[J]. Cem. Concr. Res., 1988,18(3):485
    94 S. Komarneni, E. Breval, D. M. Roy and R. Roy. Reactions of some calcium silicates with metal cations[J]. Cem. Concr. Res., 1988,18:204-220
    95 Zamorani E, Sheikh I A, Rossa D, et al. Physical properties and leachability of MLW stream containing Cr, Ni and Cd immobilized in a cement matrix[A]. In: Mater. Res.Soc.Symp. Proc.Vol 127,Science Basis for nuclear waste management Ⅵ[C], Pittsburgh, PA, 1989:489
    96 Susan L H, Michael W G. Incorporation of cesium by hydrating calcium aluminosilicates[J]. J. Am. Ceram. Soc. 1989,72(10) 1938-1947.
    97 G. Rudolph and R. Koster. "immobilization of strontium and cesium in intermediate-level liquid wastes by solidification in cements"[A], in: Scientific basis for nuclear waster management[M], Vol.2, Edited by G. J. McCarthy Plenum Press. New York. 1979. pp.467-470
    98 Hoyle S, Grutzeck M W. Effect of phase composition on the strontium leachability of cement-based waste foums[A]. In: Adv. in Ceram. 2, Nucl. Waste Management 2,1986:275
    99 Kaushal S, Roy D M, Licastor P H, et al. Heat of hydration and characterization of reaction procucts of adiabatically cured fly ash and slag mixtures[J]. In: Hemming R T, Berry E E, McCarthy G J, et al eds. Fly Ash and Coal Conversion By-Products: Characterization, Utilization and Disposal, Mater. Res. Soc. Proc.[C], Vol 136, Pittsburgh, PA, 1989:87
    100 Damidot D, Glasser F P. Thermodynamic investigation of the CaO-Al_2O_3-CaSO_4-H_2O system at 25℃ and the influence of Na_2O[J]. Cem. Concr. Res., 1993.23(1):221
    101 Reveregat E, Richet C, Gegout P. Effect of pH on the durability of cement pastes[J]. Cement and Concrete Research, 1992, 22(2/3):259
    102 Glasser F P. Progress in the immobilization of radioactive wastes on cement[J]. Cem. Concr. Res., 1992, 22(2/3):201
    103 Roy D M, Langton C A. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff. LA-11527-MS, Los Alamos, NM: Los Alams National Lab, 1989:101
    104 须藤俊男.粘土矿物学[M].北京:地持出版社,1981:235-237
    105 浙江大学等.硅酸盐物理化学[M].北京:中国建筑工业出版社,1979:146-147
    106 孙维林,王铁军,刘庆旺.粘土物化性能[M].北京:地质出版社,1992:123-130
    107 池汝安,朱永,何培炯等.稀土在混合粘土矿中的迁移和富集[J].稀土,1992,5:67-71
    108 易发成,陈廷芳,汪建中等.四川北川埃洛石矿物学特征及工业利用前景[J].矿物岩石,1997,69(3):11-15
    109 T. Shahwan, H. N. Erten, L. Black and G. C. Allen. TOF-SIMS study of Cs~+ sorption on natural kaolinite[J]. The Science of the Total Environment, 1999, 226:255-260
    110 天津大学物理化学教研室,宋世谟,王正烈,李文斌修订.物理化学(第三版)[M],下册.北京:高等教育出版社,2001:183-186
    111 陆佩文.硅酸盐物理化学[M].南京:东南大学出版社,1995:53
    112 姚道坤、史素端等.中国膨润土矿床及其开发应用[M].北京:地质出版社,1991
    113 王濮,潘兆橹,翁玲定.系统矿物学(中册)(M].北京:地质出版社,1984:460-461
    114 Grim R E. Clay Mineralogys[M]. McGraw-Hill, New York 1968
    115 张铨昌,扬华蕊,韩成.天然沸石离子交换性能及其应用[M],科学出版社,1986
    116 徐如人等.分子筛的结构与合成[M].长春:吉林大学出版社,1987:1-48
    117 Ames. L. L. et al. The cation sieve properties of clinoptilolite. Amer. Miner. 1960(45): 689-700
    118 金承黎.模拟放射性核素与固化基材的作用机理研究[D].硕士学位论文.绵阳:西南科技大学,2004.
    119 郑自立,田煦.苏皖凹凸棒石矿物红外光谱特征研究[J].岩石学报,1990(2):30-36
    120 郑自立,宋绵新,易发成,李虎杰,田煦.中国坡缕石[M].北京:地质出版社,1997
    121 李宽良、周俊一、于乃秀、叶艳妹 锶、钴、铯溶质的竞争吸附与锶的迁移动态机理 环境科学学报 1994 14(3):330-334
    122 杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报,1996,24(2):209~215
    123 袁润章.胶凝材料学[M].武汉:武汉工业大学出版社:143-145
    124 He Hongping, Hu Cheng, Guo Jiugao and Zheng Huifen. ~(29)Si, ~(27)Al Magic-Angle-Spinning Nuclear magnetic resonance (MAS NMR) studies of kaolinite and its thermal transformation products. Chinese Journal of Geochemistry, 1995, 14(1): 78-82
    125 Hua Xu, J.V.J. Van Deventer. The geopolymerirzation of alunino-silicate minerals[J]. J. Miner. Process, 2000, 59:247-266
    126 张德玉译,[美]C.E.威维尔、L.D.普拉德.粘土矿物化学[M],北京:地质出版社,1983
    127 H.G Smolczyk著.薛君玕,唐明述,楼宗汉等译.矿渣的结构和矿渣鉴定[A].in:第七届国际水泥化学会议论文选集.北京:中国建筑工业出版社,1983:239-253
    128 吴育良,阮锦强,谢一强,等.火焰原子吸收法测定放射性废物固化体中模拟核素铯和锶.核科学与工程,1990,10(1):54-61
    129 Brydson R, Richardson I G, McComb D W, Groves G W. Parallel electron energy loss spectroscopy study of Al-substituted calcium silicate hydrate (C-S-H) phases present in hardened cement pastes[J]. Solid State Communications, 1993, 88(2): 183-187
    130 I.G. Richardson, A.R. Brough, G. W. Groves and C. M. Dobson. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate(C-S-H)[J]. Cement and Concrete Research, 1994, 24(5):813-829
    131 Shao-Dong Wang and Karen L. Scrivener. Hydration products of alkali activated slag cement[J]. Cement and Concrete Research, 1995, 25(3):561-571
    132 Sujin Song and Hamlin M. Jennings. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag[J]. Cement and Concrete Research, 1999, 29:159-170
    133 A. R. Brough and A. Atkinson. Sodium silicate-based, alkali-activated slag mortars: Part Ⅰ. Strength, hydration and microstructure[J]. Cement and Concrete Research, 2002, 32:865-879
    134 李玉香,傅依备,易发成,刘勋.CaO-SiO_2-硅灰-H_2O体系的水热合成产物[J].四川大学学报(工程科学版),2005,37(1):69-73
    135 Sung-Yoon Hong and F. P. Glasser. Alkali binding in cement pastes: Part Ⅰ. The C-S-H phase[J]. Cement and Concrete Research, 1999, 29:1893-1903
    136 Sung-Yoon Hong and F.P. Glasser. Alkali sorption by C-S-H and C-A-S-H gels: Part Ⅱ. Role of alumina[J]. Cement and Concrete Research, 2002, 32:1101-1111
    137 F.M.Lee著,唐明述,杨南如,胡道和,闵盘荣译.水泥和混凝土化学[M](第三版).北京:中国建筑工业出版社,1984:647
    138 A. Roy, P. J. Schilling, H.C. Eaton, P. G. Malone, W. N. Brabston and L. D. Wakeley. Activation of ground blast-furnace slag by alkali-metal and alkaline-earth hydroxides[J]. J. Am. Ceram. Soc., 1992, 75(12): 3233-3240
    139 W. Jiang, M. R. Silsbee and D. M. Roy. Alkali activation reaction mechanism and its influence on microstructure of slag cement, in: H. Justnes(Ed.) Proceeding of the 10th International Congress in the Chemistry of Cement, Amarkai and Congrex Goteborg, Gothenburg, Sweden, 1997,3ⅱ100:9
    140 R.I.A. Malek and D.M. Roy. Synthesis and characteization of new alkali-activated cements. Proceeding of the 10th International Congress in the Chemistry of Cement, Amarkai and Congrex Goteborg, Gothenburg, Sweden, 1997, 1ⅰ024:8
    141 Wang, S.-D. Alkali-activated slag: Hydration process and development of microstructure [J]. Advances in Cement Research, 2000, v 12(4): 163-172
    142 S. Diamond, J. L. White and W.L. Dolce Effects of isomorphous substitution in hydrothermallysynthesized Tobermorite[J]. The American Mineralogist,1966, 51:388-401
    143 D. S. Klimesch, A. Ray. Use of the second-derivative differential thermal curve in the evaluation of cement-quartz pastes with metakaolin addition autoclaved at 180℃[J]. Thermochimica Acta, 1997, 307(2): 167-176
    144 Palomo, A. Grutzeck, M. W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329
    145 彭文世,刘高魁.矿物红外光谱图集[M].北京:科学出版社,1982:444
    146 黄焱球,程守田,高广立.“偏高岭石-碱-水”体系中4A沸石晶体生长规律及其机理探讨[J].矿物岩石,1997,17(1):17-22
    147 J. M. Crennan, S.A.S. El-Hemaly and H.F.W.Taylor. Autoclaved lime-quartz materials I. Some factors influencing strength[J]. Cement and Concrete Research, 1977, 7(5):493-502
    148 欧阳世翕.CSH若干特性研究[D].博士学位论文,武汉工业大学,1986
    149 V. D. Glukhovsky, G. S. Rostovskaja and G.V. Rumyna. High strength slag-alkaline cements[A]. In: 7th Int. Congr. Chem. Cem., Paris,1980, Vol.3:V164-V168
    150 陈雅斓,李玉香,钱光人,等.新型放射性废物固化胶凝材料浆体对锶铯的吸附研究[J].西南工学院学报,2000,15(1):15-19.
    151 石振坤,康厚军,张东等.~(90)Sr、~(137)Cs在水泥固化体中的吸附和迁移行为[J].同位素,2001,14(3-4):174-178
    152 印永嘉等.大学化学手册[M].山东科学出版社,1985:29~32
    153 李利华,傅依备,周秀鹏,等.Sr、cs在回填材料中的吸附与迁移研究[J].原子能科学技术,1998,32,suppl.:76-82. LI Lihua, FU Yibei, ZHOU Xiupeng, et al. The study on adsorption and migration of Sr and Cs in backfilling materials[J](in Chinese). Atomic Energy Science and Technology, 1998, 32, suppl.:76-82
    154 H.D.Megaw, C.H.Kelsey. Crystal structure of tobermoirte[J]. Nature, 1956,177:390-391
    155 O.P. Shrivastava and R. Shrivastava. Sr~(2+) uptake and leachability study on cured aluminum-substituted tobermorite-OPC admixtures[J]. Cement and Concrete Research, 2001, 31:1251-1255
    156 H. Stade. On the reaction of C-S-H(di, ploy) with alkali hydroxides[J]. Cement and Concrete Research, 1989, 19(5): 802-810
    157 大连工学院无机化学教研室编.无机化学(下)[M].第二版.北京:人民教育出版社,1982:29
    158 Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates. Cement and Concrete Research, 1999, 29:1759-1767
    159 G.L. Kalousek. Crystal chemistry of hydrous calcium silicates: I, Substitution of aluminum in lattice of tobermodte[J]. Journal of the American Ceramic Society, 1957, 40(3): 74-80
    160 D.S. Klimesch and A. Ray. Hydrogarnet formation during autoclaving at 180℃ in unstirred metakaolin-lime-quartz slurries[J]. Cement and Concrete Research, 1998,28(8):1109-1117
    161 Kwan S, La Rosa Thompson J, Grutzeck M W. Structure and phase relations of aluminum-substituted calcium silicate hydrate[J]. J. Am. Ceram. Soc, 1996,79(4):967-971
    162 I.G Richardson, G.W. Groves. The composition and structure of C-S-H in hardened slag cement pastes[A]. In: Proceedongs of the 10th ICCC[C], Vol Ⅱ, Gothenburg, Sweden, 1997, 2ⅱ068
    163 I.G. Richardson, G.W. Groves. The composition and structure of C-S-H gels in cement pastes containing blast-furnace slag[A]. In: Proceedongs of the 9th ICCC[C], Vol Ⅳ, New Dehli, India: 1992, 350-356
    164 I.G. Richardson, G. W. Groves. Microstructure and microanalysis of hardened cement pastes involving ground granuated blast-furnace slag[J]. J. Mater Sci, 1992,27(22):6204-6212
    165 A. R. Brough, C.M. Dobson, I.G. Richardson and GW. Groves. ~(29)Si-enrichment and selective enrichment for study of the hydration model cements and blended cements[A]. In: Proceedings of the 10th ICCC[C], Vol Ⅲ, Gothenburg, Sweden, 1997, 3v001
    166 H. Stade and W. Wicker. On the structure of ill crystallized calcium hydrogen silicates I. Formation and properties of an ill-crystallized calcium hydrogen di-silicate phase[J]. Z. Anarg. Allg.Chen, 1986,466: 55-60
    167 Viehland D, Li H F, et al. Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste: Short-range ordering, Nanocrystallinity, and local compositional order[J]. J. Am. Ceram. Soc., 1996, 79(7): 1731-1744
    168 王占文,杨南如,金钦华.测定硅酸盐阴离子状态的新方法-三甲基硅烷化法[J].南京化工学院学报,1982,4(2):85-98
    169 P. Faucon, J. M. Delaye, J.Virlet, J. F. Jacquinot and F. Adenot. Study of the structural properties of the C-S-H(I) by molecular dynamics simulation[J]. Cement and Concrete Research, 1997, 27(10): 1591-1590
    170 T. Bakharev, J.G Sanjayan and Y.-B. Cheng. Sulfate attack on Alkali-Activated slag concrete[J]. Cement and Concrete Research, 2002, 32:211-216
    171 R. S. Gollop and H.F.W. Taylor. Microstructural and microanalytical studies of sulfate attack. Ⅳ. Reactions of a slag cement paste with aodium and magnesium sulfate solutions[J]. Cement and Concrete Research, 1996, 26(7): 1013-1028

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700