城市输配水管网可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输配水管网系统是城市重要的基础设施,承担着将自来水按质保量的从净水厂安全输配给用户的任务,其可靠性研究对于保证城市供水安全性、可靠性及服务水平有积极而又重要的意义。本文在总结分析国内外管网可靠性研究成果的基础上,利用系统工程、图论和优化算法理论,综合考虑影响可靠性的各种因素和不确定性来源,深入地研究了管网可靠性的评估方法及其在管网优化设计中的应用,为管网的设计及运行提供了理论依据和决策支持。
     首先,根据管网水力学基础理论,利用节点实际可利用流量与压力之间的关系式,基于EPANET水力计算引擎,提出了一种用于事故状态下的管网水力分析的方法。为了对事故状态下的管网进行拓扑结构分析,基于图论中的深度优先搜索算法,提出了一套新的关阀搜索和事故影响区域判定的算法,为探索阀门对可靠性的影响奠定了坚实的理论基础。
     其次,针对现有研究中普遍存在的忽视阀门数量和泵站适应性控制等影响因素的问题,从复杂系统可靠性的基础理论出发,考虑到影响系统可靠性的各种因素和不确定性来源,分别建立了基于最小割集法和蒙特卡罗法的管网可靠度计算模型,并将其用于中型管网的可靠性评估。算例的结果证实了阀门数量和泵站适应性控制对于可靠性有显著影响。
     再次,以流量熵作为水在管网流动不确定性的度量,间接表征系统的可靠性,建立了管网可靠性熵值代理模型;从能量角度出发,将系统克服或消减事故造成影响的能力量化为可恢复性指数,建立可恢复性指数代理模型。将两种模型应用于算例管网的可靠性分析中,结果验证了流量熵、可恢复性指数两种代理指标与系统可靠性存在正相关关系,同时也证明了两种代理模型的高效性和易用性。
     最后,首次将管径和阀门的位置作为决策变量,建立了以管网投资和运行费用最小、系统可靠度最大为目标的管网多目标优化设计模型。通过引入Pareto外部档案存储策略并借鉴NSGA-II的非劣和拥挤距离排序方法,将单目标的混合蛙跳算法扩展至多目标,并应用于管网多目标优化设计模型的求解。通过中国北方某开发区管网优化设计的应用实例,证明了多目标优化设计模型的可行性和混合蛙跳算法的高效性。
Water distribution systems (WDS) are important urban infrastructures which are designed for safely conveying potable water from treatment plant to user’s tap with adequate quantity and desired quality. The reliability evaluation of WDS has positive and critical meanings for ensuring water supply security, reliability and maintaining a high level of service. A complete review of existed WDS reliability models and publications has been done before starting this study. In order to consider various factors and uncertainty sources that may affect WDS reliability, a set of methods and algorithms from subjects of system engineering, graphic theory and optimization theory has been employed in this dissertation to explore the effective WDS reliability assessment measurements and their implementation on optimal design problems. The outcome of this study could provide a theoretical basis and decision support for optimal design and operation of distribution systems.
     Firstly, according to WDS hydraulic theory and the relationship function between available flow and pressure, an EPANET based method is proposed to analyze the hydraulic performance of WDS under failure condition. In order to carry out WDS topological analysis when system is under failure condition, a new effective algorithm, based on Depth-first Search technique from graphic theory, has been developed to search the valves to be closed and the impacted area due to valve closing while component failure occurs in the system. The proposed algorithm provides a theoretical foundation for exploring the valve’s impact on WDS reliability.
     Secondly, the impact of valve and adaptive pump operation has been ignored by most previous studies. In order to account all possible factors and uncertainty sources that may affect WDS reliability, a minimum cut-set based method and another Monte Carlo simulation based method have been proposed to assess reliability of distribution systems. These two methods have been implemented to evaluate reliability level of mid-sized distribution networks seperatedly. The results prove that both the number of valves and pump adaptive operation have significant impact on WDS reliability.
     Thirdly, flow entropy is treated as a measurement of flow uncertainty in networks to represent WDS reliability and an entropy based surrogate model has been established for reliability analysis. Also a resilience index surrogate model has been developed and in which the resilience index is a quantified measure for system’s ability to overcome or reduce the impact of component failure. Both of these two surrogate models have been applied to evaluate the performance of a mid-sized network and the results show that both flow entropy and resilience index are correlated with network reliability and the high efficiency of these two surrogate models has been demonstrated as well.
     Finally, treating diameters and valve locations as decision variables, a multi-objective model for optimal design of distribution systems has been proposed. The two objectives of this model are to minimize the investment and operations cost and maximize WDS reliability. The shuffled frog-leaping algorithm (SFLA) has been extended to solve multi-objective problems with the help of an external Pareto archive strategy and non-dominated ranking technique from NSGA-II. The multi-objective SFLA has been used to find solutions for optimal design of a real network located in northern China; the results have demonstrated the feasibility of the optimal design model and the efficiency of the multi-objective SFLA.
引文
[1]赵洪宾,严煦世.给水管网系统理论与分析[M].北京:中国建筑工业出版社, 2003.
    [2]华淼给排水设计研究院.天津市城市供水现状(研究报告).天津:天津市华淼给排水设计研究院, 2008.
    [3]国家建设部.全国城市供水管网改造近期规划[M].北京:中华人民共和国建设部, 2005, 21-44.
    [4]王光辉.马鞍山市供水管网系统规划模型的研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [5]张世泽.应用两步优化进行供水管网优化设计研究[D].哈尔滨:哈尔滨工业大学, 2007.
    [6]李沈.中国水资源现状不容乐观[J].电网与清洁能源, 2008, 24(02): 77-78.
    [7]章征宝.城市给水系统可靠性分析[D].合肥:合肥工业大学, 2006.
    [8] Tolson B A, Maier H R, Simpson A R, et al. Genetic algorithms for reliability-based optimization of water distribution systems [J]. Journal of Water Resources Planning and Management, 2004, 130(1): 63~72.
    [9]张怀宇.给水系统可靠性研究[J].中国给水排水, 1998, 14(1): 45.
    [10] Wagner J M, Shamir U, Marks D H. Water distribution reliability - simulation methods [J]. Journal of Water Resources Planning and Management, 1988, 114(3): 276~294.
    [11] Todini E. Looped water distribution networks design using a resilience index based heuristic approach [J]. Urban Water, 2000, 2(2): 115~122.
    [12] Alperovits A, Shamir U. Design of optimal water distribution systems [J]. Water Resources Research, 1977, 13(6): 886~900.
    [13] Tung Y K. Evaluation of water distribution network reliability: Proceedings of the Specialty Conference of Hydraulics Division. Lake Buena Vista, Florida: ASCE, 1985.
    [14] Goulter I C, Coals A V. Quantitative approaches to reliability assessment in pipe networks. [J]. Journal of Transportation Engineering, 1986, 112(3): 287~301.
    [15] Su Y, Mays L W, Duan N, et al. Reliability-based optimization model for waterdistribution systems [J]. Journal of Hydraulic Engineering, 1987, 113(12): 1539~1556.
    [16] Wagner J M, Shamir U, Marks D H. Water distribution reliability - analytical methods [J]. Journal of Water Resources Planning and Management, 1988, 114(3): 253~275.
    [17] Lansey K E, Duan N, Mays L W, et al., Water Distribution System Design under Uncertainties [J]. Journal of Water Resources Planning and Management, 1989, 115(5): 630~645.
    [18] Bao Y, Mays L W. Model for water distribution system reliability [J]. Journal of Hydraulic Engineering, 1990, 116(9): 1119~1137.
    [19] Duan N, Mays L W. Reliability Analysis of Pumping Systems [J]. Journal of Hydraulic Engineering, 1990, 116(2): 230~248.
    [20] Ormsbee L, and Kessler A. Optimal Upgrading of Hydraulic Network Reliability [J]. Journal of Water Resources Planning and Management, 1990, 116(6): 784~802.
    [21] Goulter I C, and Bouchart F. Reliability-Constrained Pipe Network Model [J]. Journal of Hydraulic Engineering, 1990, 116(2): 211~229.
    [22] Awumah K, Goulter I, Bhatt S K. Assessment of reliability in water distribution networks using entropy based measures [J]. Stochastic Hydrology and Hydraulics, 1990, 4(4): 309~320.
    [23] Fujiwara O, Tung H D. Reliability improvement for water distribution networks through increasing pipe size [J]. Water Resources Research, 1991, 27(7): 1395~1402.
    [24] Quimpo R G, Shamsi U M. Reliability-based distribution system maintenance [J]. Journal of Water Resources Planning and Management, 1991, 117(3): 321~339.
    [25] Jacobs P, Coulter I. Estimation of maximum cut-set size for water network failure [J]. Journal of Water Resources Planning and Management, 1991, 117(5): 588~605.
    [26] Bouchart F, Goulter I. Reliability improvements in design of water distribution networks recognizing valve location [J]. Water Resources Research, 1991, 27(12): 3029~3040.
    [27] Cullinane M J, Lansey K E, Mays L W. Optimization-availability-based design of water-distribution networks [J]. Journal of Hydraulic Engineering, 1992,118(3): 420~441.
    [28] Ostfeld A, Shamir U. Incorporating reliability in optimal-design of water distribution networks - review and new concepts [J]. Reliability Engineering & System Safety, 1993, 42(1): 5~11.
    [29] Tanyimboh T T, Templeman A B. Optimum design of flexible water distribution networks [J]. Civil Engineering Systems, 1993, 10(3): 243~258.
    [30] Walski T M. Water distribution valve topology for reliability analysis [J]. Reliability Engineering & System Safety, 1993, 42(1): 21~27.
    [31] Gupta R, Bhave P R. Reliability analysis of water-distribution systems [J]. Journal of Environmental Engineering, 1994, 120(2): 447~461.
    [32] Kansal M L, Kumar A, Sharma P B. Reliability analysis of water distribution systems under uncertainty [J]. Reliability Engineering & System Safety, 1995, 50(1): 51~59.
    [33] Khomsi D, Walters G A, Thorley A R D, et al. Reliability tester for water-distribution networks [J]. Journal of Computing in Civil Engineering, 1996, 10(1): 10~19.
    [34] Yang S, Hsu N, Louie P W F, et al. Water distribution network reliability: stochastic simulation [J]. Journal of Infrastructure Systems, 1996, 2(2): 65~72.
    [35] Guercio R, Xu Z. Linearized Optimization Model for Reliability-Based Design of Water Systems [J]. Journal of Hydraulic Engineering, 1997, 123(11): 1020~1026.
    [36] Fujiwara O, Li J. Reliability analysis of water distribution networks in consideration of equity, redistribution, and pressure-dependent demand [J]. Water Resources Research, 1998, 34(7): 1843~1850.
    [37] Xu C C, Goulter I C. Probabilistic model for water distribution reliability [J]. Journal of Water Resources Planning and Management, 1998, 124(4): 218~228.
    [38] Xu C, Goulter I C. Reliability-based optimal design of water distribution networks [J]. Journal of Water Resources Planning and Management, 1999, 125(6): 352~362.
    [39] Tanyimboh T T, Templeman A B. A quantified assessment of the relationship between the reliability and entropy of water distribution systems [J]. Engineering Optimization, 2000, 33(2): 179~199.
    [40] Ostfeld A. Reliability analysis of regional water distribution systems --- a casestudy [C]. Water Resources 2000. Minneapolis, Minnesota, USA: ASCE, 2000.
    [41] Tanyimboh T T, Tabesh M, Burrows R. Appraisal of source head methods for calculating reliability of water distribution networks [J]. Journal of Water Resources Planning and Management, 2001, 127(4): 206~213.
    [42] Ostfeld A. Reliability analysis of regional water distribution systems [J]. Urban Water, 2001, 3(4): 253~260.
    [43] Shinstine D S, Ahmed I, Lansey K E. Reliability/availability analysis of municipal water distribution networks: case studies [J]. Journal of Water Resources Planning and Management, 2002, 128(2): 140~151.
    [44] Ostfeld A, Kogan D, Shamir U. Reliability simulation of water distribution systems - single and multiquality [J]. Urban Water, 2002, 4(1): 53~61.
    [45] Kapelan Z S, Savic D A, Walters G A. Multiobjective Sampling Design for Water Distribution Model Calibration [J]. Journal of Water Resources Planning and Management, 2003, 29(6): 466~479.
    [46] Xu C G, Goulter I C, Tickle K S. Assessing the capacity reliability of ageing water distribution systems [J]. Civil Engineering and Environmental Systems, 2003, 20(2): 119~133.
    [47] Prasad T D, Park N S. Multiobjective genetic algorithms for design of water distribution networks [J]. Journal of Water Resources Planning and Management, 2004, 130(1): 73~82.
    [48] Ostfeld A. Reliability analysis of water distribution systems [J]. Journal of Hydroinformatics, 2004, 6(4): 281~294.
    [49] Babayan A, Kapelan Z, Savic D, et al. Least-Cost Design of Water Distribution Networks under Demand Uncertainty [J]. Journal of Water Resources Planning and Management, 2005, 131(5): 375~382.
    [50] Farmani R, Walters G A, Savic D A. Trade-off between total cost and reliability for anytown water distribution network [J]. Journal of Water Resources Planning and Management, 2005, 131(3): 161~171.
    [51] Setiadi Y, Tanyimboh T T, Templeman A B. Modelling errors, entropy and the hydraulic reliability of water distribution systems [J]. Advances in Engineering Software, 2005, 36(11-12): 780~788.
    [52] Surendran S, Tanyimboh T T, Tabesh M. Peaking demand factor-based reliability analysis of water distribution systems [J]. Advances in Engineering Software, 2005, 36(11-12): 789~796.
    [53] Farmani R, Walters G, Savic D. Evolutionary multi-objective optimization of the design and operation of water distribution network: total cost vs. Reliability vs. Water quality [J]. Journal of Hydroinformatics, 2006, 8(3): 165~179.
    [54] Babayan A, Kapelan Z, Savic D, et al. Comparison of two methods for the stochastic least cost design of water distribution systems [J]. Engineering Optimization, 2006, 38(3): 281~297.
    [55] Agrawal M L, Gupta R, Bhave P R. Reliability-based strengthening and expansion of water distribution networks [J]. Journal of Water Resources Planning and Management, 2007, 133(6): 531~541.
    [56] Tanyimboh T T, Setiadi Y. Joint layout, pipe size and hydraulic reliability optimization of water distribution systems [J]. Engineering Optimization, 2008, 40(8): 729~747.
    [57] Raad D N, Sinske A N, van Vuuren J H. Comparison of four reliability surrogate measures for water distribution systems design [J]. Water Resources Research, 2010, 46(5): W5524.
    [58] Ciaponi C, Franchioli L, Papiri S. A simplified procedure for water distribution networks reliability assessment [J]. Journal of Water Resources Planning and Management, 2011, Accepted
    [59] Wood D J. Computer analysis of flow in pipe networks including extended period simulations: user’s manual [M]. Lexington, KY: College of Engineering, University of Kentucky, 1980.
    [60] Savic D A, and Walters G A. Genetic Algorithms for Least-Cost Design of Water Distribution Networks [J]. Journal of Water Resources Planning and Management, 1997, 123(2): 67~77.
    [61] Rossman L A. Epanet 2 user’s manual [M]. Cincinnati, OH: National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 2000.
    [62]徐祖信, Guercio R.水分配系统以可靠性为基础的线性优化模式[J].同济大学学报(自然科学版), 1996, 24(5): 580~585.
    [63]徐祖信,刘遂庆, Guercio R.熵在水分配系统优化设计中的应用[J].同济大学学报(自然科学版), 1997, 25(1): 71~76.
    [64]张土乔,康会宾,毛根海.城市给水管网可靠性分析初探[J].浙江大学学报(工学版), 1998, 32(03): 243~250.
    [65]赵新华,陈春芳,郑毅.给水管网可靠度的计算[J].中国给水排水, 2000,16(1): 57~60.
    [66]赵新华,刘英梅,乔宇.城市给水管网可靠度的计算[J].中国给水排水, 2002, 18(4): 53~55.
    [67]陈玲俐,李杰.城市供水管网系统抗震功能可靠度分析[J].工程力学, 2004, 21(4): 45~50.
    [68]王力.考虑水力条件变化的城市给水管网可靠性分析与研究[D].重庆:重庆大学, 2004.
    [69]王圃,龙腾锐,王力,等.城市给水管网可靠性分析与应用[J].给水排水, 2005, 31(06): 107~110.
    [70]肖平.给水管网可靠性仿真分析[D].西安:西安理工大学, 2006.
    [71]吴小刚,张土乔.关于给水管网可靠性分析方法的综述[J].节水灌溉, 2006, (4): 37~40.
    [72]吴小刚,尹定轩,王直民,等.城市给水管网可靠性分析中阀门的作用[J].节水灌溉, 2006, (3): 24~26.
    [73]吴小刚,张土乔,王直民,等.阀门设置对给水管网可靠性的影响[J].流体机械, 2006, 34(4): 47~49.
    [74]吴小刚,张土乔.城市给水网系统的故障风险评价决策技术[J].自然灾害学报, 2006, (2): 73~78.
    [75]朱晔.嘉定新城主城区给水管网系统的可靠性分析[D].上海:上海交通大学, 2007.
    [76]朱晔,寇新建.给水管网可靠性分析中系统问题的研究[J].上海电力学院学报, 2007, 23(02): 167~172.
    [77]章征宝,余云进,徐得潜,等.基于蒙特卡罗法的城市给水管网可靠性分析[J].给水排水, 2007, 33(07): 106~109.
    [78]李鹏峰.基于可靠性的给水管网系统水力分析与研究[D].合肥:合肥工业大学, 2007.
    [79]郝红海.城市供水管网可靠性研究[D].天津:天津大学, 2007.
    [80]刘丽霞.城市给水管网系统的可靠性分析与研究[D].重庆:重庆大学, 2007.
    [81]伍悦滨,王芳,田海.基于信息熵的给水管网系统可靠性分析[J].哈尔滨工业大学学报, 2007, 39(02): 251~254.
    [82]金溪,张杰,高金良,等.利用GO法进行供水管网可靠度计算[J].浙江工业大学学报, 2007, 36(06): 682~686.
    [83]吴金亮.城市给水管网系统的可靠性分析与研究[D].重庆:重庆大学,2008.
    [84]柳春光,何双华.基于震后低压变化的供水管网功能可靠度分析[J].防灾减灾工程学报, 2009, 29(5): 502~506.
    [85]韦波,张贺.自来水管网的可靠性分析与优化设计[J].天津科技大学学报, 2009, 24(2): 42~46.
    [86]庄宝玉,赵新华,李霞.基于延时模拟的供水管网可靠性分析[J].中国给水排水, 2009, 25(21): 105~108.
    [87]庄宝玉.区域供水管网规划的优化研究[D].天津:天津大学, 2009.
    [88] Zhuang B, Zhao X, Gao B. Optimal planning of regional water distribution systems: a case study [C]. World Environmental and Water Resources Congress 2010: Challenges of Change. Providence, RI, United states: American Society of Civil Engineers, 2010. 4293~4302.
    [89]庄宝玉,杨宇飞,赵新华.基于改进混合蛙跳算法的供水管网优化[J].中国给水排水, 2011, 27(09): 45~49.
    [90]李龙云.蒙特卡罗法在给水管网可靠性评价中的应用[D].上海;同济大学, 2009.
    [91]骆碧君.基于可靠度分析的供水管网优化研究[D].天津:天津大学, 2010.
    [92]徐超,李树平.基于管网可靠性的阀门布局优化设计[J].给水排水, 2010, 36(11): 169~172.
    [93] Lansey K, Mays L W, Tung Y K. Reliability and availability analysis of water distribution systems: Urban Water Supply Handbook [M]. Mays L W. New York: McGraw-Hill, 2000
    [94]彭永臻,崔福义.给水排水工程计算机应用(第二版)[M].北京:中国建筑工业出版社, 2002.
    [95]严煦世,刘遂庆.给水排水管网系统[M].北京:中国建筑工业出版社, 2002.
    [96]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社, 2004.
    [97] Swamee P K, Sharma A K. Design of Water Supply Pipe Networks [M]. Hoboken: John Wiley & Sons, Inc., 2007.
    [98] Todini E, Pilati S. A gradient method for the analysis of pipe networks [C]. International Conference on Computer Applications for Water Supply and Distribution. Leicester Polytechnic, UK: 1987.
    [99]周毅,陈永祥,李曦.压力决定的给水管网需水量计算方法[J].武汉大学学报(工学版), 2011, 44(1): 79~82.
    [100] Chandapillai Jacob. Realistic Simulation of Water Distribution System [J]. Journal of Transportation Engineering, 1991, 117(2): 258-263.
    [101] Gupta R, Bhave P R. Reliability-based design of water-distribution systems [J]. Journal of Environmental Engineering, 1996, 122(1): 51~54.
    [102] Tabesh M. Implications of the pressure dependency of outflows on data management, mathematical modeling and reliability assessment of water distribution systems [D]. Liverpool, England: University of Liverpool, 1998.
    [103] Reddy S. Analysis of water distribution networks with head-dependent outlets [J]. Civil Engineering Systems, 1989, 6(3): 102~110.
    [104] Cheung P B, Van Zyl J E, Reis L F R. Extension of epanet for pressure driven demand modeling in water distribution system: Computing and Control in the Water Industry. University of Exeter, UK: 2005.
    [105] Fujiwara O, Ganesharajah T. Reliability assessment of water-supply systems with storage and distribution networks [J]. Water Resources Research, 1993, 29(8): 2917~2924.
    [106]周建华,赵洪宾.低水压供水时的管网平差计算方法[J].中国给水排水, 2003, 19(3): 43~45.
    [107]许仕荣,邱振华.供水管网计算理论与电算应用[M].长沙:湖南大学出版社, 1997.
    [108]吕志成.城市供水管网系统爆管事故状态下的优化调度研究[D].哈尔滨:哈尔滨工业大学, 2006.
    [109]于静洁,赵洪宾,周建华.给水管网事故时确定最优关阀方案[J].同济大学学报(自然科学版), 2006, (9): 1217~1220.
    [110] Jun H, Loganathan G V, Deb A K, et al. Valve distribution and impact analysis in water distribution systems [J]. Journal of Environmental Engineering, 2007, 133(8): 790~799.
    [111] Jun H, Loganathan G V. Valve-controlled segments in water distribution systems [J]. Journal of Water Resources Planning and Management, 2007, 133(2): 145~155.
    [112] Giustolisi O, Savic D. Identification of segments and optimal isolation valve system design in water distribution networks. [J]. Urban Water Journal, 2010, 7(1): 1~15.
    [113] Cormen T H, Stein C, Rivest R L, et al. Introduction to algorithms [M]. NewYork: McGraw-Hill Higher Education, 2001
    [114]刘品.可靠性工程基础[M].北京:中国计量出版社,2002
    [115] Mays L W. Water distribution systems handbook [M]. New York: McGraw Hill, 2000.
    [116] Henley E J, Kumamoto. Reliability engineering and risk assessment [M]. New Jersey: Prentice-hall, 1981.
    [117] Tung Y K. Uncertainty and reliability analysis: Water Resources Handbook [M]. Mays L W. New York: McGraw-Hill, 1996
    [118]史定华.故障树分析技术方法和理论[M].北京:煤炭工业出版社, 1991.
    [119] Billinton R, and Allan R N. Reliability Evaluation of Engineering Systems: Concepts and Techniques [M]. London: Pitman Books Limited, 1983.
    [120]刘英梅.基于可靠性的给水管网扩建改造的优化[D].天津:天津大学, 2000.
    [121] Cipra B A. The best of the 20th century: editors name top 10 algorithms [J]. Siam News, 2000, 33(4): 1~2.
    [122] Dongarra J, Sullivan F. Guest editors' introduction: the top 10 algorithms [J]. Computing in Science and Engineering, 2000: 22~23.
    [123] Meteopolis N, Ulam S. The Monte Carlo method [J]. Journal of the American Statistical Association, 1949, 44(247): 335~341.
    [124]雷桂媛.关于蒙特卡罗及拟蒙特卡罗方法的若干研究[D].杭州:浙江大学, 2003.
    [125]肖刚,李天柁.系统可靠性分析中的蒙特卡罗方法[M].北京:科学出版社,2003.
    [126]罗伟成.结构蒙特·卡罗方法在度量信贷风险中的应用[J].北方工业大学学报, 2004, 16(1): 71~74.
    [127]王中宇,刘智敏,夏新涛.测量误差与不确定度评定[M].北京:科学出版社,2008.
    [128]于志强.给水管网水力模型软件与校验抽样设计研究[D].天津:天津大学, 2010.
    [129] Walski T M, Chase D V, Savic D A, et al. Advanced water distribution modeling and management [M]. Waterbury, CT USA: Haestad Press, 2003.
    [130]王鸿翔.供水管网水质模型校正及水质监控研究[D].杭州:浙江大学, 2009.
    [131] Walski T M, Pelliccia A. Economic analysis of water main breaks [J]. Journalof American Water Works Association, 1982, 74(3): 140~147.
    [132] Kang D, Lansey K. Real-time optimal valve operation and booster disinfection for water quality in water distribution systems [J]. Journal of Water Resources Planning and Management, 2010, 136(4): 463~473.
    [133]王小妮.基于代理模型的结构外形优化[J].飞机设计, 2008, 28(3): 13~15.
    [134]石磊,王学仁,孙文爽.试验设计基础[M ].重庆:重庆大学出版社, 1997.
    [135] Herrendorfer R, Guiard B V.试验设计方法手册(I) [M].北京:中国统计出版社, 2000.
    [136] Afshar M H, Akbari M, Marino M A. Simultaneous layout and size optimization of water distribution networks: engineering approach [J]. Journal of Infrastructure Systems, 2005, 11(4): 221~230.
    [137] Mays L W. Water distribution systems handbook [M]. New York: McGraw Hill, 2000.
    [138]王丽萍,傅湘.洪灾风险及经济分析[M].武汉:武汉水利电力大学出版社, 1999.
    [139]伍悦滨,田海,王芳.基于信息熵的燃气输配管网系统可靠性分析[J].天然气工业, 2006, 26(01): 126~128, 137.
    [140] Khinchin A.I. The Entropy Concept in Probability Theory. Mathematical Foundations of Information Theory [M]. Dover, New York, U.S.A. 1953.
    [141]田海.基于信息熵的管网流动特性研究[D].哈尔滨:哈尔滨工业大学, 2003.
    [142]李伟.基于可靠度要求的城市供水管网改扩建优化技术研究[M].重庆:重庆大学出版社, 1997.
    [143] Karmeli D, Y Gadish, Meyers S. Design of optimal water distribution networks [J]. Journal of Pipeline Division, 1968, 94(1): 1~9.
    [144] Gupta I. Linear programming analysis of water supply system [J]. AIIE Transion, 1969, 1(1): 56~61.
    [145] Kally E. Automatic planning by dynamic computer programming [J]. Journal of American Water Works Asociation, 1969, 3: 114~118.
    [146] Liang T. Design of conduit system by dynamic programming [J]. Journal of Hydraulic Division, 1971, 97(3), 383~393.
    [147] Quindry G. Design of optimal water distribution Systems [J]. Water resource research, 1979, 15(6): 1654~1654.
    [148] Morgan D, Goulter I. Optimal urban water distribution design [J]. WaterResources Research, 1985, 21(5): 642~652.
    [149] Lansey K. The evolution of optimizing water distribution system applications: 8th Annual Water Distribution Systems Analysis Symposium 2006. Cincinnati, OH, US: 20075.
    [150] Park H, Liebman J. Redundancy-constrained minimum cost design of water distribution networks [J]. Journal of Water Resources Planning and Management, 1993, 119(1): 83~98.
    [151] Fujiwara O, Li J. Reliability analysis of water distribution networks in consideration of equity, redistribution, and pressure-dependent demand [J]. Water Resources Research, 1996, 34(7): 1843~1850.
    [152]栾志玲.基于遗传算法的给水管网优化设计[D].沈阳;沈阳工业大学, 2008.
    [153] Simpson A R, Dandy G C, Murphy L J. Genetic algorithms compared to other techniques for pipe optimization [J]. Journal of Water Resources Planning and Management Division, 1994, 120(4): 1589~160.
    [154] Dandy G C, Simpson A R, Murphy, L J. An improved genetic algorithm for pipe network optimization [J]. Water Resources Research, 1996, 32(2): 449~458.
    [155] Wu, Z Y, Simpson A R. Competent genetic-evolutionary optimization of water distribution systems [J]. Journal of Computing in Civil Engineering, 2001, 15 (2): 89~101.
    [156] Maier H C, Simpson A R, Zecchin A C, et al. Ant colony optimization for design of water distribution systems [J]. Journal of Water Resources Planning and Management, 2003, 129 (3): 200~209.
    [157] da Concei?ao Cunha M., Sousa J. Water distribution network design optimization: simulated annealing approach [J]. Journal of Water Resources Planning and Management, 1999, 125 (4): 215~221.
    [158] Vairavamoorthy K., Shen Y. Least cost design of water distribution network using particle swarm optimization [C]. Phoon, Liong, B. (Eds.): Sixth International Conference on Hydroinformatics. World Scientific Publishing Company, 2004, (1): 834~841.
    [159] Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuf?ed frog leaping algorithm [J]. Journal of Water Resources Planning and Management. 2003, 129 (3): 210~225.
    [160] Savic D A. Single-objective vs. multiobjective optimisation for integrated decision support [C]. Integrated Assessment and Decision Support, 2002, (1): 7~12.
    [161] Halhal D, Walters G A, Ouazar D, Savic D A. Water network rehabilitation with structured messy genetic algorithm [J]. Journal of Water Resources Planning and Management, 1997, 123 (3): 137~146.
    [162] Wu Z Y, Simpson A R. A self-adaptive boundary search genetic algorithm and its application to water distribution systems [J]. Journal of Hydraulic Research, 2002, 40 (2).
    [163] Wu Z Y, Walski T. Self-adaptive penalty cost for optimal design of water distribution systems [C]. Critical Transitions in Water and Environmental Resources Management. American Society of Civil Engineers, 2004.
    [164] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions On Evolutionary Computation, 2002, 6(2): 182~197.
    [165] Walski T M, Brill Jr E D, Lansey K, et al. Battle of the network models: epilogue [J]. Journal of Water Resources Planning and Management, 1987, 113(2): 191~203.
    [166] Srinivas N, Deb K. Multi-Objective function optimization using non-dominated sorting genetic algorithms [J]. Evolutionary Computation, 1995, 2(3):221~248.
    [167] Deb K, Goel T. Controlled elitist non-dominated sorting genetic algorithms for better convergence [C]. Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, Springer, Berlin, 2001: 67-81.
    [168] Farmani R, Savic D A. Walters, G A, The simultaneous multi-objective optimization of Anytown pipe rehabilitation, tank sizing, tank siting and pump operation schedules [C]. Critical Transitions in Water and Environmental Resources Management. American Society of Civil Engineers 2004.
    [169] Nicolini M. Evaluating performance of multi-objective genetic algorithms for water distribution system optimization [C]. Sixth International Conference on Hydroinformatics. World Scientific Publishing Company, 2004, (1): 850~857.
    [170] Di Pierro F, Soon-Thiam K, Savic D, et al. Efficient Multi-Objective Optimal Design of Water Distribution Networks On a Budget of Simulations Using Hybrid Algorithms [J]. Environmental Modelling & Software, 2009, 24 (2): 202~213.
    [171]严煦世,范瑾初.给水工程(第四版)[M].北京:中国建筑工业出版社, 1999.
    [172]雷德明,严新平.多目标智能优化算法及其应用[M].北京:科学出版社, 2009.
    [173] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [C]. Proceedings of the 1st international conference on genetic algorithms. L. Erlbaum Associates Inc., 1985. 93~100.
    [174] Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization [C]. Proceedings of the fifth international conference on genetic algorithms. Citeseer, 1993. 416.
    [175] Horn J, Nafpliotis N, Goldberg D E. A niched pareto genetic algorithm for multiobjective optimization [C]. Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE, 1994. 82~87.
    [176] Knowles J D, Corne D W. Approximating the nondominated front using the pareto archived evolution strategy [J]. Evolutionary Computation, 2000, 8(2): 149~172.
    [177] Corne D, Knowles J, Oates M. The pareto envelope-based selection algorithm for multiobjective optimization [C]. Parallel Problem Solving from Nature PPSN VI. Springer, 2000. 839~848.
    [178]王辉,钱锋.群体智能优化算法[J].化工自动化及仪表, 2007, 34(05): 7~13.
    [179]陈功贵,李智欢,陈金富,等.含风电场电力系统动态优化潮流的混合蛙跳算法[J].电力系统自动化, 2009, 33(04): 25~30.
    [180] Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization [J]. Engineering Optimization, 2006, 38(2): 129~154.
    [181]李英海,周建中,杨俊杰,等.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用, 2007, 43(35): 19~21.
    [182]中华人民共和国建设部.市政工程投资估算指标(第三册:给水工程)[S].北京, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700