地下硐室围岩松动圈的地震反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下空间大规模的开发和利用是当前城市发展建设的必然趋势。尽管我们的祖先在远古时代就学会了利用洞穴而居,但是人类从工程建设意义上开发和利用地下空间还不到2000年的历史。20世纪中后期是人类开发利用地下空间比较活跃的时期,在这期间科学界和工程界积累了大量的有关地下空间的勘测、设计和施工方面的知识。随着地下工程的增多,破坏性地震对地下工程损坏的震例不断增加,地下工程的抗震问题成为学术界和工程界关注焦点,是当前岩土工程抗震领域研究的热点问题之一。
     本文全面系统地归纳、总结和评述了当前地下工程抗震领域的前沿成果和相关文献,对该领域的国内外研究现状和发展方向有了基本的了解。系统的总结了国内外地下结构地震反应分析的方法,在分析归纳已有地下工程震害资料的基础上,总结了隧道工程的各种破坏形式。本文利用数值分析的方法,围绕地震作用下地下硐室围岩压力变化特征、硐室围岩松动圈的扩展方式和硐室围岩松动圈的判定三个方向开展研究工作,取得了如下主要研究成果。
     1、开发了用于地下工程地震稳定性分析的有限差分程序(FLAC软件)。在有限差分程序FLAC内置的动态分析模块的基础上,对本构模型、边界条件、动力荷载的输入和数值试验模型的设计以及表达方式进行了改造和处理,使其更加方便地用于地下工程的地震稳定性分析。
     2、研究了地震硐室围岩在不同强度的地震动输入下的动力反应。给出了硐室有衬砌和无衬砌两种情况下围岩压力的变化情况,并与围岩静压力进行了分析和比较,总结了地下硐室围岩压力随地震动强度的变化趋势。研究发现,硐室衬砌对地震反应有较大的影响,硐室衬砌在一定程度上削弱了地震动的影响。
     3、利用数值分析的方法,模拟了地下硐室围岩松动圈在地震作用下的扩展过程,展现了不同地震波作用下,不同时间过程的扩展图像,总结给出了地震作用地下硐室围岩松动圈的扩展过程和主要特征。
     4、本文提出了地震作用下地下硐室围岩松动圈的初步判定方法。这种方法主要是基于硐室开挖前后,在考虑衬砌的情况下,通过对比不同计算点的地震反应来判定地下硐室围岩松动圈的近似范围。本文提出了判定的标准以及松动圈的范围和地震动加速度峰值大小的近似关系。
Exploitation and utilization of underground space is Inevitable trend of the current urban development. Although our ancestor has learned how to change caves habitable, the history, which the human being exploit and utilize underground space in the engineering sense, is less than 2,000 years. The late 20th century is an active period of underground space's exploitation and utilization. During this period, the scientific and engineering researchers accumulated a lot of knowledge about the underground space exploration, design and construction. With the increase of underground constructions, the case of underground engineering disaster caused by destructive earthquake also increased. Underground seismic problems become the focus of academic and engineering research. They also become one of the hot points in geotechnical seismic engineering.
     The article summarizes and comments on latest results and related literature of underground seismic engineering comprehensively and systematically. It gives the readers basic understanding about current research and the future research interests in this field. It also summarized domestic and foreign analysis methods about underground structures earthquake response and failure modes of tunnel engineering that based on analyzing and summarizing current seismic hazard materials. By using numerical analysis, the article makes studies on three problems which are under earthquake: features of underground chamber's wall rock pressure variation, broken zone's extended mode of underground chamber's wall rock and determination method of underground chamber's broken zone.
     1. Enhanced finite difference software (FLAC) to do the analysis of seismic stability of underground engineering. Based on the dynamic analysis module of finite difference software (FLAC), the author has done some transformation and processing of constitutive model, boundary conditions, dynamic load of the input, numerical test model design and expression so as to make it more convenient for the underground seismic stability analysis.
     2. The article analysis the response of underground chamber's wall rock pressure, which is caused by different levels of peak ground motion acceleration. It simulates the result of wall rock pressure's variation in two conditions: lining cavity and no-lining cavity, then analyses the results and compares all them with static pressure. It summed up the trend of underground chamber's wall rock pressure, which caused by ground motion intensity. The researches show that chamber lining has great impact on underground chamber's earthquake response. It can weakened the impact of ground motion in some extent.
     3. By using numerical analysis method, the article simulates the broken zone's extended mode of underground chamber's wall rock. The results are some images of broken zone's extended trend, which on different time and effected by different seismic waves. It gives expansion process and main features of underground chamber's broken zone under earthquake.
     4. The article gives preliminary determination method of underground chamber's broken zone under earthquake. The main idea of this method is comparing all monitoring points' results of earthquake response, which are calculated under earthquake in the model of lining chamber before and after excavation, to determine the approximate range of underground chamber's broken zone. The article puts forward a standard of judgment of underground chamber's broken zone under earthquake and approximate relationship between the range of broken zone and peak acceleration of ground motion.
引文
[1]汪光焘.中国城市规划理念[M].北京:中国建筑工业出版社2008
    [2] (美)约翰·M.利维(John M.Levy)著孙景秋等译.现代城市规划[M].北京:中国人民大学出版社2003
    [3] (美)刘易斯·芒福德(Lewis Mumford)著宋俊岭,倪文彦译.城市发展史[M].北京:中国建筑工业出版社2005
    [4]张京祥,殷洁,何建颐.全球化世纪的城市密集地区发展与规划[M].北京:中国建筑工业出版社2008
    [5]埃琳( Ellin, Nan )著张冠增译.后现代城市主义[M].上海:同济大学出版社2007
    [6]边经卫.大城市空间发展与轨道交通[M].北京:中国建筑工业出版社2006
    [7] (英)彼得·霍尔著邹德慈,李浩,陈熳莎译.城市和区域规划[M].北京:中国建筑工业出版社2008
    [8]米歇尔·米绍,张杰,邹欢主编何枫,任宇飞译.法国城市规划40年[M].北京:社会科学文献出版社2007
    [9]华揽洪著李颖译.重建中国-城市规划三十年[M].北京:生活·读书·新知三联书店2006
    [10]郝寿义.中国城市化快速发展期城市规划体系建设[M].武汉:华中科技大学出版社2005
    [11]覃力.日本高层建筑[M].北京:中国建筑工业出版社2005
    [12]唐兴荣.高层建筑结构设计[M].北京:机械工业出版社2007
    [13]朱茂存.高层建筑结构施工[M].北京:机械工业出版社2007
    [14]方鄂华,钱稼茹,叶列平.高层建筑结构设计[M].北京:中国建筑工业出版社2003
    [15]王新平.高层建筑结构[M].北京:中国建筑工业出版社2003
    [16]仇保兴.卫星城规划建设若干要点以北京卫星城市规划为例[J].城市规划.2006,30(3):9-12
    [17]孔祥志,陈炎,辛毅,顾洪明.北京卫星城发展的现状、问题和对策建议[J].北京社会科学.2005,3:9-16
    [18]侯景新.论区域规划中的中心城市与卫星城协调布局[J].中国软科学.2002,10:93-97
    [19]白旭飞,刘春成,侯汉坡.大都市卫星城空间布局模式的启示[J].科技管理研究.2007,10:129-131
    [20]丁成日.国际卫星城发展战略的评价[J].海外视点.2007,2(14):121-126
    [21]侯景新,滕秋洁.论卫星城的职能[J].北京行政学院学报.2007,1:65-68
    [22]贺少辉.地下工程[M].北京:清华大学出版社2008
    [23]关宝树.地下工程[M].北京:高等教育出版社2007
    [24]崔京浩.地下工程与城市防灾[M].北京:中国水利水电出版社2007
    [25]黄绍铭,高大钊.软土地基与地下工程[M].北京:中国建筑工业出版社2005
    [26]张庆贺.地下工程[M].上海:同济大学出版社2005
    [27]崔玖江.隧道与地下工程修建技术[M].北京:科学出版社2005
    [28]刘启山.高渠清隧道及地下工程论文选集[M].北京:中国铁道出版社.1996
    [29]朱合华.地下建筑结构[M].北京:中国建筑工业出版社.2005
    [30]关宝树.地下工程概论[M].成都:西南交通大学出版社.2001
    [31]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社.2003
    [32]曾亚武.地下结构设计模型[M].武昌:武汉大学出版社.2006
    [33]李夕兵,冯涛.岩石地下建筑工程[M].长沙:中南工业大学出版社.1999
    [34]朱汉华、孙红月、杨建辉.公路隧道围岩稳定与支护技术[M].北京:科学出版社,2007
    [35]覃仁辉.隧道工程[M].乌鲁木齐:新疆大学出版社;重庆:重庆大学出版社.2001
    [36]张庆贺,廖少明,胡向东.隧道与地下工程灾害防护[M].北京-人民交通出版社2009
    [37]夏永旭,王永东.隧道结构力学计算[M].北京:人民交通出版社.2004
    [38]易丽萍.现代隧道设计与施工[M].北京:中国铁道出版社.1997
    [39]林皋.地下结构抗震分析综述(上、下)[J].世界地震工程.1999(2,3):1-10
    [40]林皋.地下结构的抗震设计[J].土木工程学报.1996,29(1):15-24
    [41]阎盛海.地下结构抗震[M].大连:大连理工大学出版社,1989
    [42]邵根大.城市地下结构的抗地震设计问题[M].铁道部科学研究院铁道建筑研究所,1985
    [43]郑永来,杨琳德等.地下结构抗震[M]. 2005年8月第1版.上海.同济大学出版社.2005
    [44]郭迅,薄景山.既有地下结构安全性鉴定研究[J].地下空间与工程学报.2007年4月.第3卷第2期:229-241.
    [45]孙超,薄景山,齐文浩等.地下结构抗震研究现状与展望[J].世界地震工程.2009年6月.第25卷第2期:94-99.
    [46]北京日本学研究中心,神户大学编宋金文,邵建国监译.日本阪神大地震研究[M].北京:北京大学出版社2009
    [47]袁一凡译王自法校.阪神-淡路大震灾-震后一年兵库县工作记录[M].北京:地震出版社2004
    [48]中国赴日地震考察团.日本阪神大地震考察[M].北京:地震出版社1995.12
    [49]黄南翼,张锡云.日本阪神大地震建筑震害分析与加固技术[M].北京:地震出版社2000.12
    [50]王柯.阪神大震灾的教训与创造性复兴[M].北京:中国民主法制出版社2009
    [51]中华人民共和国交通运输部.汶川地震公路震害图集[M].北京:人民交通出版社2009
    [52]中国地震局地球物理研究所汶川地震现场工作队."5.12"汶川地震生命线系统震害调查图集[M].北京:地震出版社2009
    [53]中国地震局汶川地震现场指挥部.汶川8.0级地震图集[M].北京:地震出版社2009
    [54]宋胜武.汶川大地震工程震害调查分析与研究[M].北京:科学出版社2009
    [55]李乔,赵世春.汶川大地震工程震害分析[M].成都:西南交通大学出版社2008.09
    [56]甘目飞.隧道工程在汶川地震中的震害调查及病害浅析[J].铁道工程学报.2008,12(增刊):228-233
    [57]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报. 2008/16(6):742-750
    [58]高波等.汶川地震公路隧道震害启示[J].西南交通大学学报.2009,44(3):336-341,374
    [59]徐德玺等.都汶公路龙溪隧道变形破坏原因分析[J].资源环境与工程.2009,23(专刊):76-84
    [60]吉随旺等.四川省汶川地震灾区干线公路典型震害特征分析[J].岩石力学与工程学报.2009,28(6):1250-1260
    [61]徐德玺,谭认.汶川特大地震对都汶公路的破坏及原因简析[J].地质灾害与环境保护.2008,11:73-84
    [62]陈国兴.岩土地震工程学[M].北京:科学出版社.2007
    [63]夏才初,李永盛.地下工程测试理论与监测技术[M].上海:同济大学出版社1999
    [64]赵吉先,吴良才,周世健.地下工程测量[M].北京:测绘出版社2005
    [65]杨林德,季倩倩,郑永来等.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报.2004,26(1):75-78
    [66]杨林德,杨超,季倩倩等.地铁车站振动台试验与地震响应的计算方法[J].同济大学学报.2003,31(10):1135-1140
    [67]施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社,1997
    [68]孙钧,侯学渊.地下结构(上、下)[M].北京:科学出版社,1987
    [69]核电厂地下结构抗震设计规范GB 50267-97,1998
    [70]陈韶章.沉管隧道设计与施工[M].北京:科学出版社,2002
    [71]郑永来,刘曙光,杨林德等.软土中地铁区间隧道抗震设计研究[J].地下空间.2003,23(2):111-114,118
    [72]郑永来,杨林德.地下结构震害与防治对策[J].工程抗震.1999,4(18):23-28
    [73]郑永来,杨林德.线形地下结构震害[J].同济大学学报.1999,27(增刊):92-97
    [74]杨林德,季倩倩,郑永来等.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报.2004,26(1):75-78
    [75]杨林德,杨超,季倩倩等.地铁车站振动台试验与地震响应的计算方法[J].同济大学学报.2003,31(10):1135-1140
    [76]杨林德,李文艺,祝龙根等.上海市地铁区间隧道和车站的地震灾害防治对策研究[M].上海防灾救灾研究所.1999
    [77]廖红建,宋丽等.地震荷载下地基-结构相互作用分析[J].岩土工程学报.2001,20(A01):1142-1148
    [78]佴磊、薄景山等.岩土工程数值法[M].长春:吉林大学出版社,1994
    [79] G.R.布查南.有限元分析[M].北京:科学出版社,2002
    [80]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报.1998,31(3):55-64
    [81]陈健云,胡志强,林皋.超大型地下洞室群的三维地震响应分析[J].岩土工程学报.2001,23(4):494-498
    [82]陈健云,胡志强,林皋.超大型地下洞室群的随机地震响应分析[J].水利学报.2002,1:71-75
    [83]王明洋,国胜兵等.抗震液化的总应力合成分析方法[J].防灾减灾工程学报.2003,23(1):1-10
    [84]李楠,冯仰德等.单侧接触埋置结构与瞬态SH波的动力相互作用-时域边界元分析[J].中国安全科学学报.2003,13(2):64-67
    [85]杨小礼,李亮.层状地基中交通隧道地震反应分析[J].长沙铁道学院学报.2000,18(4):15-19
    [86]金峰,王光纶,贾伟伟.离散元-边界元动力耦合模型在地下结构动力分析中的应用[J].水力学报.2001(2):24-28
    [87]刘波,韩彦辉(美国).FLAC原理、实力与应用指南[M].2005年9月第1版.北京.人民交通出版社.2005
    [88]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].2009年1月第1版.北京.中国水利水电出版社.2008
    [89]刘佑荣、唐辉明.岩体力学[M].武汉:中国地质大学出版社,1999
    [90]叶金汉.岩石力学参数手册[M].北京:水利电力比版社,1991
    [91]徐志英.岩石力学[M].北京:中国水利水电出版社.1993
    [92]李育枢.山岭隧道地震动力响应及减震措施研究[博士学位][D].上海.同济大学,2006
    [93]铁路工程抗震设计规范50111-2006.中国计划出版社.2006.
    [94]公路工程抗震设计规范JTJ004-89.中华人民共和国交通部.1990.
    [95]李海波,蒋会军等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报.2003年11月.第22卷第11期:1887-1891.
    [96]孙有为.地下洞室的几何性质对松动圈的影响[D].哈尔滨:中国地震局工程力学研究所.2006
    [97]袁前进.岩巷掘进爆破对围岩稳定性影响的研究[J].煤矿开采.2009,14(3):100-102
    [98]邵东亚.岩巷掘进爆破震动对围岩松动圈影响的研究[J].煤矿爆破.2009,3:11-13
    [99]叶洲元等.大冶铁矿软岩巷道围岩松动圈的测试研究[J].矿业工程研究.2009,24(1):18-21
    [100]江权等.基于松动圈-位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J].岩石力学与工程学报.2007,26(增1):2654-2662
    [101]倪绍虎,肖明.基于围岩松动圈的地下工程参数场位移反分析[J].岩石力学与工程学报.2009,28(7):1439-1446
    [102]蒋树屏等.考虑松动圈的卡尔曼滤波与有限元耦合反分析法及其在围岩稳定性分析中的应用[J].岩土力学.2009,30(8):2529-2534
    [103]高广运等.卵砾石层中隧道考虑松动圈的位移反分析应用[J].地下空间与工程学报.2008,4(1):57-61
    [104] Joyner W.B., and A.T.F.Chen."Calculation of Nonlinear Ground Response in Earthquakes", Bulletin of the Seismological Society of America, 65(5),1315-1336(October,1975)
    [105] Wolf J P, Song C M. Dynamic-Stiffness Matrix of Unbounded Soil by Finite Element Multi-Cell Cloning. Earthquake Eng.Struct.Dyn.Proceedings of world conference on Earthquake Engineering, 1992,1645
    [106] Power M., Rosidi D., Kaneshiro J. Seismic vulnerability of tunnels-revisited[C]. L.Ozedimir, Ed., Proceedings of the North American Tunneling Conference. LongBeach, CA.USA.Elsevier, 1998
    [107] Sharma S., Judd W.R. Underground opening damage from earthquakes[J]. Eng. Geol.1991, Vol.30 (3,4):263-276
    [108] Dowding C.H. and Rozen A. Damage to rock tunnels from earthquake shaking [J]. J.Geotech. Eng. Div.,ASCE.1978,Vol.104(GT2):175-191
    [109] Okamoto Shunzo.Introduction to Earthquake Engineering (2nd Ed)[M]. University of Tokyo Press, 1984
    [110] Jun Tohoa, etc. Characteristic Feature of Damage to Public Sewerage Systems in the Hanshin Area,Special Issue of Soils and Foundations. Japanese Geotechnical Society, Jan.1996,335-347
    [111] Hiroomi Iida etc.Damage to Daikai Subway Station. Special Issue of Soils and Foundations. Japanese Geotechnical Society, Jan.1996,283-300
    [112] T e O'Rourke, M Eeri and M C Palmer. Earthquake Performance of Gas Transmission Pipelines. Earthquake Spectra, 1996(3):493
    [113] Itasca Consulting Group, Inc. FLAC User’s Guide [Z]. FLAC Version 5.0 Online Contents,2005.1-23
    [114] Cundall, P. A."Explicit Finite Difference Methods in Geomechanics", in Numerical Methods in Engineering, Proceedings of the EF Conference on Numerical Methods in Geomechanics, Blacksburg, Virginia, 1976, 1:132-150
    [115] Cndall, P. A, H. Hansteen, S. Lacasse and P.B.Selnes."NESSI-Soil Structure Interaction Program for Dynamic and Static Problems", Norwegian Geotechnical Institute, Report 51508-9, December, 1980
    [116] Cundall, P. A."Adaptive Density-Scaling for Time-Explicit Calculations", in Proceedings of the 4th International Conference on Numerical Methods in Geomechanics, Edmonton,pp.23-26(1982)
    [117] Cundall, P. A."Distinct Element Models of Rock and Soil Structure", in Analytical and Computational Methods in Engineering Rock Mechanics, Chapter 4, pp.129-163. E.T.Brown, Ed.London:George Allen and Unwin, 1987
    [118] Cundall, P. A."Numerial Experiments on Localization in Frictional Material", Ingenieur-Archiv, 59,148-159(1989)
    [119] Cundall, P. A."Numerial Modeling of Jointed and Faulted Rock", in Mechanics of Jointed and Faulted Rock, pp.11-18. Rotterdam:A.A.Balkema, 1990
    [120] Cundall, P. A."Shear Band Initiation and Evolution in Frictional Materials", in Mechanics Computing in 1990s and Beyond (Proceedings of the Conference, Columbus, Ohio, May 1991), Vol.2: Structural and Material Mechanics, pp.1279-1289. New York:ASME, 1991
    [121] Dawson E M, Roth W H, Drcscher A. Slope stability analysis by strength reduction. Geotechnique, 1999,49(6):835-840
    [122] Griffiths D V, Lane P A. Slope stability analysis by finite elements. Geotechnique, 1999,49(31):387-403
    [123] Han Y, Hart R. Application of a simple hysteretic damping formulation in dynamic continuma simulations. 4th International FLAC Symposium on Numerical Modeling in Geomechanics, Madrid, Spain: Itasca Consulting Group, 2006:04-02
    [124] Itasca Consulting Group,inc. Fast Lagrangian Analysis of Continua in 2 dimensions, Version 5.0, User's manual. Itasca Consulting Group,Inc. 2005
    [125] Itasca Consulting Group,inc. Fast Lagrangian Analysis of Continua in 3 dimensions, Version 3.0, User's manual. Itasca Consulting Group,Inc. 2005
    [126] Malvern L.E. Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, New Jersey: Prentice-Hall, 1969
    [127] Bathe K.J., and E.L.Wilson. Numerical Methods in Finite Element Analysis.Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1976
    [128] Roesset J.M., and M.M.Ettouney."Transmitting Boundaries: A Comparison", Int. J. Num. & Analy. Methods Geomech., 1, 151-176(1977)
    [129] Hoek E, E T Brown. Practical Estimates of Rock Mass Strength Int, J.Rock Mech.Min.Sci. 1998,34(8)1165-1186
    [130] Zienk iewicz O C, Humpheson C and Lewis R W. Associated snd Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics. Geo technique, 1975,25(4):671-689
    [131] Brady, B.H.G., and E.T.Brown. Rock Mechanics for Underground Mining. London:George Allen & Unwin. 1985
    [132] Hoek, E., and E.T.Brown. Underground Excavations in Rock. London: IMM, 1980
    [133] Das B.M. Principles of Geotechnical Engineering, 3rd Ed. Boston: PWS Publishing Company, 1994
    [134] Detourmay E., and A.H.D.Cheng. Comprehensive Rock Engineering. Pergamon Press Ltd, 1993
    [135] Itasca Consulting Group, Inc. FLAC Command Reference [Z]. FLAC Version 5.0 Online Contents,2005.1-18
    [136] Japan Society of Civil Engineers. Earthquake Resistant Design Codes in Japan. 2000
    [137] Krauthammer T, Chen Y. Soil-structure interface effects on dynamic interaction analysis of reinforced concrete lifelines. Soil dynamic and earthquake engineering, 1989,8(1):32-42
    [138] Desai C.S., and J.T.Christian. Numerical Methods in Geomechanics. New York: McGraw-Hill, 1977
    [139] Borja R I, Amies A P. Multiaxial cyclic plasticity model for clays. J. Geotech. Eng.1999,120(6):1051-1070
    [140] Szavits-Nossan, Kovacevic M S. Modeling of an anchored diaphragm wall. In:Detournay,Hart. Flac and Numerical modeling in Geomechanics. Rotterdam:Balkema,1999,451-458

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700