竖直埋管地源热泵恒温恒湿空调系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用浅层地热能与热泵技术相结合形成的为建筑物供暖、制冷的地源热泵空调系统是可再生能源利用的有效方式。地源热泵空调系统目前主要应用在普通舒适性空调中,但对室内环境需要常年提供恒温恒湿空调的系统,地源热泵在这类系统中的应用研究还鲜有报道。这类系统对空调需求稳定、能源消耗较大。本文针对恒温恒湿空调的特点以及夏热冬冷地区的气候特点,深入研究了竖直埋管地源热泵恒温恒湿空调系统。主要内容包括:
     (1)为研究竖直埋管地源热泵空调系统在恒温恒湿环境中的运行特性,建立竖直埋管地源热泵恒温恒湿空调系统理论分析模型,对地源热泵空调系统的运行性能、地下埋管换热器与土壤的换热量和钻孔周围土壤温度分布进行预测。
     (2)为了对竖直埋管地源热泵恒温恒湿空调系统进行实验研究以及对理论模型进行验证,以上海地区某档案馆建筑为对象,构建竖直埋管地源热泵恒温恒湿空调实验系统。建筑面积8000m~2。系统主要包括地下埋管换热器、两台额定制冷量为594kW的热回收型地源热泵机组以及再热采用冷凝热回收的恒温恒湿机组。其中地下埋管换热器包括80m深、直径160mm的钻井280个,每个钻井内布置DN32单U型管。制冷工况运行时,采用冷凝热回收技术,将一部分冷凝热用于恒温恒湿机组内空气的再热,这样不仅减少了向土壤排放的热量,而且用冷凝热代替了常用的电加热来再热空气,节省了这部分的电能。
     (3)对系统进行理论预测,预测得出上海地区全年地下埋管换热器向土壤散热量为2630GJ,从土壤中吸热为2114.7GJ,热不平衡率为19.6%。在初始温度为18℃时,运行一年后距钻孔周围土壤温度上升为18.76℃。
     (4)对地源热泵恒温恒湿空调系统进行全年实验研究。得出冬季典型工况下,热泵机组制热COP达到5.2;夏季典型工况下,机组制冷COP达到5.1。连续运行一年,室内温湿度控制在规定范围内,满足国家规范要求。地源热泵空调系统在一年的运行时间内土壤温度上升了0.7℃左右,冷凝热回收对缓解土壤热堆积的贡献是68.14%。
     (5)利用理论分析模型,结合实验研究,对系统长时间运行性能进行预测,找到合理的运行控制策略。结果表明随埋管间距的增加,土壤温度上升变慢,有利于系统稳定运行,建议上海地区竖直埋管地源热泵恒温恒湿空调系统选择埋管间距4m~5m,埋管深度80m~100m。系统连续运行15年后,采用热回收技术时土壤温度上升幅度比不采用热回收时降低66.98%;室内设定20℃时,土壤温度上升2.80℃,而如果室内设定为22℃,则仅上升1.03℃,土壤温度上升幅度降低63.21%。
     (6)地域性分析表明,北京地区采用冷凝热回收技术可以解决土壤热不平衡问题;成都地区需要在热回收技术的基础上提高室内设定温度为22℃才可以解决土壤热不平衡问题;沈阳地区可以通过降低室内设定温度为18℃来解决土壤热不平衡问题。
The ground source heat pump (GSHP) system, which combines the shadow geothermal and the heat pump to serve buildings with heat and cold energy, is an effective method for sustainable energy application. The application of GSHP system mainly covered in conventional buildings. However, few investigation is carried out for GSHP system applying in some buildings, which require the indoor enviroment to keep constant. The energy cost of air-conditioning is large in these buildings. Based on the special of constant temperature and humidity air-conditioning system and climate of hot summer and cold winter zone, the vertical-pipe ground source heat pump constant temperature and humidity air-conditioning system was analyzed. The main work are summarized as follow:
     (1) For analyzing the performance of the GSHP constant temperature and humidity air- conditioning system, the mathematical model was built.
     (2) The constant temperature and humidity air-conditioning system in the archives building in Shanghai covers an area of 8000m~2. The system consisted of ground heat exchanger, two heat pumps with heat recovery and AHU (air handling unit). The ground heat exchanger consisted of 280 vertical boreholes with the depth of 80 m. The distance between the boreholes is 4 m. The diameter of the borehole is 160 mm. There is a single PE U-tube with the outer diameter of 32 mm in each borehole. When operated in cooling mode, part of heat from condenser was used to reheat the air in AHUs, which would reduce the heat rejected to the soil.
     (3) The performance of the system, the heat exchange of the ground heat exchanger and soil, and the temperature distribution of soil are predicted by mathematical model of the constant temperature and humidity GSHP system. It is shown that the total heat rejected to soil is a year is 2630GJ while the heat absorbed from soil is 2114.7GJ in Shanghai. The unblance rate is 19.6%.
     (4) Experiments of all-year operating modes are carried out. Under the typical winter weather condition of Shanghai, the average COP was 5.2. For the typical summer weather condition, the average COP was 5.1. During the whole year, the indoor environment met the“Archives Design Code”issued by China national archives. The temperature of soil increased 0.7℃after one year operation. The contribution rate of heat recovery to the heat unbalance was 68.14%.
     (5) The long-term performance of the system is predicted with the mathematical mode combined the experimental data. It is shown that the soil temperature increases slower with the distance of the borehole increases, which is helpful for the system operates stably. The borehole distance and deepness are suggested to be 4m-5m and 80m-100m respectively in Shanghai. After 15 years operation, the increment of soil temperature with hear recovery was 66.98% lower than without heat recovery. After 15 years operation, the soil temperature increases 2.80℃with indoor set temperature 20℃while 1.03℃with indoor set temperature 22℃, the increment of soil temperature was reduced by 63.21%.
     (6) The region analysis showed that the thermal unbalance of soil could by solved by heat recovery in Beijing; Beside the hear recovery, the indoor set temperature should be increased to 22℃to solved the thermal unbalance in Chengdu; In Shenyang, the thermal unbalance could be solved by reducing the indoor set temperature to 18℃.
引文
[1]国际能源署.世界能源展望2008(2008 World Energy Outlook)[OL]. http://www.worldenergyoutlook.org/docs/weo2008/WEO2008_es_chinese.pdf
    [2]李一成.能源危机与对策[OL]. http://www.aura.cn/aurakm/energy/181625322.html
    [3]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调. 2005, 35(5): 30-40.
    [4]魏庆芃 .中国公共建筑能耗现状特点和节能途径[OL]. http://www.ccgshp.com/news/view.php?id=4180
    [5]江亿.我国建筑能耗状况与节能重点[J].建设科技. 2007, (5): 26-29.
    [6]王长贵.新能源和可再生能源在建筑中应用的意义和前景[J].太阳能. 2003, (2): 16-18.
    [7] Wald, M. L. The power of renewables[J]. Scientific American. 2009.3: 32-37.
    [8] Jacobson, M. Z., Delucchi, M. A. A path to sustainable energy by 2030[J]. Scientific American. 2009.11: 58-65.
    [9]刁乃仁,方肇洪.地源热泵——建筑节能新技术[J].建筑热能通风空调. 2004, 23(3): 18-23.
    [10]中华人民共和国国家标准.地源热泵系统工程技术规范(GB 50366-2005). In 2005.
    [11]全国地源热泵网.世界地源热泵2010最新动态[OL]. http://www.ccgshp.com/news/view.php?id=3850
    [12]世界地源热泵行业发展概况[J].供热制冷. 2010, (09): 60-61.
    [13]吕悦,杨立平,周沫, et al.国内地源热泵应用情况调查报告[J].工程建设与设计. 2005, (6): 5-10.
    [14] Xu, W. Report on China Ground-source heat pump[C]. first China Architecture & Building Press. Beijing. 2008.
    [15] Yang, W., Zhou, J., Xu, W., et al. Current status of ground-source heat pumps in China[J]. Energy Policy. 2010, 38(1): 323-332.
    [16]徐伟.《中国地源热泵发展研究报告》(摘选)——国际国内地源热泵技术发展[J].建设科技. 2010, (18): 14-18.
    [17]全国地源热泵网.我国地源热泵年减碳排放4000万吨[OL]. http://www.ccgshp.com/news/view.php?id=4158
    [18]于明志,方肇洪.现场测试地下岩土平均热物性参数方法[J].热能动力工程. 2002, 17(101): 489-492.
    [19]于明志,彭晓峰,方肇洪.用于现场测量深层岩土导热系数的简化方法[J].热能动力工程. 2003, 18(5): 512-514.
    [20] Mattsson, N., Steinmann, G., Laloui, L. Advanced compact device for the in situ determination of geothermal characteristics of soils[J]. Energy and Buildings. 2008, 40(7): 1344-1352.
    [21] Beier, R. A. Vertical temperature profile in ground heat exchanger during in-situ test[J]. Renewable Energy. 2011, 36(5): 1578-1587.
    [22] Florides, G., Kalogirou, S. First in situ determination of the thermal performance of a U-pipe borehole heat exchanger, in Cyprus[J]. Applied Thermal Engineering. 2008, 28(2-3): 157-163.
    [23] Sharqawy, M. H., Said, S. A., Mokheimer, E. M., et al. First in situ determination of the ground thermal conductivity for boreholeheat exchanger applications in Saudi Arabia[J]. Renewable Energy. 2009, 34(10): 2218-2223.
    [24] Esen, H., Inalli, M. In-situ thermal response test for ground source heat pump system in ElazIg, Turkey[J]. Energy and Buildings. 2009, 41(4): 395-401.
    [25] Zeng, H. Y., Diao, N. R., Fang, Z. H. A Finite Line-Source Model for Boreholes in Geothermal Heat Exchangers[J]. Heat Transfer—Asian Research. 2002, 31(7): 558-567.
    [26]崔萍,刁乃仁,方肇洪, et al.地热换热器U型埋管的传热模型及热阻计算[J].暖通空调. 2003, 33(6): 108-110.
    [27]方肇洪,刁乃仁,崔萍. Discontinuous Operation of Geothermal Heat Exchangers[J]. TSINGHUA SCIENCE AND TECHNOLOGY. 2002, 7(2): 194-197.
    [28]刁乃仁,曾和义,方肇洪.竖直U型管地热换热器的准三维传热模型[J].热能动力工程. 2003, 18(4): 387-390.
    [29]方肇洪,刁乃仁,曾和义.地热换热器的传热分析[J].工程热物理学报. 2004, 25(4): 685-687.
    [30]刁乃仁,方肇洪.地埋管地源热泵技术[M].高等教育出版社. 2006.
    [31]唐志伟,时晓燕,黄俊惠, et al.地源热泵U型管地下换热器的数值模拟[J].北京工业大学学报. 2006, 32(1): 62-66.
    [32] Abu-Nada, E., Akash, B., Al-Hinti, I., et al. Modeling of a geothermal standing column well[J]. International Journal of Energy Research. 2008, 32(4): 306-317.
    [33] Zhongjian, L., Maoyu, Z. Development of a numerical model for the simulation of vertical U-tube ground heat exchangers[J]. Applied Thermal Engineering. 2009: 920-924.
    [34] Yang, H., Cui, P., Fang, Z. Vertical-borehole ground-coupled heat pumps: A review of models and systems[J]. Applied Energy. 2010, 87(1): 16-27.
    [35] Lamarche, L., Beauchamp, B. A new contribution to the finite line-source model for geothermal boreholes[J]. Energy and Buildings. 2007, 39(2): 188-198.
    [36] Lee, C. K., Lam, H. N. Computer simulation of borehole ground heat exchangers for geothermal heat pump systems[J]. Renewable Energy. 2008, 33(6): 1286-1296.
    [37]杨卫波,施明恒.地源热泵中U型埋管传热过程的数值模拟[J].东南大学学报(自然科学版). 2007, 37(1): 78-83.
    [38] Esen, H., Inalli, M., Sengur, A., et al. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems[J]. International Journal of Refrigeration-Revue Internationale Du Froid. 2008, 31(1): 65-74.
    [39]舒海文,端木琳,谷彦新, et al.地源热泵竖直地埋管系统设计的简明算法模型研究[J].暖通空调. 2006, 36(12): 74-77.
    [40]宋小飞,治,温.,司俊龙.地源热泵U型管地下换热器的CFD数值模拟[J].北京科技大学学报. 2007, 29(3): 329-333.
    [41]刘晓茹.地埋管地源热泵系统热平衡及其地域性分析[J].暖通空调. 2008, 38(9): 57-59.
    [42]范蕊,马最良.热渗耦合作用下地下埋管换热器的传热分析[J].暖通空调. 2006, 36(2): 6-10.
    [43] Florides, G., Kalogirou, S. Ground heat exchangers--A review of systems, models and applications[J]. Renewable Energy. 2007, 32(15): 2461-2478.
    [44] Lee, C., Park, M., Min, S., et al. Comparison of effective thermal conductivity in closed-loop vertical ground heat exchangers[J]. Applied Thermal Engineering. 2011, In Press, Corrected Proof.
    [45] Hamada, Y., Nakamura, M., Saitoh, H., et al. Improved underground heat exchanger by using no-dig method for space heating and cooling[J]. Renewable Energy. 2007, 32: 480-495.
    [46]曲云霞,张林华,方肇洪, et al.地源热泵名义工况探讨[J].西安建筑科技大学学报(自然科学版). 2003, 35(3): 221-225.
    [47]王景刚,马一太,张子平, et al.地源热泵的运行特性模拟研究[J].工程热物理学报. 2003, 24(3): 361-366.
    [48]曲云霞,李安桂,张林华, et al.闭环地源热泵系统建模[J].西安建筑科技大学学报(自然科学版). 2007, 39(2): 235-239.
    [49] Hwang, Y., Lee, J. K., Jeong, Y. M., et al. Cooling performance of a vertical ground-coupled heat pump system installed in a school building[J]. Renewable Energy. 2008, 34: 578-582.
    [50] Hepbasli, A. Performance evaluation of a vertical ground-source heat pump system in Izmir, Turkey[J]. International Journal of Energy Research. 2002, 26(13): 1121-1139.
    [51]李芃,于立强,张晶明. U型垂直埋管式土壤源热泵制冷性能的实验研究[J].建筑热能通风空调. 2000, (3): 14-17.
    [52]程群英,罗明智,孙纯武, et al.地源热泵夏季性能测试及传热模型[J].暖通空调. 2005, 35(3): 2-6.
    [53]杨卫波,施明恒,陈振乾.土壤源热泵夏季运行特性的实验研究[J].太阳能学报. 2007, 28(9): 1012-1016.
    [54] Kara, Y. A. Experimental performance evaluation of a closed-loop vertical ground source heat pump in the heating mode using energy analysis method[J]. International Journal of Energy Research. 2007, 31(15): 1504-1516.
    [55]周亚素,张旭,陈沛霖.土壤源热泵机组冬季供热性能的数值模拟与实验研究[J].东华大学学报. 2002, 28(1): 5-9.
    [56]崔萍,苏登超,孙长亮, et al.地源热泵在室内游泳池供暖空调中的应用研究[J].可再生能源. 2003, (6): 18-21.
    [57] Michopoulos, A., Bozis, D., Kikidis, P., et al. Three-years operation experience of a ground source heat pump system in Northern Greece[J]. Energy and Buildings. 2007, 39(3): 328-334.
    [58]王华军,赵军,沈亮.地源热泵系统长期运行特性的实验研究[J].华北电力大学学报. 2007, 34(2): 52-54.
    [59] Urchueguia, J. F., Zacarre, M., Corberan, J. M., et al. Comparison between the energy performance of a ground coupled water to water heat pump system and an air to water heat pump system for heating and cooling in typical conditions of the European Mediterranean coast[J]. Energy Conversion and Management. 2008, 49(10): 2917-2923.
    [60] Blum, P., Campillo, G., Munch, W., et al. CO2 savings of ground source heat pumpsystems - A regional analysis[J]. Renewable Energy. 2010, 35(1): 122-127.
    [61]朱汉宝,周亚素.地源热泵与风冷热泵的技术经济性能比较[J].可再生能源. 2006, (5): 86-89.
    [62]崔振彬,李莎.地源热泵空调与传统中央空调的比较[J].浙江建筑. 2009, (06).
    [63] Liu, X., Hong, T. Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems[J]. Energy and Buildings. 2010, 42(5): 584-589.
    [64] Ozgener, O., Hepbasli, A. Modeling and performance evaluation of ground source (geothermal) heat pump systems[J]. Energy and Buildings. 2007, 39(1): 66-75.
    [65] Ozgener, O., Hepbasli, A. Experimental investigation of the performance of a solar-assisted ground-source heat pump system for greenhouse heating[J]. International Journal of Energy Research. 2005, 29(3): 217-231.
    [66] Ozgener, O., Hepbasli, A. Performance analysis of a solar-assisted ground-source heat pump system for greenhouse heating: an experimental study[J]. Building and Environment. 2005, 40(8): 1040-1050.
    [67] Ozgener, O., Hepbasli, A. Experimental performance analysis of a solar assisted ground-source heat pump greenhouse heating system[J]. Energy and Buildings. 2005, 37(1): 101-110.
    [68]曲云霞,方肇洪,张林华, et al.太阳能辅助供暖的地源热泵经济性分析[J].可再生能源. 2003, (1): 8-10.
    [69]杨卫波,施明恒,董华.太阳能土壤源热泵系统联合供暖运行模式的探讨[J].暖通空调. 2005, 35(8): 25-31.
    [70] Yumrutas, R., Kaska, o. Experimental investigation of thermal performance of a solar assisted heat pump system with an energy storage[J]. International Journal of Energy Research. 2004, 28: 163-175.
    [71]秘文涛,张建一,陈天及, et al.一种新型的地源热泵与冰蓄冷空调联合运行系统[J].流体机械. 2007, 35(8): 72-75.
    [72] Gasparella, A., Longo, G. A., Marra, R. Combination of ground source heat pumps with chemical dehumidification of air[J]. Applied Thermal Engineering. 2005, 25(2-3): 295-308.
    [73] Gao, Q., Li, M., Yu, M., et al. Review of development from GSHP to UTES in China and other countries[J]. Renewable and Sustainable Energy Reviews. 2008, 13: 1383-1394.
    [74] Wang, H. J., Qi, C. Y. Performance study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings[J]. Energy and Buildings. 2008, 40: 1278-1286.
    [75] Jenkins, D. P., Tucker, R., Rawlings, R. Modelling the carbon-saving performance of domestic ground-source heat pumps[J]. Energy and Buildings. 2009, 41(6): 587-595.
    [76] Ozgener, O. Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings[J]. Energy. 2010, 35: 262-268.
    [77] Hochstein, M. P., Moore, J. N. Indonesia: Geothermal prospects and developments - Preface[J]. Geothermics. 2008, 37(3): 217-219.
    [78] Serpen, U., Aksoy, N., Ongur, T., et al. Geothermal energy in Turkey: 2008 update[J]. Geothermics. 2009, 38(2): 227-237.
    [79] Lund, J. W., Freeston, D. H., Boyd, T. L. Direct application of geothermal energy: 2005 Worldwide review[J]. Geothermics. 2005, 34(6): 691-727.
    [80]章熙民,任泽霈,梅飞鸣, et al.传热学(第四版)[M].中国建筑工业出版社. 2002.
    [81] Krichel, S. V., Sawodny, O. Dynamic modeling of compressors illustrated by an oil-flooded twin helical screw compressor[J]. Mechatronics. 2011, 21: 77-84.
    [82]美国制冷空调工程师协会.地源热泵工程技术指南[M].中国建筑工业出版社. 2001.
    [83]赵军,戴传山.地源热泵技术与建筑节能应用[M].中国建筑工业出版社. 2007.
    [84]朱明善,刘颖,林兆庄.工程热力学[M].清华大学出版社. 2001.
    [85]童钧耕,吴孟余,王平阳.高等工程热力学[M].科学出版社. 2006.
    [86] Kuzgunkaya, E. H., Hepbasli, A. Exergetic performance assessment of a ground-source heat pump drying system[J]. International Journal of Energy Research. 2007, 31(8): 760-777.
    [87] Schmidt, E., L., Klocker, K., Flacke, N., et al. Applying the transcritical CO2 process to a drying heat pump.[J]. International Journal of Refrigeration. 1998, 21(3): 202-211.
    [88] Hepbasli, A., Akdemir, O. Energy and exergy analysis of a ground source (geothermal) heat pump system[J]. Energy Conversion and Management. 2004, 45(5): 737-753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700