地源热泵系统融雪化冰可靠性设计及神经网络预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“十二五”期间,我国准备投入万亿元用于公路建设。虽说国家非常重视公路的建设,但是冰雪天气影响道路交通通畅,甚至导致交通事故,特别是大范围的雨雪天气,会导致大范围的交通瘫痪,造成巨大的经济损失。据统计,路面湿润时发生的事故是干燥路面的2倍,降雪时是干燥路面的5倍,结冰时是干燥路面的8倍。可见道路融雪化冰对冬季道路交通条件的改善起到关键作用,因此路面的融雪化冰技术是一项关系到改善我国交通状况,提高人民生活水平,促进各地区经济持续稳定快速发展的技术。
     现在通常使用的除冰方法主要分为被动抑制路面积雪结冰技术和主动融雪技术两大类。被动式的方法最主要的是化学融化法,众所周知,采用融雪剂进行融雪化冰会缩短高速公路的使用寿命、严重威胁道路两旁植物的生长,更为严重的是污染土壤和水资源。
     目前国内外道路融雪化冰新技术是主动融雪技术,采用热力学法,主要包括导电混凝土、发热电缆及地源热泵。地源热泵技术是是利用地下浅层土壤的低品位热能和蓄热性能,使其转变为高品位环保能源的一种热泵系统,其设计基于热力学原理。地源热泵融雪化冰技术利用太阳能蓄热,可节约能源,同时环保、高效、可再生,发展前景巨大。地源热泵融雪化冰技术是一个综合性较强的工程应用系统,涉及的技术领域很多,包括道路、暖通、地质、力学、热传导等多学科交叉,其应用推广是一个综合的系统集成与融合。纵观国内外的研究可以看出,路面随机传热非稳态研究还没有取得实质性突破,沥青混凝土路面融雪试验研究还处于空白阶段,可靠性理论在融雪化冰技术中的应用才刚刚起步,上述融雪化冰技术中有待深入和尚未研究的课题的突破,对地源热泵融雪化冰技术在我国的实际应用将起到促进作用。
     本文根据国内融雪化冰理论研究的现状,利用传热理论建立融雪化冰随机传热模型,并进行室内试验验证理论模型的正确性和合理性,利用人工神经网络来预测地源热泵融雪路面的耗热量,提出了地源热泵融雪系统可靠性设计方法。研究的主要内容包括以下几个方面:
     (1)理论方面:从地源热泵路面融雪化冰原理入手,进行沥青混凝土路面融雪化冰随机传热理论分析,建立传热数学模型。以可靠性理论为基础,提出了路面融雪化冰的可靠性设计方法及步骤,基于地源热泵路面融雪化冰系统的随机性,建立了可靠性方程。考虑多个因素的随机特征,推导出可靠度计算公式。
     (2)试验部分:通过室内沥青混凝土平板融雪化冰试验定性地研究水平埋、不同埋深、不同间距、不同导热系数的沥青混凝土路面材料对融雪化冰效果的影响,定量地研究不同环境条件对耗热量的影响,为理论研究提供实测数据,也为人工神经网络预测提供计算参数和依据。
     (3)数值计算试验研究:以MATLAB软件为依据,用自己编制的用户子程序建立BP神经网格模型,用来预测路面融雪耗热量。与理论分析的结果和室内试验结果进行比较,证实了理论分析的正确性和合理性。
During the "Twelfth Five-Year", one trillion yuan will be used for highway construction in China. Although the State attaches great importance to the construction of roads, but snow and ice weather affects traffic, even is the traffic safety archenemy. Especially wide range's sleet weather will cause the wide range paralysis of transportation and will lead huge economic loss. According to the statistics, compared with dry pavement, the road accident is2times when the road is wet, is5times when the road is full of snowfall, is eight times when it freezes. Therefore the pavement snow melting technology is one item which relates to improve transportation condition and people's living conditions, relates to promote economy stable and fast development.
     Commonly used methods in snow melting are mainly divided into two kinds, they are the passive technology and the initiative technology. The primary passive method is chemical method. It is well known, using of deicing salt will reduce highway's service life, threaten plant's growth on the both sides of road seriously, furthermore will contaminate the soil and the water resources.
     A new technology of road deicing and snow melting at home and abroad is the thermodynamics method, including conductive concrete, electric heating cables and ground-source heat pump. The ground source heat pump technology makes use of low grade heat energy and heat storage performance of underground shallow soil, and the low grade heat energy can transformed to high grade energy and environmental protection.The ground-source heat pump technology using the solar thermal storage can save energy, and is environmental protection, high efficiency and has great prospects for development. The ground source heat pump snow melting technology is a integrated engineering application system, involving many areas of technology, including road, hvac, geology, mechanics, thermotics, and its application is a comprehensive integration system.The study at home and abroad on the road random unsteady heat transfer research has not made breakthrough, on the asphalt concrete pavement snow melting experimental is still in the blank stage, reliability theory in the snow melting has just started, the above technologies are needed further research. Breakthroughs of ground source heat pump of snow melting will play a role in promoting actual applications in our country.
     In this paper, according to the present theory of snow melting, a random heat transfer snow melting model is set up based on heat transfer theory.In order to verify correctness and rationality of the theoretical model, indoor experiments are preceded. Heat consumption of the ground source heat pump is predicted by artificial neural network method, and a reliability design method of ground source heat pump snow-melting system is proposed.
     This dissertation is focus on the following fields.
     (1)Theory part. The random heat transfer mechanism of asphalt concrete pavement based on snow melting is analyzed and the model of heat transmission is established. The reliability design method and steps of snow melting is proposed on the basis of reliability theory, the reliability equation is established based on the random character of snow melting system. The formula of reliability calculation is deduced which considers the stochastic characters of multiple factors.
     (2) Test part. The effect of snow melting is researched through the indoor asphalt concrete test under different conditions,including different depth and different spacing of level buried tube,different thermal conductivity of asphalt concrete pavement materials. And heat consumption on different environmental conditions is studied. The results provide practical data for theoretical analysis, but also for the artificial neural network prediction.
     (3) Numerical experimental research. BP neural network model is established by use of subroutine of MATLAB software, it can be used to predict the snow melting heat consumption. The correctness and rationality of the theory analysis is verified by compared with the results of theoretical analysis and laboratory test.
引文
[1]张志刚.道路因素、交通环境与交通事故分析[J].公路交通科技,第17卷第6期,2002年12月:56-59.
    [2]蒲济生,魏瑾.寒冷地区高速公路融雪剂的环境危害及对策[J].黑龙江农业科学,2010(3):46-48.
    [3]Shi Xianming.The Use of Road Salts for Highway Winter Maintenance:An Asset Management Perspective. Montana:Montana Slate University,1995.
    [4]李炎锋,武海琴,王贯明等.发热电缆用于路面融雪化冰的实验研究.[J].北京工业大学学报,2006,32(3):217-222.
    [5]涂瓛,陈辉,吴少鹏等.导电沥青混凝土融雪化冰热输出功率计算方法[J].武汉理工大学学报,2009,31(13):37-40.
    [6]Steve Kavanaugh. Ground source heat pumps. ASHRAE,1998,40:3136.
    [7]Koji Morita, Masashi Ogawa(Technical Brochure, CADDET Centre for Renewable Energy. United Kingdom. Organization for Economic Co-operation Development(OECD), and Harwell. "Geothermal and Solar Heat Used to Melt Snow on Roads"[R],1998.
    [8]John W.lund. Geothermal Energy Focus, www.re-focus.net.2006
    [9]HLVOH库伯,F斯泰姆莱.热泵的理论与实践[M].王子介译.北京:中国建筑工业出版社,1986.
    [10]Georgios Florides, Soteris Kalogirou. Renewable Energy,2007,(32):2461-2478
    [11]John W.lund. The USA geothermal country updat. [J]. Geothermics,2003(32):409-418.
    [12]A. Hepbasli, O. Akdemir. Energy and exergy analysis of a ground source (geothermal) heat pump system[J]. Energy Conversion and Management,2004,(45):737-753.
    [13]Derwin D, Booth P, Zaleski P,et al. SNOWFREE-Heated Pavement System to Eliminate Icy Runways[R]//SAE Technical Paper Series,2003-01-2145,2003.
    [14]Walter J Eugster, J Schatzmann. Harnessing Solar Energy for Winter Road Clearing on Heavily Loaded Expressways [C].Proceeding of Xlth PIARC International W inter Road Congress, Sapporo, Japan, January,2002.
    [15]Koji Morita, Masashi Ogawa. Geothermal and SolarHeat Used to Melt Snow on Roads[R]. Technical Brochure.CADDET Centre for Renewable Energy.IEA, Organization for Economic Co-operation and Development(OECD).Harwell,United Kingdom,1998.
    [16]Katarzyna Zwarycz. Snow Melting and Heating Systems Based on Geothermal Heat Pumps at Goleniow Airport Poland [R]. Geothermal Training Programme Reports,The United Nations University,Iceland,2002.
    [17]EGGENL G, VANGSNES G. Heat pump for district cooling and heating at OSLO airport gardermoen[C]//The IEA8th Heat Pump Conf, Las Vegas,USA,2006.
    [18]John W.Lund. Reconstruction of A Pavement Geothermal Deicing. System[R].Geo-Heat Center Quartery Bulletin, March 1999.14-17.
    [19]W.P.Chapman.Design of Snow Melting Systems.Heating and Ventilating.1952,49(4):96-102
    [20]W.P.Chapman.Design of Snow Melting Systems. Heating and Ventilating.1952,49(11):88-95
    [21]W.P.a.S.K.Chapman.Heat Requirements of Snow Melting Systems. Heating,Piping and Air Conditioning.1956,28(2):149-153.
    [22]W.P.Chapman. Calculating the Heat Requirements of Snow Melting. Systems.Heating and Ventilating.1957,54(8):81-96.
    [23]N.M.Schurr,D.B.Rogers. Heat Transfer Design Data for Optimization of Snow Melting. ASHRAE Trans.1970,76(2):257-263.
    [24]M.R.L.V.Leal, P.L.Miller.Jr. An Analysis of The Heat Transient Temperature Distribution in Pavement Heating Installations.ASHRAE Trans.1972,78(2):61-66.
    [25]I.B.Kilkis. Design of Embeded Snowmelting System Part 1:Heat Requirement-An Overall Assessment and Recommendations.ASHRAE Trans.1994,100(1):423-433.
    [26]J.W.Ramsey,M.J.Hewett,T.H.Kuehn,et al. Updated Design Guidelines for Snow-melting Systems.ASHARE Trans.1999,105(1):1055-1065.
    [27]M.Ramamoorthy. Applications of Hybrid Ground Source Heat Pump Systems to Buildings and Bridge Decks. M.S.Thesis:Oklahoma State University.2001:121-123.
    [28]S.Hockersmith. Experimental and Computational Investigation of Snow Melting on heated Horizontal Surfaces.M.S.Thesis:Oklahoma State University.2002:138-139.
    [29]S.J.Rees,J.D.Spitler,X.Xiao. Transient Analysis of Snow Melting System Performance. ASHRAE Trans 2002,108(2):406-423.
    [30]J.D.Spitler. A Modeling Approach to Design of Ground Source Heat Pump Bridge Beck Heating System. Proceedings of the 5th International Symposium on Snow Removal and Ice Control Technology.2000:4-14.
    [31]X.LIU. Development and Experimental Validation of Simulation of Hydronic Snow Melting Systems for bridges. Doctoral Thesis:Oklahoma State University.2005:186-190.
    [32]高一平.利用太阳能的路面融雪系统[J].国外公路,1997,17(04):53-55.
    [33]朱强,赵军.太阳能和地表热能道路融雪化冰系统[J].太阳能,2004年第6期52-53.
    [34]胡文举.基于土壤源热泵桥面融雪系统的基础研究[D].哈尔滨:哈尔滨工业大学.2006年6月.
    [35]胡文举,姜益强,姚杨等.桥面热力融雪模型研究与分析[J].哈尔滨工业大学学报,2007,39(12):1895-1899
    [36]高青等.循环热流体路面融雪化冰过程传热及其应用分析[J]热科学与技术,2009,8(2):124-130.
    [37]刘研,高青等,地能利用中道路融雪逐年运行过程分析[J].吉林大学学报(工学版),2010,40(1):
    [38]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路,2007,51(5):170-174.
    [39]黄勇,高青等.道路融雪化冰过程降融同步特性研究[J].中国公路学报,2010,23(5):22-26.
    [40]黄勇,高青等.道路融雪化冰过程冰层的热融特性研究[J].吉林大学学报(工学版),2010,23(5):22-26.
    [41]王华军等.太阳能-地热道路融雪系统路面传热特性的数值研究[J].太阳能学报,2007,28(6):608-611.
    [42]王华军,赵军.地热能道路融雪过程实验研究[J].太阳能学报,2009,30(2):177-181.
    [43]王华军,赵军.道路融雪化冰过程的临界融化面积比现象[J].太阳能学报,2010,31(1):17-21.
    [44]颜景文等.道路热力融雪速率的测定及融雪过程动态特性[J].工程热物理学报,2010,31(7):1100-1104.
    [45]刘凯.融雪化冰水泥混凝土路面研究[D].西安:长安大学,2010年6月.
    [46]屠艳平,管昌生,李元松.地源热泵路面融雪化冰可靠性设计及应用分析[J].武汉工程大学学报,2011,33(6):61-64.
    [47]Yanping Tu, Changsheng Guan, Hailin Lu. Reliability Analysis on Pavement Snow Melting of Ground Source Heat Pump. The 2nd International Conference on Engineering and Business Management:3087-3090.
    [48]Tu Yan-ing, Guan Chang-sheng, Zhang Dian-ji, Zhu Qi-kun. Reliability Evalution of Ground Source Heat Pump in Interval Parameters of Stochastic Model. The 2nd International Conference on Mechanic Automation and Control Engineering:2426-2428.
    [49]李鹏.地热热泵道路融雪系统可靠性设计方法研究[D].武汉:武汉理工大学,2011年6月.
    [51]LIU X, SPITLER J D.Simulation based investigation on the design of hydronic snow melting system[C]//Proc of the Transportation Res Board83rd Ann Meeting,Washington DC,USA, 2004:5-6.
    [52]闵斌,刘威.导热系数测量方法与应用分析[J].保温与加工.2005年第6期:35-38.
    [53]张明义,李双洋,高志华等.青藏铁路抛石护坡和保温材料复合路基温度场特征非线性分析[J].冰川冻土.2007,29(2):306-314.
    [54]沈娇,李德英,介鹏飞.XPS板的性能分析及应用研究[J].节能.2009年第8期:13-15.
    [55]管昌生,刘卓栋,陈绪义.地源热泵地埋管随机热阻及可靠性分析[J].武汉理工大学学报,2010,32(3):70-72.
    [56]包强,邓君红,牛润卓.回填材料对土壤热泵U型埋管换热器性能的影响[J].太阳能学报.2007,26(4):703-707.
    [57]陈卫翠,刘巧玲,贾立群等.高性能地埋管换热器钻孔回填材料的实验研究[J].暖通空调,2006,36(9):1-6.
    [58].田慧峰,曹伟武.地埋管长度计算中关键参数的计算方法研究[J].土木建筑与环境工程,2009,31(1):110-113.
    [59]中华人民共和国住房与城乡建设部.GB50366-2005地源热泵系统工程技术规范(2009年版)[S].北京:中国建建筑工业出版社,2009.
    [60]胡平放,孟庆丰,管昌生等.岩土综合热物性参数的不确定性分析[J].湖南大学学报(自然科学版),2009,36(12):35-39.
    [61]管昌生,刘卓栋,陈绪义.地源热泵地埋管随机热阻及可靠性分析[J].武汉理工大学学报,2010,32(3):70-72.
    [62]Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety,1994,14(4): 227-245.
    [63]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2002.
    [64]朱川曲,冯涛,施式亮.神经网络在锚杆支护方案优选及变形预测中的应用[J].煤炭学报,2005,30(3):322-326.
    [65]陈华明.基于神经网络的边坡稳定性研究[D].武汉:武汉科技大学,2006年4月.
    [66]许传华,房定旺,朱绳武.边坡稳定性分析中工程岩体抗剪强度参数选取的神经网络方法[J].岩石力学与工程学报,2002,21(6):858-862.
    [67]吴瑾,吴胜兴.用人工神经网络方法评估混凝土中钢筋锈蚀.连云港职业技术学院学报[J]2001,14(1):1-5
    [68]陈海斌,牛荻涛,浦聿修.应用人工神经网络技术评估混凝土中的钢筋锈蚀量.工业建筑,1999,29(2):51-55.
    [69]屠艳平.钢筋混凝土结构耐久性分析的神经网络方法[D].武汉:武汉理工大学,2003年5月.
    [70]胡小爱.基于人工神经网络的混凝土软化曲线预测[J].工程与建设,2011,25(5):86-588.
    [71]杨学超,何彩平.基于BP人工神经网络的路基压实度预测模模型[J].甘肃科学学报,2011,23(3):132-135.
    [72]孙延成.BP神经网络在路面材料抗压强度预测中的应用[J].山西建筑,2011,37(29):140-141.
    [73]温惠,罗钧,李俊辉.基于PNN的山区高速公路路段安全状态评价术[J].华南理工大学学报(自然科学版),2011,39(8):1 13-117.
    [74]范千.大坝变形预报的神经网络极限学习方法[J].江南大学学报(自然科学版),2011,10(4):435-438.
    [75]戎丽霞,刘金亮.基于遗传BP算法的神经网络在桩基检测中的应用[J].计算机工程与应用,2008,44(13):235-237.
    [76]陈华兴,刘宏力.桩基完整性检测与BP神经网络诊断[J].西部探矿工程,2007年第6期:1-4.
    [77]王运琢.基于BP神经网络的高速公路工程造价估算模型研究[J].石家庄铁道大学学报(自然科学版),2011,24(2):61-64.
    [78]王兴鹏,桂莉.基于粗糙集一神经网络的工程造价估算模型研究[J].石家庄铁道大学学报(自然科学版),2008,2(1):20-24.
    [79]卢梅,韩小康,孔祥坤等.基于BP神经网络和TOC的工程造价预控研究[J].西安建筑科技大学学报(自然科学版),2011,43(1):106-112.
    [80]张登文,蒋红妍,张子圆.基于BP神经网络的建筑工程造价快速预测[J].水利与建筑工程学报,2010,8(3):61-62.
    [81]胡守仁,余少波,戴葵.神经网络导论[M].长沙:国防科技大学出版社,1993.
    [82]Minsky, M.,S. Paper. Perceptyon:An Introduction to Computation Geometry. Mit Press, Cambridge, Massachusetts.1969.
    [83]田景文,高美娟.人工神经网络算法研究与应用[M].北京:北京理工大学出版社,2006.7.
    [84]罗晓曙.人工神经网络理论·模型·算法与应用[M].桂林:广西师范大学出版社,2005.4.
    [85]T.Kohonen,Cognitron:A Self-Organization Multilayered Neural network. Biol.Cyber,1975(20) :121-136.
    [86]K.S.Narendra,Adaptive Control Using Neural Networks for Control.MIT Press,1991,115-142.
    [87]Kohonen T. The self-organizing Map. Proceedings of the IEEE,78,1990:1464-1480.
    [88]Kohonen T. Physiological Interpretation of the self- organizing Map Algorithm. Neural Networks,1993(6):895-905
    [89]Hecht-Nielsen R. Theory of the Back Propagation Neural Network,Proc.of IJCNN, 1989, Vol.1:593-603
    [90]Nguyen D.H.and Widrow B. Neural Networks for Self-Learning Control Systems,IEEE Control Systems Magazine,April 1990:18-23
    [91]S.McLoone,M.D.Brown,G Irwin and G. Lightbody. A Hybrid Linear/Nonlinear training Algorithm for Feedforward Neural Networks,IEEE Transactions on Neural Networks,1998,9 (9):669-683
    [92]从爽.面向MATLAB工具箱的神经网络理论与应用[M].北京:中国科学技术大学出版社,1998
    [93]许东,吴铮.基于MATLAB 6.X的系统分析与设计——神经网络[M].西安:西安电子科技大学出版社,2002.
    [94]Hopfield J J. Neural Networks and Physical systems with Emergent collective computational Abilities,proceedings of the National Academy of Science of the USA79,1982:2554-2558
    [95]Chen TianPing,Chen Hong. Approximation Theory Capability to Functionals of Several Variables, Nonlinear Functions,and Operators by Radial Basis Functional Neural Networks.IEEE Trans.on Neural Networks,1995,6(4):904-910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700