单侧接触埋置结构与波的动力相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用瞬态时域边界元数值工具对单侧接触约束埋置结构与波的动力相互作用进行了研究。单侧接触约束界面问题是一类边界非线性问题,数学上的处理非常困难。对这类问题,边界积分方程和离散技术是十分有效的,特别是无限域和半无限域中的波动问题,边界元具有其独特的优点。本文详细地介绍了瞬态时域边界元法基本列式的推导,给出了摩擦接触边界非线性问题的数学模型,研究了单侧接触边界条件判断准则,讨论了应用时域边界元方法求解动接触问题的数值技术,给出了有效的且收敛速度快的迭代方法。
    应用区域分解技术,对无限域和埋置区域分别给出瞬态时域边界元列式,由浅入深地研究了若干典型问题。首先研究反平面波与埋置结构动力相互作用问题,其次分忻了单侧光滑接触埋置结构与平面波的动力相互作用问题,最后进一步研究了平面波与无分离和有分离单侧摩擦接触埋置结构的动力相互作用问题,编制了相应的计算机程序。通过数值求解得到问题的近场解,给出了内外边界的位移和面力、相对滑移速度、位移间断等响应参量,以及界面状态随时间的变化。对不同的埋置结构进行了计算,并与完好粘着的情况进行了比较,文中给出了大量的数值结果。
    本文的结果显示足够强的入射波在埋置结构与周围介质之间的接触界面上造成局部的分离和滑移。界面的状态预先未知,且随时间变化。对于这样具有边界非线性的弹性动力学问题,本文给出的数值方法被证明是有效的,且具有较好的收敛性和精度。
    界面的局部分离和滑移对传播的波形有重要的影响,如对简谐形式的入射波,经历若干周期后其响应波与简谐波形相去甚远。这种波形的畸变说明有高频波成份的产生,这也是该问题的非线性所引起的内在特性。另外,界面的局部分离和滑移还阻隔了波透过界面的传播,使得埋置结构中的波动较外部介质的波动强度明显减少。即使光滑接触的情况,虽不象摩擦滑移那样造成波在界面上的能量耗散,仍然对波传播有明显的阻隔作用。
    本文的分忻结果对丰富弹性波传播理论和促进其在工程中的应用具有积极的意义。
In this paper,dynamic interaction between waves and embedded structures withunilateral contact interfaces is investigated by using the powerful numerical t001——transient time-domain boundary element method(BEM)Due to the non-linearityinduced by unilateral contact interfaces,the problem is hard for conventionalmathematical treatments However,boundary integral equation(BIE)together with itsdiscretion techniques has been found to be an effective tool for such problemespeciallyfor the problem of wave motion in an infinite or semi-infinite medium Forthe sake ofthis.the basic formulae for transient time.domain BEM are derived indetail Amathematical model for nonlinear boundary problems with frictional contactinterfaces is presented Criteria for the determination of the boundaxy conditionsare studied;numerical techniques for the application of transient time-domain BEMto the dynamiccontact problems are discussed and efficient iteration methods withrapid convergenceare proposed
    By employing the domain decomposition technique,formulae of transienttime-domain BEM are presented for the embedded structure mad its surroundingmedium From simple to complex,some typical examples are considered As a first step,the dynamic interaction between the anti-plane waves(SH waves)and the embeddedstructure is investigated;dynamic interaction between the plane waves(P or SV waves)and the embedded structure with a unilateral and smooth COntact interface iSresearchedFinally the dynamic interaction between the plane waves mad the embeddedstructure with a unilaterally frictional contact interface where separations mayor may not is considered The corresponding computer programs are coded Throughnumerical calculation of the near field solutions,time dependence of some parameterssuch as displacements , tractions , relative slipping speeds and displacementdiscontinuities at the interface is presented and variation of the interface stateswith time is also given For various shapes of the embedded structure,comparisonsare made between the present results and those obtained from the problem that theembedded structure is perfectly bonded to its surrounding medium
    It is shown that incident waves of enough strength can induce the local separationand slip of the interface between the embedded structure and its surrounding mediumThe state of the interface is unknown beforehand and may vary with time For suchelastodynamic problems with boundary non-linearity,the present numerical method isfound to be very efficient with good convergence and precision
    The local separation and slip of the interface significantly influence the shapesof the propagating waves For exmnple,vcaves corresponding to a harmonic incidentw-ave,after several periods,may be very different from their original shapes,which implies the generation of the waves with high frequencies This is the inherentfeature induced by the non-linearity of the problem Besides,the local separationand slip can obstruct the refraction of waves through the interface As a result,the induced wave motion of the embedded structure will be less than that of itssurrounding medium Even the smooth contact can obviously obstruct the wavepropagation,though unlike the frictional contact that will result in the energy
引文
[1] Y. H. Pao(鲍亦兴)& C. C. Mow(毛昭宙). 弹性波的衍射与动应力集中. 刘殿魁,苏先樾译. 科学出版社,1993.
    [2] 钟伟芳,聂国华. 弹性波的散射理论. 华中理工大学出版社,1997.
    [3] C. C. Weng, 非均匀介质中的场与波. 聂在平,柳清伙译. 电子工业出版社,1992.
    [4] L. B. Brekhovskikh, 分层介质中的波. 杨训全译(第二版).科学出版社,1985.
    [5] 赵振东,蔡永恩,熊建国, 爆炸冲击波作用下高层建筑基础与地基间的滑移与翘离. 爆炸与冲击. 1991,11(4):321-330.
    [6] 高伟建,熊建国,赵振东, 爆炸冲击波作用下高层建筑基础提离和滑移的非线性分析. 爆炸与冲击. 1994,14(1):41-54.
    [7] B. Enguist and A. Majda, Absorbing Boundary Conditions for the Numerical Simulations of Waves. Math. Computation. 21,1977.
    [8] 廖振鹏, 工程波动理论导引. 科学出版社出版, 1996.
    [9] C. A. Brebbia and S. Walker, Boundary Element Techniques in Engineering. London, Newness-Butterworths, 1980.
    [10]P. K. Banerjee and R.Butterfield, Boundary Element Methods in Engineering Science. London, McGraw-Hill,1981.
    [11]C. G. Knott, Reflection and Refraction of Elastic Waves with Seismological Applications. Phil. Mag., 1899,48,64-79.
    [12]K. Zoeppritz, Uber Reflexion and Durchgang Seismischer Wellen durch Unstetigkeitsflachen. Erdbebnwellen VIIb. Nach. d.k?nigl.Gesell.d..Wissen. z.G?ttingen,Math-Phys.,1919,1,66-84.
    [13]A. E. H. Love, Some Problems of Geodynamics. Cambridge University Press,1911.
    [14]R. Stonely, Elastic Waves at the Surface of the Separation of Two Solids. Proc.R.Soc.Lond. 1924,A106,416-428.
    [15]W. M. Ewing, W. S. Jardetzky and F. Press, Elastic Waves in Layered Medie. New York, Mcgraw-Hill, 1957.
    [16]J. D. Achenbach, Wave Propagation in Elastic Solids. North-Holland pub. Co., Amsterdam, 1973.
    [17]J. Miklowitz, The Theory of elastic Waves and Wave Guides. North-Holland pub. Co., Amsterdam, 1977.
    [18]A. Aki and P. G. Richards, Quantitative Seismology-Th
    [21]E. B. Ahmed, Guided Modes in a Layed Elastic Half-Space with Doubly Corrugated Surfaces. J.Acoust. Soc. Am., 1994,96(5), 3155-3166.
    [22]J. A. Ogilvg, Theory of Wave Scattering from Random Rough Surfaces. IOP. Lond, 1991.
    [23]A. P. Berkhoff, J. M.Thijssen and P. W.van den Berg., Ultrasound Wave Propagation through Rough Interfaces:Iterative Methods. J.Acoust. Soc. Am., 1996,99(3), 1306-1314.
    [24]C. Pecorari, D. A. Mendelsohn, G. Blaho and L. Adler, Investigation of Ultrasonic Wave Scattering by a Randomly Rough Solid-Solid Interface. J. Nondestr. Eval., 1992, 11(3/4), 211-220.
    [25]D. M. Barnett, J. Lothe, S. D. Gavazza and M. J.P. Musgrave, Considerations of the Existence of Interfacial (Stoneley) Waves in Anisotropic Elastic Half-Space. Proc..r.Soc.Lond, 1985, A402, 153-166.
    [26]A. H. Nayfeh, The General Problem of Elasic Waves Propagation in Multilayered Anisotropic Media. J.Acoust. Soc. Am., 1991, 89, 1521-1531.
    [27]A. Chattopadhyay and S. Saha, Reflection and Refraction of P Waves at the Interface of Two Monoclinic Media. Int. J. Eng. Sci., 1996, 34(11), 1301-1310.
    [28]S. Hajra and A. Mukhopadhyay, Reflection and Refraction of Seismic Waves Incident Obliquely at the Boundary of Liquid-Saturated Porous Solids. Bull. Seism. Sci. Am., 1982, 72,1509-1533.
    [29]G. E. Baird, P. D. Thomas and G. Sang, The Propagation of Elastic Waves through a Layered Poroelastic Medium. J. Acoust.Soc.Am., 1996, 99(6), 3385-3392.
    [30]S. K. Tomar, Reflection and Refraction of Longitudinal Wave at an Interface between Two Micropolar Elastic Solids in Welded Contact. J. Acoust.Soc.Am., 1995, 97(2), 822-830.
    [31]S. K. Tomar and M. L. Gogna, Reflection and Refraction of Coupled Transverse and Micro-Rotational Waves at an Interface between Two Different Micropolar Elastic Media in Welded Contact. Int.J.Eng.Sci., 1995, 33(4), 485-496.
    [32]M. A. Dowaikh and R. W. Ogden, Interfacial Waves and Deformationa in Prestressed Elastic Media. Proc.R.Soc., Lond, 1991, A443, 313-328.
    [33]R. W. Ogden and D. A. Sotiropoulos, On Interfacial Waves in Pre-stressed Layered Incompressible Elastic Solids. Proc.R.Soc., Lond, 1995, A450, 319-341.
    [34]Y. Shindo and N. Niwa,Scattering of Antiplane Shear Waves in a Fiber-Reinforced Composite Medium with Interfacial Layers. Acta. Mech., 1996, 117, 181-190.
    [35]Y. Shindo, H. Nozaki and S. K. Datta, Effect of Interface Layers on Elastic Wave Propagation in a metal Matrix Composite Reinforced by Particles. J.Appl. Mech., 1995, 62(1), 178-185.
    [36]R. Paskaramoorthy, S. K. Datta and A. H. Shah, Effect of Interface Layers on Scattering of Elastic Waves. J.Appl. Mech., 1988, 55, 871-878.
    [37]J. G. Harris, An Integrated Model of Scattering from an Imperfect Interface. J. Acoust. Soc. Am., 1996, 99(3), 1315-1325.
    [38]R. Y. Vasudeva and P. G. Rao, Influence of Voids in Interface Zones on Lamb WAVE Propagation in Composite Plates. J.Acoust.Soc.Am., 1991, 89(2), 516-522.
    [39]O. K. Parikh and J. D. Achenbach, Anlysis of Nonlinearly Viscoelastic Behavior of Adhesive Bonds. J.Nondestr.Eval., 1992, 11(3/4), 221-226.
    [40]N. M. Newmark, C. P. Siess and I. M. Viest, Tests and Analysis of Composite Beams with Incomplete Interaction. Proc. Soc.Exp.Stress Anal., 1951,9(1), 75-92.
    [41]G. S. Murty, A Theoretical Model for the Attenuation and Dispersion of Stoneley Waves at the loosely bonded Interface of Elastic Half Spaces. Phys. Earth Planet. Interiors. 1975, 11, 65-79.
    [42]A. K. Mal and S. K. Bose, Dynamic Elastic Moduli of a Suspension of Imperfectly Bonded Spheres. Proc.Camb.Phil.Soc., 1974, 76, 587-600.
    [43]F. Santosa and W. W. Symes, A Model for a Composite with Anisotropic Dissipation by Homogenization. Int.J.Soilds Struct., 1989, 25,381-392.
    [44]J. P. Jones and J. S. Whittier, Waves at a Flexibly Bonded Interface. J. Appl. Mech., 1967, 34, 905-909.
    [45]M. Schoenberg, Elastic Wave Behavior across Linear Slip Interfaces. J.Acoust.Soc.Am., 1980, 68, 1516-1521.
    [46]S. Chonan, Vibration and Stability of a Two-Layered Beam with Inperfect Bonding. A.Pilarski and J.L.Rose 1982, 72, 208-213.
    [47]A. K. Mal and P. C. Xu, Elastic Waves in Layered Media with Interface Features. In Elastic Wave Propagation. M.F.McCarthy and M. A. Hayes Eds. North-Holland, Amsterdam. 1989, 67-73.
    [48]A. Bostr?m and G. Wickham, On the Boundary Conditions for Ultrosonic Transmission by Partially Closed Crack. J.Nondestr.Eval. 1991,10(4),139-149.
    [49]J. Aboud, Wave Propagation in Damaged Composite Materials. Int. J. Solids Struct., 1988,24, 117-138.
    [50]P. A. Martin, Boundary Integral Equations for the Scattering of Elastic Waves by Elastic Inclusions with Thin Interface Layers. J. Nondestr. Eval., 1992, 11(3/4), 167-174.
    [51]P. Olsson, S. K. Datta and A. Bostr?m, Elastodynamic Scattering from Inclusions Surrounded by Thin Interface Layers. J. Appl. Mech., 1990, 57, 672-676.
    [52]C. C. H. Guyott, P. Cawley and R. D. Adams, The Non-destructive Testinf of Adhesively Bonded Structure:A Review. J. Adhes., 1986, 20, 129-159.
    [53]C. M. Teller and A. K. Mal, Recent Advances in the Application of Leaky Lamb Waves to the NDE of Adhesive Bonds. J. Adhes., 1989, 30,1-4.
    [54]J. D. Achenbach, and H. I. Epstein, Dynamic Interaction of a Layer and a Half-Space. J. Eng. Mech. Div. Proc. ASCE. 1967,93, 27-42.
    [55]D. M. Barnett, S. D. Gavazza and J. Lothe, Slip Waves along the Interface between Two Anisotropic Elastic Half-Spaces In Sliping Contact. Proc. R. Soc., Lond, 1988,A415, 389-419.
    [56]L. Wang and J. Lothe, Existence of Second Slip Waves in Anisotropic Elastic Media. Wave Motion. 1993, 18, 79-99.
    [57]A. Bostr?m, Scattering by a Smooth Elastic Obstacle. J. Acoust. Soc. Am., 1980, 67(6), 1904-1913.
    [58]P. Olsson, Scattering of Elastic waves by a Smooth Rigid Movable Inclusion. J. Acoust. Soc. Am., 1986, 79(5), 1237-1243.
    [59]M. Comninou and J. Dundurs, Reflection from a Rigid Boundary Involing Separation. J. Eng. Mech.. Div. Proc. ASCE., 1977, 103, 285-294.
    [60]M. Comninou and J. Dundurs, Reflection and Refraction of Elastic Waves in Presence of Separation. Proc. R. Soc., Lond. 1977, A356, 509-528.
    [61]M. Comninou and J. Dundurs, Singular Reflection and Refraction of Elastic Waves Due to Separation. J. Appl. Mech., 1978,45(3), 548-552.
    [62]M. Comninou and J. Dundurs, Elastic Interface Waves Involving Separation. J. Appl. Mech., 1977, 44, 222-226.
    [63]M. Comninou and J. Dundurs, Interface Separation Caused by a Plane Elastic Wave of Arbitrary Form. Wave Motion. 1979, 1(1), 17-23.
    [64]M. Comninou and J. Dundurs, Interface Separation in the Transonic Range Caused by a Plane Stress Pulse. J. Sound Vib., 1979, 62(3), 317-325.
    [65]K. Sezawa and K. A. Kanai, A Fau Ltsurface or a Block Absorbs Seismic Wave Energy. Bull. Earthq. Res.Inst., 18,465-482,1940.
    [66]K. A. Kana, A New Concerning Surface Waves. Bull. Earthq. Res.Inst.,39,359-366, 1961.
    [67]卢文波, 应力波与可滑移岩石界面的相互作用研究. 岩石力学, 17(3),70-75,1996.
    [68]Y. Chevalie, M. Louzar, G. A. Maugin, Surface-wave Characterization of the Interface between Two Anisotropic Media. J Acoust. Soc. Am. 90(6),3218-3227,1991
    [69]Y. Chevalie, M. Louzar, G. A. Maugin, Influence of Interfacial Slits with Elastic Slip on the Propagation of SH Waves. J Acoust. Soc. Am., 98(1),445-453,1995.
    [70]李夕兵, 论岩体软弱结构面对应力波传播的影响.爆炸与冲击,13(4),334-342,1993.
    [71]M. Comninou and J. Dundurs, Interaction of Elastic Wave with a Unilateral Interface. Proc. R. Soc., London,A368,141-154,1979.
    [72]M. Comninou, J. R. Barber, J. Dundurs, Disturbance at a Frictional Interface Caused by a Plane Elastic Pulse. J. Appl. Mech.49,361-365,1982.
    [73]E. L. Chez, J. Dundurs, M. Comninou, Reflection and Refraction of SH Waves in Presence of Slip and Friction. Bull.Seism. Soc. Am. 68,999-1011,1978.
    [74]M. Comninou, J. Dundurs, E. L. Chez, Total Reflection of SH Waves in Presence of Slip and Friction. J Acoust. Soc. Am.,66,789-793,1976.
    [75]M. Comninou, J. Dundurs, Interface Slip Caused by an SH Pulse. Int. J. Solids Struct.,16,283-289,1980.
    [76]E. L. Chez, J. Dundurs, M. Comninou, Energy Relations for SH Waves Interacting with a Frictional Contact Interaface. Int. J. Solids Struct.,19,579-586,1983.
    [77]龚育宁, 平面应力脉冲打击接触界面的问题.华东工学院学报,39(3),18-27,1986.
    [78] 龚育宁, SH 波在滑移接触面上的反射与折射.固体力学学报,8,174-178,1987.
    [79]O. Y. Zharii, Adhesive Contact between the Surface Wave and a Rigid Strip. J. Appl. Mech.,62,368-371,1995.
    [80] O. Y. Zharii, Frictional Contact between the Surface Wave and a Rigid Strip. J. Appl. Mech.,63,15-20,1996.
    [81]R. K. Miller, Approximate Method of Analysis of the Transmission of Elastic Waves through a Frictional Boundary. J. Appl. Mech.44,652-656,1977.
    [82]R. K. Miller, H. T. Tran, Reflection, Refraction and Absorption of Elastic Waves at a Frictional Interface:SH Motion. J. Appl. Mech.46,625-630,1979.
    [83]R. K. Miller and H. T. Tran, Reflection, Refraction and Absorption of Elastic Waves at a Frictional Interface:P and SV Motion. J. Appl. Mech.48,155-160,1981.
    [84] R. K. Miller, The Effects of Boundary Friction on the Propagation of Elastic Waves. Bull. Seism. Soc. Am.,68,987-998,1978.
    [85]R. K. Miller, An Estimate of the Properties of Love-Type Surface Waves in a Frictionally Boned Layer. Bull. Seism. Soc. Am.,69, 305-317,1979.
    [86]W. D. Iwan, A Generalization of the Concept of Equivalent Linearization. Int. J. Nolinear Mech.,8,279-287,1973.
    [87] J. P. Wolf. Dynamic Soil-Strcture Interaction. London, 1995.
    [88] D. L. Karabalis, D. E. Beskos, Dynamic Soil-Strcture Interaction. Boundary Element Methods in Mechanics Vol.3(Ed. D.E. Beskos), Elsevier Sci. Publ., Amsterdam, 499-562, 1991.
    [89]Y. K. Cheung, L. G. Tham, Recent Advances in Soil-Strcture Interaction Analysis.结构与介质相互作用理论及其应用,南京,河海大学出版社,17-27,1993.
    [90]E. A. Wilson and B. Parsons, Finite Element Analysis of Elastic Contact Problems Using Differential Displacements. Int. J. Numer. Mech. Engng.,2,384-395,1970.
    [91] C. H. Chan and I. S. Tuba, A Finite Element Method for Contact Problem of Solid Bodies: I. Theory And Validation. Int. J. Mech.Sci, 13,615-625,1971.
    [92] C. H. Chan and I. S. Tuba, A Finite Element Method for Contact Problem of Solid Bodies:Application to Turbine Blade Fastening. Int. J. Mech.Sci, 13,627-639,1971.
    [93] A. Francavilla and O. C. Zienkiewicz, A Note on Numerical Computation of Elastic Contact Problems. Int. J. Numer. Mech. Engng., 9,913-924,1975.
    [94]T. D. Sachdeva, C. V. Ramakrishnan and R. Natarajan, A Finite Element Method for the Elastic Contact Problems. J. Eng. Industry. Vol. 103, 1981,456-461.
    [95]T. D. Sachdeva and C. V. Ramakrishnan, A Finite Element Solution for Two-Dimensional Elastic Contact Problems with Friction. Int. J. Num. Meth. Eng. Vol. 17 1981, 1257-1271.
    [96]J. Padovan, R. Moscarello, J. Stafford and F. Tapaddor, Pantographing Self-Adaptive Gap Elements. Computers and Structures. Vol. 20(4), 1985, 745-758.
    [97]K. J. Bathe and A. Chaudhary, A Solution Method for Planar and Axisymmetric Contact Problems. Int. J. Num. Meth. Eng. Vol.21, 1985,65-88.
    [98]J. T. Stadler and R. O. Weiss, Analysis of Contact through Finite Element Gaps. Computers and Structures. Vol. 10, 1979, 867-873.
    [99] M. Mazurkiewicz and W. Ostachowicz, Theory of Finite Element Method for Elastic Contact Problems of Solid Bodies. Computers and Structures. Vol. 17, 1983, 51-59.
    [100] E.Zolti. A Finite Element Procedure to Time Dependent Contact Analysis. Computers and Structures. Vol. 17(4), 1983, 555-561.
    [101] A. Francavilla and O. C. Zienkiewicz, A Note on Numerical Computation of Elastic Contact Problems. Int. J. Num. Meth. Eng. Vol. 9 1975, 913-924.
    [102] S. H. Chan and I. S. Tuba, A Finite Element Method for Contact Problems in Solid Bodies. Int. J. Mech. Sci. Vol. 13, 1971,615-639.
    [103] J. O. Hallquist., G. L. Goudreau and D. J. Benson, Sliding Interfaces with Contact-Impact in Large-scale Lagrangian Computations. Comput. Appl. Meth. Eng. Vol.51, 1985,107-137.
    [104] T. J. R Hughes, R. L.Taylor and J. L. Sackman, Curnier A.and Kanaknukulchai W. A Finite Element Method for a Class of Contact-Impact Problems. Comp. Appl. Meth. Eng. Vol.8 1976,249-276.
    [105] J. T. Oden. and E. B. Pires, Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity. J. Appl. Mech. Vol.50, 1983, 67-76.
    [106] J. C. Simo, P. Wriggers and R. L. Taylor, A Perturbated Lagrangian Formulation for the Finite Element Solution Contact Problems. Comp. Appl. Meth. Eng. Vol.50 1985, 163-180.
    [107] K. Ohtake, J. T. Oden and N. Kikuchi, Analysis of Certain Unilateral Problems in Von Karman Plate Theory by A Penalty Method, part I. Comp. Appl. Meth. Eng. Vol.24, 1980, 187-213..
    [108] J. R. Reddy, On Penalty Function Methods in The Finite Element Analysis of Flow Problems. Int. J. Numer. Meth. Fluids, Vol. 2, 1984,151-172.
    [109] M. Fortin, Minimization of Some Non-Differentiable Functionals by the Augmented Lagrangian Method of Hastens and Power. Appl. Math. Optim., Vol.2(3), 1976, 236-250.
    [110] J. H. Heegaard and A. Curnier, An Augmented Lagrangian Method for Discrete Large-Slip Contact Problems. Int. J. Numer. Methods Eng. Vol. 36, 1993,569-593.
    [111] G. Pietrzak and A. Cuinier, Large Deformation Frictional Contact Mechanics: Continuum Formulation and Augmented Lagrangian Treatment. Comput. Methods Appl. Mech. Eng. Vol.177, 1999,351-381.
    [112] 李录贤、沈亚鹏和叶天麒, 摩擦接触问题的数学规划解法. 应用力学学报Vol. 15(2), 1998.
    [113] J. R. Barber and M. Ciavarella, Contact Mechanics. Int. J. Solids and Structures, Vol.37, 2000, 29-34.
    [114] 廖振鹏, 近场波动的数值模拟. 力学进展,1997,27(2): 193-213.
    [115] T. Andersson, B. Fredriksson and B. G. Allan-Persson, The Boundary Element Method Applied to Two-Dimensional Contact Problems. New Developments in Boundary Element
     Methods (Ed. C.A. Brebbia). CML Publ. Southampton, 1980.
    [116] T. Andersson, The Boundary Element Method Applied to Two-Dimensional Contact Problems with Friction. Proc. Third Int. Seminar on Boundary Element Methods (Ed. C.A. Brebbia), Springer-verlag, Berlin ,1981, 239-258.
    [117] T. Andersson and B. G. Allan-Persson, The Boundary Element Method Applied to Two-Dimensional Contact Problems. Progress in Boundary Element Methods 2 (Ed. C.A. Brebbia) Pentech Press, London, 1983.
    [118] F. Paris and J. A. Garrido, On the Use of Discontinuous Elements in Two-Dimensional Contact Problems. Boundary Elements VII (Eds. Brebbia C.A. and Maier G.). CML Publ. Southampton, 1985, 17-39(13).
    [119] H. Jin K. Runesson and A. Samuelsson, Application of the Boundary Element Methods to Contact Problems in Elasticity with a Nonclassical Friction Law. Boundary Elements IX. Vol. 2: Stress Analysis Applications (Eds: Brebbia C.A., Wendland W.L. and Kuhn G.). Springer-verlag, Berlin , 1986, 397-415.
    [120] A. P. S. Selvadurai and M. C. Ap, Response of Inclusions with Interface Separation, Friction and Slip. Boundary Elements VII (Eds. Brebbia C.A. and Maier G.). CML Publ. Southampton, 1985, 109-127(14).
    [121] G. Bezine and D. Fortune, Contact between Plates by A New Direct Boundary Integral Equation Formulation. Int. J. Solids Structures, Vol. 20, 1984, 739-736.
    [122] P. D. Panagiotopoulos, Boundary Integral “Equation”Methods for the Signorini-Fichera Problem. Boundary Elements VII (Eds. Brebbia C.A. and Maier G.). CML Publ. Southampton, 1985, 73-83(12).
    [123] P. P. Lazaridis and P. D. Panagiotopoulos, Boundary Variational Principles for Inequality Structural Analysis Problems and Numerical Applications. Computers & Structures, Vol.25, 1987, 35-49.
    [124] P. D. Panagiotopoulos, Boundary Integral Equation Methods for the Friction Problem. Engineering Analysis, Vol.4, 1987, 100-105.
    [125] M. H. Aliabadi and C. A. Brebbia, Computational Methods in Contact Mechanics. CM Publications, 1993.
    [126] H. Antes and P. D Panagiotopoulos, The Boundary Integral Approach to Static and Dynamics Contact Problems—Equality and Inequality Methods. Birkhauser verlag, 1992.
    [127] R. Abascal, 2D Transient Dynamic Friction Contact Problems I. Numerical analysis. Engineering Analysis with Boundary elements. Vol. 16, 1995,227-233.
    [128] R. Abascal, 2D Transient Dynamic Friction Contact Problems. II. Applications to soil-structure interaction problems. Engineering Analysis with Boundary elements. Vol. 16, 1995, 235-243.
    [129] H. Antes and B. Steinfeld, Unilateral Contact with Friction by A Time Domain BEM. Nonlinear Computational Mechanics (Eds: Wriggers P. and Wagner W.) Springer Verlag,
     1992, 193-211.
    [130] G. E. Stavroulakis and H. Antes, Nonlinear Boundary Equation Approach for Inequality 2-D Elastodynamics. Engineering Analysis with Boundary Elements. Vol. 23, 1999, 487-501.
    [131] G. E. Stavroulakis, H. Antes and P. D. Panagiotopoulos, Transient Elastodynamics around Cracks Including Contact and Friction. Comput. Methods Appl. Mech. Engrg. Vol.177, 1999,427-440.
    [132] G. E.S tavroulakis, Impact-Echo from a Unilateral Interlayer Crack. LCP-BEM Modeling and Neural Identification. Engineering Fracture Mechanics. Vol. 62, 1999, 165-184.
    [133] O. C.Zienkiewiz , D. W.Kelly and P. Bettess, The Coupling of Finite Element And Boundary Solution Procedures. Int. J. Numer. Methods Engrg. Vol. 11, 1977, 276-355.
    [134] C. A. Brebbia and P. Georgious, Combination of Boundary and Finite Elements for Elastostatics. Applied Mathematical Modeling. Vol. 3, 1979, 121-220.
    [135] G. Beer and J. L. Meek, The Coupling of the Boundary and Finite Element Methods for Infinite Domain Problems in Elastoplasticity. Boundary Element Methods.(Ed. Brebbia C.A.) Berlin, Springer, 1981, 575-591.
    [136] C. C. Spyrakos and D. E.Beskos, Dynamic response of Flexible Strip Foundation By Boundary And Finite Elements. Soil Dynamics and Earthquake Engrg. 5(2), 1986,84-96.
    [137] D. L. Karabalis and D. E.Beskos, Dynamic Response of Three-Dimensional Flexible Foundations by Time Domain BEM and FEM. Soil Dynamics and Earthquake Engrg. Vol. 24(2), 1985, 91-101.
    [138] O.von Estorff and Prabucki, M.J. Dynamic Response in the Time Domain by Coupled Boundary and Finite Elements. Computational Mechanics, Vol. 6, 1990, 35-46.
    [139] O.von Estorff, Dynamic Response of Elastic Blocks by Time Domain BEM and FEM. Computers and Structures. Vol. 38 (3), 1991, 289-300.
    [140] M.Yazdchi N. Khalili and S. Valliappan, Dynamic Soil—Structure Interaction Analysis via Coupled Finite—Element—Boundary—Element Method. Soil Dynamics and Earthquake Engrg. Vol. 18, 1999, 499-517.
    [141] L. Liolios K. Pitilakis and M. Yeroyianni, A BEM—FEM Convolutional Approach to the Unilateral Contact Problem of Seismic Soil—Pipeline Interaction. Engineering Analysis with Boundary Elemnets Vol.22 1998, 77-81.
    [142] N.Guyot F. Kosior and G.Maurice, Coupling of Finite Elements and Boundary Elements Methods for Study of Frictional Contact Problem. Comput. Methods Appl. Mech. Engrg. Vol. 181, 2000, 147-159.
    [143] J. A. Garrido and A. Lorenzana, Receding Contact Problem Involving Large Displacements Using The BEM. Engineering Analysis with Boundary Elements. Vol. 22, 1998, 295-303.
    [144] A. Blazquez F. Paris and J. Canas, Interpretation Of The Problems Found In Applying Contact Conditions in Node-to Point Schemes With Boundary Element Non-Conforming Discretizations. Engineering Analysis with Boundary Elements. 22, 361-375, 1998.
    [145] V. D. Kupradze, Potential Methods in the Theory of Elasticity. Israel Program of Scientific Translation. Jerusalem, 1965.
    [146] V. D. Kupradze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland pub. Co., Amsterdam, 1979.
    [147] R. P. Banaugh, Application of Integral Representations of Displacement Potential in Elastodynamics. Bulletin of the Seismological Society of America, 54, 1073-1086, 1964.
    [148] R. P. Banaugh and W. Goldsmith, Diffraction of Steady Elastic Waves by Surfaces of Arbitrary Shape. J. of Applied Mechanics 29,589-597, 1963.
    [149] M. B. Friedman and R. P. Shaw, Diffraction of Pluses by Cylindrical Obstacles of Arbitrary Cross Section. J. Applied Mechanics, 29, 40-46, 1962.
    [150] T. A. Cruse and F. J. Rizzo, A direct Formulation and Numerical Solution of the General Transient Elastodynamic Problems:I. J. of Mathematical Analysis and Applied , 22, 244-259, 1968.
    [151] T. A. Cruse, A direct Formulation and Numerical Solution of the General Transient Elastodynamic Problems:II. J. of Mathematical Analysis and Applied , 22, 341-355, 1968.
    [152] G. D. Manolis, A Comparative Study on the Boundary Element Method, Approaches to Problems in Elastodynamics. International J. for Numerical Methods in Engineering, 19, 73-91,1983.
    [153] G. D. Manolis and D. E. Beskos, Dynamic Response of Lined Tunnels by an Isoparamatric Boundary Element Method. Computer Methods in Applied Mechanics and Engineering, 36, 291-307,1983.
    [154] D. E. Beskos, Boundary Element Methods in Dynamic Analysis. Applied Mech. Rev. Vol. 40(1), 1987.
    [155] D. E. Beskos, Boundary Element Methods in Dynamic Analysis:Part II (1986-1996). Applied Mech. Rev. Vol. 50(3), 1997.
    [156] G. D. Manolis and D. E. Beskos, Boundary Element Methods in Elastodynamics. London, Uwin Hyman, 1989.
    [157] J. Dominguez, Boundary elements in dynamics. Computational Mechanics Publications,1993.
    [158] 宋崇民,张楚汉. 水坝抗震分析的动力边界元法. 地震工程与工程振动,8(4),13-26, 1991.
    [159] 李庆斌,周鸿均,林皋. 瞬态动力反应分析的特解边界元法. 全国第四届振动工程会 议论文集,西安,1990.
    [160] D. Nardini and C. A. Brebbia, A New Approach to Free Vibration Analysis Using Boundary Elements. Boundary Element Methods in Engineering(Ed. by C. A. Brebbia). Berlin, Spinger-Verlag, 312-326, 1982.
    [161] D. Nardini and C. A. Brebbia, Transient Dynamic Analysis by the Boundary Elements.( Ed. by C. A. Brebbia). Berlin, Spinger-Verlag, 191-208, 1985.
    [162] O. A. Pekau, L. M. Feng and C. H. Zhang, Fracture Analysis of Concrete Gravity Dams by Boundary Element Method. Eng. Struct. Dyn., 20,335-354,1991.
    [163] G. D. Manolis and D. E. Beskos, Dynamic Stress Concentration Studies by Boundary Integrals and Laplace Transform. International J. Num. Meth.Eng., 17,573-599,1981.
    [164] F. Durbin. Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate’s Method. Computer J. , 17,371-376, 1974.
    [165] Y. Niwa, S. Kobayashi and N. Azuma, An Analysis of Transient Stress Produced around Cavities of Arbitrary Shape During Passage of Traveling Waves. Mar. Fac. Engng., Kyoto Univ., 37,28-46, 1975.
    [166] Y. Niwa, S. Kobayashi and T. Fukui, Application of Integral Equation Method to Some Geomechanical Problems. Numerical Method in Geomechanics ASCE(Ed. by C.S. Desai), New York, 120-131,1976.
    [167] Y. Niwa, M. Kitahara and H. Ikeda, The BIE Approach to Transient Wave Propagation around Elastic Inclusions. Jeoret. Appl. Mech., 32, 183-197,1983.
    [168] S. Kobayashi, Some Applications of Boundary Element Method to Geodynamics. Computational Mechanics (Ed. by G. Yagawa and S.N. Atluri), Berlin,Springer-Verlage,XI.9-XI.14, 1986.
    [169] R. Abscal and J. Dominguez, Dynamic Response of Embedded Strip Foundations Subject to Obliquely Incident Waves. Boundary Elements VII (Ed. by C.A. Brebbia), 663-669,1984.
    [170] W. J. Mansur and C. A. Brebbia, Transient Elastodynamcs Using a Time-Stepping Technique. Boundary Elements(Eds. C. A. Brebbia, T. Futagami and M. Tanaka), Berlin,Springer-Verlag, 677-698, 1983.
    [171] D. M.Cole, D. D. Kosloff and J. B. Minster, A Numerical Boundary Integral Equation Method for Elastodynamics-I. Bull. Seismol. Soc. Am., 68, 1331-1357,1978.
    [172] W. J. Mansur and C. A. Brebbia, Numerical Implementation of Boundary Element Method for Two-Dimensional Transient Scalar Wave Propagation Problems. Appl. Math. Modelling, 6, 299-306, 1982.
    [173] W. J. Mansur and C. A. Brebbia, Formulation of the Boundary Element Method for Transient Problems Governed by the Scalar Wave Equation. Appl. Math. Modelling, 6, 307-311, 1982.
    [174] W. J. Mansur and C. A. Brebbia, Transient Elastodynamics. Topics in Boundary Element Research, vol.2, (Ed. by C.A.Brebbia), Berlin,Springer-Verlag,124-155,1985.
    [175] H. Antes, A Boundary Elements Procedure for Transient Wave Propagation in Two-Dimensional Isotropic Elastic Media. Finite Elements Anal. Des., Vol.1, 313-322,1985.
    [176] C. C. Spyrakos, Dynamic Response of Strip-Foundations by the Time Domain BEM-FEM Methods. Ph.D. Thesis, University of Minnesota, Minneapolis, 1984.
    [177] C. C. Spyrakos and D. E. Beskos, Dynamic Response of Rigid Strip-Foundations by the Time Domain Boundary Element Method. Int. J. Num. Meth. Engng., Vol. 23,1547-1565,
     1986.
    [178] R. Gallego and J. Dominguez, A Unified Formulation of Two Existing Time Domain Boundary Element Approaches. Comm. APP. Num. Meth., 6, 17-25, 1990.
    [179] Y. Niwa, T. Fukui, S. Kato and K. Fujiki, An Application of the Integral Equation Method to Two-Dimensional Elastodynamics. Theor. App. Mech., 28,281-290, 1980.
    [180] D. L. Karabalis and D. E. Beskos, Dynamic Response of 3-D Rigid Surface Foundations by Time Domain Boundary Element Method. Earthquake Engng. Struct. Dyn. ,12,73-93,1984.
    [181] D. L. Karabalis and D. E. Beskos, Dynamic Response of 3-D Flexible Foundations by Time Domain BEM and FEM , Soil Dyn. Earthquake Engng. , 4,91-101, 1985.
    [182] D. L. Karabalis and D. E. Beskos, Dynamic Soil-Structure Interaction. Boundary Element Methods in Mechanics, D. E. Beskos(Ed.), 499-562, North-Holland, Amsterdam .
    [183] D. L. Karabalis, C. C. Spyrakos and D. E. Beskos, Dynamic Response of Surface Foundations by Time Domain Boundary Element Method . Dynamic Soil-Structure Interaction , D.E.Beskos , T. Krauthammer & I. Vardoulakis(Eds.), 19-24, A.A.Balkema , Rotterdam.
    [184] H. Antes and W. Chen, Vibrations of Reissner Plates by Boundary-interior Elements. Computational Mechanics’91(Eds. by S.N.Atluri, D.E.Beskos,R.Jones and G.Yagawa),ICES Publ.,Atlanta,44-49,1991.
    [185] V. Estorff, Dynamic Response of Elastic Block by Time Domain BEM and FEM. Comput. Struct, 38, 289-300,1992.
    [186] H. B. Code and W. S. Venturini, Three-Dimensional Transient BEM Analysis. Comput. Struct, 56, 751-768, 1995.
    [187] S. Ahmad and P. K. Banerjee, Multi-Domain BEM for Two-Dimensional Problems of Elastodynamics. Int. J. Num. Meth. Eng., 26, 891-911, 1988.
    [188] H. C. Wang and P. K. Banerjee, Axisymmetric Transient Elastodynamic Analysis by Boundary Element Method. Int. J. Solids Struct., 26, 401-415,1990.
    [189] P. K. Banerjee, A. S. M. Israi and H. C. Wang, Time-Domain Formulations of BEM for Two-Dimensional, Axisymmetric, and Three-Dimensional Transient Elastodynamics. Advanced Dynamic Analysis by Boundary Element MethodS-7 (Eds.by P.K.Banerjee and S. Kobayashi), Elsevier Appl. Sci., London,115-153, 1992.
    [190] Z. X. Lei, L. G. Tham and Y. K. Cheung, Transient Elastodynamic Analysis by Time Domain BEM in Cylindrical Coordinates. Earthquake Eng. Struct. Dyn., 21,1071-1089, 1992.
    [191] Y. K. Cheung, L. G. Tham and Z. X. Lei, Wave Propagation in Layered Media by Time Domain BEM. Earthquake Eng. Struct. Dyn.,22,225-244,1993.
    [192] H. Takemiya and B. Steinfeld, Transient 3D Lamb’s Solution by Classical Approach and Direct Boundary Element Method.Structural Dynamics-EURODYN’93 (Eds. by T. Moan et al) A. A. Balkema, Rotterdam, 304-314,1993.
    [193] S. L. Crouch and Y. Tian, A Two-Dimensional Direct Boundary Integral Method for Elastodynamics. Int. J. Rock Mech. Mining Sci. Geomech Abstr., 25,149-158,1988.
    [194] G. D. Manolis and S. Ahmad, Ground Motions Resulting from a Pressurized Buried Cavity. Wave Motion, 10, 465-478,1988.
    [195] Z. Y. Cao, J. Z. Zhu and Y. K. Cheung, A Semi-analytical Boundary Element Method for Scattering of Waves in Half-space. Earthquake Eng. Struct. Dyn.,19,1073-1082,1990.
    [196] D. L. Karabalis and D. C. Rizos, Dynamic Analysis of 3-D Foundations. Boundary Element Techaniques in Geomechanics(Eds. by G.D.Manolis and T.G.Dvies),London,Elsevier Appl.Sci.,177-208,1993.[68] D.C. Rizos and D.L.Karabalis. Advanced Direct Time Domain BEM Formulation for General 3-D Elastodynamic Problems. Comput. Mech. ,15,249-269,1994.
    [197] D. C. Rizos and D. L. Karabalis, Application of an Advanced Direct Time Domain BEM Formulation to 3-D Elastodynamic Problems in Geomechanics, Computational Mechanics’95, Vol.2 (Eds. by S.N.Atluri , G.Yagawa and T.A.Cruse),Berlin,Springer-Verlag,3080-3085,1995.
    [198] D.C. Rizos and D. L. Karabalis, Advanced Direct Time Domain BEM Formulation for General 3-D Elastodynamic Problems. Comput. Mech.., 15, 249-269,1994.
    [199] 邱仑、徐植信. 地下结构瞬态响应分析的积分方程法(I)—P波和SV波传播. 同济大学 学报, 15(4), 411-429, 1987.
    [200] 邱仑、徐植信. 地下结构瞬态响应分析的积分方程法(II)—多层结构及SH 波计算. 同 济大学学报,6(1), 55-64, 1988.
    [201] 曾三平. 爆炸波在非均匀介质中传播以及地下防护结构与围岩非线性动力相互作用分 析.同济大学博士论文, 1992.
    [202] 任允涛. 各向同性与各向异性介质波动问题边界元法及其工程应用.清华大学博士论 文, 1995.
    [203] 郭胜利. 强震作用下土埋结构动力反应分析的研究. 清华大学博士论文, 1997.
    [204] Y. P. Chang, C. S. Kang and D. J. Chen, The Use of Fundamental Green’S Functions for the Solution of Problems of Heat Conduction in Anisotropic Media. Int. J. Heat Mass Transfer. 16, 1905-1918, 1973.
    [205] L. C. Wrobel and C. A. Brebbia , The Boundary Element Method for Steady-State and Transient Heat Conduction. First Int. Conf. on Numerical Methods in Thermal problems. Swansea, 1979.
    [206] C. A. Brebbia and S. Walker, Boundary Element Techniques in Engineering. Newnes-Butterworth. London, 1980.
    [207] S. Das and K. Aki, A Numerical Study of Two-Dimensional Spontaneous Rupture Propagation. Geophys. J., 50, 643-648, 1977.
    [208] G. D. Manolis, P. Tetepoulidis, D. G. Talaslidis and G. Apostolidis, Seismic Analysis of Buried Pipeline in a 3D Soil Continuum. Eng. Anal. Bound. Elem.,15, 371-391,1995.
    [209] F. Hartman, Elastostatics. Progress in Boundary Element Methods (Ed. Ed. By Brebbia C.A.). Springer-Verlag, Berlin, 1981.
    [210] V. Mantic, A New Formula for the C-Matrix in Somigliana Identity. J. of Elasticity. 33, 191-201, 1993.
    [211] Jeng-Tzong Chen, Shyh-Rong Kuo, Wei-Chih Chen and Li-Wei Liu. On The free Terms of the Dual BEM for the Two and Three-dimensional Laplace Problems. J. of Manrine Science and Techanology. 8, No. 1, 8-15, 2000.
    [212] B. Birgisson, A Two-Dimensional Dynamic Direct Boundary Element Method for Piecewise Homogeneous Elastic Media. UMI Dissertation Services, A Bell & Howell Company, Ph.D., 1996.
    [213] S. Ahmad and P. K. Banerjee, Time-Domain Transient Elastodynamic Analysis of 3-D Solids by BEM. Int. J. Numer. Methods Eng. 26, 1709-1728, 1988.
    [214] A. S. M. Israil. and P.K.Banerjee, Advanced Time-Domain Formulation of BEM for Two-Dimensional Transient Elastodynamics. Int. J. Numer. Methods Eng. 29 , 1421-1440, 1990.
    [215] A. S. M. Israil. and P.K.Banerjee, Advanced. Two-Dimensional Transient Wave-Propagation Problems by Time-Domain BEM. Int. J. Solids and Struct.Vol.26. No.8 851-864.
    [216] S. Siebrits and A. P. Peirce, Stability Properties of Time Domain Elastodynamic Boundary Element Methods. Boundary Elements 17. Southampton: Computational Mechanics Publication.
    [217] W. J. Mansur, A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method. Ph.D. Thesis. University of Southampton.
    [218] T. Fukui, Time-Marching Analysis of Boundary Integral Equations in Two Dimensional Elastodynamics. In: Innovative Numerical Methods in Engineering, Ed: R.P.Shaw (et.al), New York: Springer-verlag. 1986,405-410.
    [219] K. W. Man, Contact Mechanics Using Boundary Elements. Southamton UK,Computational Mechanics Pulications,1994.
    [220] P. C. Chou and H. Koening, A Unifield Approach to Cylindrical and Spherical Elastic Waves By method Of Characteristics. J. Appl. Mech. Vol. 33, 1966, 159-167.
    [221] M. Kitahara, M. Hamada, K. Nakagawa and Y. Muranishi, Transient Wave Fields around Elastic Inclusions in a Semi-Infinite Foundation. Theoretical and Applied Mechanics, Vol. 32, Univ. Tokyo Pres.
    [222] F. Paris and J. A. Garrido, An incremental Procedure for Frictional Contact Problems with the Boundary Element Method. Eng. Anal. with Boundary Element. 6(4),1989, 202-213.
    [223] 汪越胜,于桂兰,章梓茂,冯仰德.复杂界面(界面层)条件下的弹性波传播问题研究综述.力

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700