基于后续共享和信息更新的震后应急资源配置决策方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震灾害具有突发性、成纵性、续发性等特点,不仅可以直接造成工程设施破坏和人员伤亡,且往往引发一系列次生灾害和衍生灾害,以灾害链的形式造成更大的破坏。应急资源配置是地震灾害应急救援的重要保障,应急决策者必须在诸多不确定性条件下做出如何将有限资源在有限时间内公平高效地从出救点运送到受灾点的决策。同时,地震灾害对运输道路的损坏使得应急资源配置决策更加困难。因此,地震灾害应急资源配置是一个供应不确定、需求不确定、时间紧迫环境下的多出救点、多受灾点、多目标、多约束、多运输方式、多运输工具,同时具有后续共享性和信息更新性的复杂问题。本文在分析前人研究的基础上,分两条主线:从后续共享性出发和信息更新性出发,分别对震后应急资源配置决策方法进行建模求解,其中基于后续共享模型可以协调前后阶段的应急资源供需情况,而基于信息更新的模型则可以根据当前阶段的实时信息做出及时有效的具体配置策略。
     首先,地震灾害应急资源配置具有时间连续性,前后阶段物资需求和供应具有极大的不确定性,使得地震灾害应急资源配置决策非常复杂。考虑到在实际应急资源配置过程中,后续阶段可以共享部分前面阶段的资源,而前面阶段则不可共享后续阶段资源的特性(即应急资源配置的后续共享性),以资源配置效果和运输效率为目标,综合考虑纵向配置(时间纵向上的多阶段配置)和横向配置(某阶段物理空间上多对多的物资配置)方案,建立基于后续共享的震后应急资源一体化配置决策模型。该模型运用确定的方法描述不确定情景,并能获取纵向配置部分的解析解;横向配置部分则可通过运输模型快速求得,求解及其方便快捷且精确度高,非常符合应急环境。最后,数值仿真分析验证了一体化配置模型获取应急物资配送方案的可行性。
     其次,考虑到应急情况下的信息不完备性和可更新性,以及地震灾害应急资源配置复杂性、动态性和序贯性等特点,灾害应急资源配置决策需要综合运用灾害历史信息和样本信息,是一个“观测—决策—配置”的多阶段序贯决策过程。以随机变量的形式记录道路损毁率的历史信息和样本信息,并在此基础上计算应急情况下的资源运输时间。在根据公平原则确定各受灾点资源配置量的基础上,通过应用贝叶斯分析、最优化理论等对基于道路损坏率信息更新的应急资源“观测—决策—配置”序贯决策问题进行系统建模,建立基于单维信息更新的震后应急资源配置决策模型,并设计基于矩阵编码的遗传算法进行求解。最后,通过数值仿真验证模型和算法的有效性。
     再次,地震灾害带来的诸多不确定因素导致应急救援物资需求激增、供给不确定、应急物流时间限制等紧迫问题,亟需一套能够根据地震灾害信息、物资需求与供给信息和交通网络信息等来实现应急物资的实时有效配置。应用贝叶斯分析理论将灾害对需求和应急物流时间影响体现在决策失误损失和物流失误损失上。考虑到应急资源需求是与受灾人口转移安置情况相关的、交通网络畅通度是与道路损毁程度相关的,应用两个多维随机变量来描述地震灾害应急资源配置中的应急资源需求和交通网络通畅度。在建立无信息更新模型的基础上,再应用贝叶斯理论建立多供应点、多需求点、多阶段、多运输方式、多运输工具的基于多维信息更新的震后应急资源综合配置模型,并改进基于整数矩阵编码的遗传算法对其进行求解以获取各阶段的应急物资配送方案。最后,将模型和算法应用于汶川地震应急物资配置中,进行实例分析,以验证模型和算法的有效性。
Earthquake has the characters of suddenness, pervasiveness, successiveness. A severe earthquake destroys the facilities and causes casualties at the same time, and induces secondary disasters and derivative disasters which will cause major destruction. The resource distribution for post-earthquake response is very important. Post-event response for earthquake is a complicated task with challenges of surging demand, uncertain supplies, and rough transportation in the face of infrastructure vulnerabilities. Therefore, resource distribution for post-event response after the earthquake is an uncertain planning problem to distribute many commodities to affected areas from distribution centers with multi-objectives, multi-constraints, multi-transportation mode and multi-transportation tool. Emergency planners need to make effective humanitarian logistics plans to efficiently allocate vehicles and relief resources under uncertain circumstances. Especially, they need to consider the follow-up sharing character (the subsequent phases should share part of former phases' resources if previous phases'supplies were relatively surplus compared with the following phases'supplies) and group-information update. Based on the previous research, the resource distribution for post-earthquake response is studied by two different aspects:the follow-up sharing character, which coordinates resources between different phases; and group-information update, which makes the specific resource distribution plan just in time according the current information.
     Firstly, the resource distribution for post-earthquake response has the character of temporal continuity. It is necessary to coordinate the supplies between former phases and following phases to make the distribution plan more effective. To explain the effectiveness and efficiency of distribution plans, this paper addresses the resource allocation effectiveness losses (RAEL, the losses caused by the mismatch between supply and demand in impacted areas) and the emergency logistics time costs (ELTC, the time costs caused by logistics processes under emergency conditions). Considering the reality of resource distribution for post-earthquake response, the following phases can share parts of the former phases'resources, but the former phases cannot share any part of the following phases'resources (the follow-up sharing character). Therefore, based on FSC, this paper proposes an integrated model (IM) that aims to minimize RAEL and ELTC. The IM combines a time dimension model (TDM, which coordinates the phases of demands and supplies) and a space dimension model (SDM, which generates a specific distribution plan for the first phase). An analytical solution is proposed for TDM, whereas SDM is solved through a transportation programming model. The IM can be solved efficiently, which makes the proposed methodology fit the emergency circumstance well although the decision is time-constrained. Besides, a numerical simulation study is proposed to analyze the feasibility of this model.
     Secondly, unlike the normal logistics, emergency logistics in natural disasters is much more complicated. In emergency logistics planning, the information for decision-making is usually not complete and is updated every second. Besides, considering the dynamic and sequential process of post-earthquake resource distribution, the decision-making of emergency resources allocation in a natural disaster is a multi-phase process of "sampling-planning-dispatching". Therefore, both historical and current sample information are used to make effective plans in the proposed model by employing Bayesian information update approach. In this paper, a random variable is used to record historical and sample information for describing the road affected information. Besides, the allocation amount of each affected area is decided by the equity principle. On the base of this, a concept of transportation time cost due to logistics processes under emergency conditions is proposed. Therefore, by using Bayesian analysis theory and optimization theory, a sequential approach of "sampling-planning-dispatching" is proposed to guarantee the resources supply in the affected areas. In the solution approach, a matrix-coding-based genetic algorithm is developed to solve the model. Finally, a simulation study is conducted to verify the efficiency and effect of the proposed methodology.
     Finally, the uncertainty of earthquake brings the surging demand, uncertain supplies, and rough transportation time problems. There is absolutely a need to find a methodology to make effective and efficient distribution plans according to disaster, demand, supply and transportation information. Based on the Bayesian analysis theory, two losses are addressed to explain the influence of a disaster on supply, demand, and humanitarian logistics. The two losses include losses caused by the mismatch between supply and demand in affected areas and the time losses caused by logistics processes under emergency conditions. Considering the demand is related to population transfer status, and the transportation condition is related to the road damage level, a multi-period planning model with group information updates (GIU) is established based on the model without GIU using Bayesian theory. The established model describes a setting in which commodities are transported from dispatching centers to affected areas through multi-transportation modes of delivery in each emergency response period. Then, the model with GIU is revised into a single-objective model, and then a matrix-coding-based genetic algorithm is developed to solve the revised model. Finally, the proposed methodology is applied to the humanitarian logistics problems of emergency response encountered during the Wenchuan Earthquake in China. Computational results show that the proposed methodology can generate specific logistics plans for allocating relief resources according to updated information.
引文
[1]Aharon B., Chung, B. D., & Mandala, S. R., et al. Robust optimization for emergency logistics planning:Risk mitigation in humanitarian relief supply chains. Supply chain disruption and risk management,2011,45(8), 1177-1189.
    [2]Haghani, A., Oh, S. Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations. Transportation research, Part A,1996,30(3),231-250.
    [3]Haghani, A., Yan, S., & Shih, Y. L. Optimal scheduling of emergency roadway repair and subsequent relief distribution. Computers & Operations Research, 2009,36 (6),2049-2065.
    [4]Aronis, K. P., Magou, I., Dekker, R., & Tagaras, G. Inventory control of spare parts using a Bayesian approach:a case study. European Journal of Operational Research,2004,154(3),730-739.
    [5]Jotshi, A., Gong, Q., Ba, R. Dispatching and routing of emergency vehicles in disaster mitigation using data fusion. Socio-Economic Planning Sciences, 2009,43(1),1-24.
    [6]Azoury, K. S. Bayes solution to dynamic inventory models under unknown demand distribution. Management Science,1985,31(9),1150-60.
    [7]Azoury, K. S., Miller, B. L. Comparison of the optimal ordering levels of Bayesian and non-Bayesian inventory models. Management Science,1984, 30(8),993-1003.
    [8]Balcika, B., Beamonb, B. M., & Krejcib, C. C., et al. Coordination in humanitarian relief chains:Practices, challenges and opportunities. Int J of Production Economics,2010,126(1),22-34.
    [9]Balcik, B., Benita, & M. Beamon, et al. Last Mile Distribution in Humanitarian Relief, Journal of Intelligent Transportation Systems: Technology. Planning, and Operations,2008,12(2),51-63.
    [10]Burton, I., Kates, R. W., & White, G. F. The Environment as Hazard, Second Edition, The Guilford Press, New York,1993
    [11]Carmen, G. Rawls, Turnquis, M. A. Pre-positioning of emergency supplies for disaster response. Transportation Research Part B,2010 44 (4),521-534.
    [12]Cheu, Long, R. Neural network models for automated detection of lane-blocking incidents on freeways. Transportation Research Part A:Policy and Practice,1996,30 (1),60.
    [13]Choi, T. M., Li, D. Optimal two-stage ordering policy with Bayesian information updating. Journal of the Operational Research Society,2003, 54(8),846-59.
    [14]Choi, T. M., Li, D.,& Yan, H. Optimal single ordering policy with multiple delivery modes and Bayesian information updates. Computers and Operations Research,2004,31(12),1965-84.
    [15]Ding, X., Puterman, M. L.,& Bisi, A. The censored newsvendor and the optimal acquisition of information. Operations Research, 2002,50(3),517-27.
    [16]Dionysios, K., Aldunate, R.,& Mora, F. P., et al. A nature-inspired decentralized trust model to reduce information unreliability in complex disaster relief operations, Advanced Engineering Informatics,2008,22 (1),45-58.
    [17]Shannon, D., Gabrielle, J.,& Megan, C., et al. The injury burden of the 2010 Haiti earthquake:A stratified cluster survey. International journal of the care of the injured.2013,44(6),842-847
    [18]Anderson, E. J., Ferris, M. C. Genetic algorithms for combinatorial optimization:The assembly line balancing problem. ORSA Journal on Computing,1994,6(2),161-173.
    [19]Elise, D. Hooks, M., & Mahmassani, H. S. Least possible time paths in stochastic, time-varying networks. Computer and Operations Research, 1998,25, (12),1107-1125.
    [20]Emmett, J. Lodree, J., & Taskin, S. Supply chain planning for hurricane response with wind speed information updates. Computers & Operations Research,2009,36 (1),2-15.
    [21]Fiedrich, F., Gehbauer, F., & Rickers, U. Optimized resource allocation for emergency response after earthquake disasters. Safety Science,2000,35(1-3), 41-57
    [22]Barbarosoglu, G., Arda, Y. A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society,2004,55 (1),43-53.
    [23]Phillip, G., Hodge, R. Disaster Area architecture-Telecommunications support to Disaster response and recovery, Military Communications Conference,1995,2 (5-8),833-837.
    [24]Molas, G. L., Yamazaki, F. Attenuation of earthquake ground motion in Japan including deep focus events. Bulletin of the Seismological Society of America,1995,85(5),1343-1358.
    [25]Tzeng, G. H., Cheng, H. J., & Huang, T. D. Multi-objective optimal planning for designing relief delivery systems. Transportation Research Part E, 2007,43 (6),673-686.
    [26]Williams, G., Batho, S., & Russell, R. Responding to urban crisis-The emergency planning response to the bombing of Manchester city centre, Cities,2000,17(4),293-304.
    [27]Barbarosoglu, G., Ozdamar, L.,& Cevik, A. An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. European Journal of Operational Research,2002,140 (1),118-133.
    [28]Arora, H., Raghu, T.S., Vinze, A. Resource allocation for demand surge mitigation during disaster response. Decision Support Systems,2010,50(1), 304-315.
    [29]Jia, H., Ordonez, F., Dessouky, M. M. Solution approaches for facility location of medical supplies for large-scale emergencies. Computers & Industrial Engineering,2007,52 (2),257-276.
    [30]Mete, H. O., Zabinsky, Z. B. Stochastic optimization of medical supply location and distribution in disaster management. Int. J. Production Economics,2010,126 (1),76-84.
    [31]Youngehoi, J. Stochastic Scheduling Problems for Minimizing Tardy Jobs with Application to Emergency Vehicle Dispatching on Unreliable Road Networks. Unpublished Doctors Thesis, University of New York,2003, 61-63.
    [32]Berger, J. O. Statistical Decision Theory and Bayesian Analysis[M]. New York:Springer, second edition,1980.
    [33]Bean, J. C. Genetic algorithms and random keys for sequencing and optimization. INFORMS Journal on Computing,1994,6(2),154-160.
    [34]Beasley, J. E., Jornsten, K. Enhancing an algorithm for set covering problems. European Journal of Operational Research,1992,58 (2),293-300.
    [35]Beasley, J. E., Chu, P. C. A genetic algorithm for the set covering problem. European Journal of Operational Research,1996,94 (2),392-404.
    [36]Jibson, R. W., Harp, E. L., & Michael, J. A. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology,2000, 58(3-4),271-289.
    [37]Sheu, J. B. An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transportation Research Part E,2007, 43 (6),687-709.
    [38]Sheu, J. B. Dynamic relief-demand management for emergency logistics operations under large-scale disasters.2010,46(1),1-17.
    [39]Sheu, J. B., Chen, Y. H., & Lan, L. W. A novel model for quick response to disaster relief distribution. Proceedings of the Eastern Asia Society for Transportation Studies,2005,5,2454-2462.
    [40]Veras, J. H., Perez, N., & Jaller, M., et al. On the appropriate objective function for post-disaster humanitarian logistics models.2013,31(5), 262-280
    [41]Ozdamar, L., Ekinei, E.,& Kucukyazici, B. Emergeney Logisties Planning in Natural Disasters. Annals of Operations Research,2004,29(1-4),217-245.
    [42]Ozdamar, L., Yi, W. Greedy Neighborhood search for disaster relief and evacuation logistics. IEEE Intelligent Systems.2008,23(1):14-23
    [43]Brandeau, M. L., Zaric, G. S., & Richter. A. Resource allocation for control of infectious diseases in multiple independent populations:beyond cost-effectiveness analysis. Journal of Health Economics,2003,22 (4) 575-598.
    [44]Horner, M. W., Downs, J. A. Optimizing hurricane disaster relief goods distribution:model development and application with respect to planning strategies. Disasters,2010,34(3),821-844.
    [45]Kwan, M. P., Lee, J. Emergency response after 9/11:the potential of real-time 3D GIS for quick emergency response in micro-spatial environments, Computers, Environment and Urban Systems,2005,29(2),93-113.
    [46]Chang, M. S., Tseng, Y. L.,& Chen, J. W. A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transportation Research Part E,2007,43 (6),737-754.
    [47]Kevany, M. J. GIS in the World Trade Center attack-trial by fire, Computers, Environment and Urban Systems,2003,27(6),571-583.
    [48]Widener, M. J., Horner, M. W. A hierarchical approach to modeling hurricane disaster relief goods distribution. Journal of Transport Geography. 2011,19(4),821-828.
    [49]Nakatani, M., Yamasaki, S.,& Takahashi, K., et al. Communication support system for Emergency Management, Proceedings of the 41st SICE Annual Conference,2002,3(5-7),1647-1650.
    [50]Fisher M. L., Kedia, P. Optimal solution of set covering/partitioning problems using dual heuristics. Management Science,1990,36 (6),674-688.
    [51]Erman, O. E., Kaan, O. A secure and efficient inventory management system for disasters. Transportation Research Part C:Emerging Technologies. 2013,29(5),171-196
    [52]Pezzoli, K., Tukey, R.,& Sarabia, H., et al. The NIEHS Environmental Health Sciences Data Resource Portal:placing advanced technologies in service to vulnerable communities. Environ Health Perspect,2007,115(4), 564-571.
    [53]Bammidi, P., Moor, K. L. Emergency Management Systems:A Systems Approach, Systems, Man, and Cybernetics,1994,2 (2-5),1565-1570.
    [54]Qing, S. Ten major sciences and technologies for disaster rescue work in earthquake. Science & Technology Review,2008,26(11),19-24.
    [55]Refice, A, Capolongo, D. Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers & Geosciences,2002,28 (6),735-749.
    [56]Powers, R., Phipps, J. Utilization of Information Systems for ED Disaster Registration and Tracking, Journal of Emergency Nursing,2006,32(6) 497-501.
    [57]Roberto R. Seismically induced landslide displacements:A Predictive model. Engineering Geology,2000,58(3-4),337-351.
    [58]Scawthorn, C., Yamada, Y., & Iemura, H. A model for urban post-earthquake fire hazard. Disasters,1981,5(2),125-132.
    [59]Sethi, S. P., Yan, H., & Zhang, H. Inventory and supply chain management with forecast updates. International series in operations research & management science. Berlin:Springer,2005.
    [60]Tufekci, S., Wallace, W.A. The emerging area of emergency management and engineering. IEEE Transac-tions on Engineering Management,1998,45 (2), 103-105.
    [61]Tung, X., Bui, Siva, & R. Sankaran. Design considerations for a virtual information center for humanitarian assistance/disaster relief using workflow modeling. Decision Support Systems,2001,31(2),165-179.
    [62]Tupper, G. J., Worsley, P. M.,& Bowler, J. K., et al. The use of remote sensing and GIS technologies by NEW SOUTH WALES Agriculture for emergency management, Geoscience and Remote Sensing Symposium,2000, 4(24-28),1489-1491.
    [63]Yi, W., Kumar, A. Ant colony optimization for disaster relief operations. Transportation Research Part E,2007,43 (6),660-672.
    [64]Yi, W., Ozdamar, L. A dynamic logistics coordination model for evacuation and support in disaster response activities. European Journal of Operational Research,2007,179 (3),1177-1193.
    [65]Wieczorek, G. F., Wilson, R. C., & Harp, E. L. Map showing slope stability during earthquakes in San Mateo county, California. U.S. Geological Survey Miscellaneous Investigations Series Map I 1257E,1985.
    [66]Wilson, R. C., Keefer, D. K. Dynamic analysis of aslope failure from the 6 August 1979 Coyote lake, California, earthquake. Bulletin of the Seismological Society of America,1983,73(3):863-877.
    [67]Wilson, R. C., Keefer, D. K. Predicting a real limits of earthquake induced land sliding. Geological Survey Professional Paper,1985,1360:317-345
    [68]Luc, W. J., Kowalski, & Madland, K. Command centers and emergency management support, Safety Science,1998,30(1-2):131-138
    [69]Chiu, Y. C., Zheng, H. Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups:Model formulation and solution. Transportation Research Part E 43 (2007) 710-736
    [70]Yuan, Y., Wang, D. Path selection model and algorithm for emergency logistics management. Computers & Industrial Engineering.2009,56 (3), 1081-1094.
    [71]Atoji, Y., Koiso, T., & Nishida, S. Information Filtering for Emergency Management, Robot and Human Interactive Communication,2000, (27-29), 96-100.
    [72]Hu, Z. H. A container multimodal transportation scheduling approach based on immune affinity model for emergency relief. Expert Systems with Applications,2011,38 (3),2632-2639.
    [73]暴丽玲,王汉斌.多点救援资源配置优化模型的建立及应用.中国安全科学学报.2013,23(3),172-176
    [74]包兴,季建华,邵晓峰等.应急期间服务运作系统能力的采购和恢复模型.中国管理科学,2008,(5),64-70.
    [75]陈达强,刘南,缪亚萍.基于成本修正的应急物流物资响应决策模型.东南大学学报(哲学社会科学版),2009,11(1),67-70.
    [76]陈玮.公共危机管理机制建设的现实思考.公安学刊,2007,20(5),56-60.
    [77]方磊.基于偏好DEA的应急系统选址模型研究.系统工程理论与实践,2006,8(8),116-122.
    [78]方磊.基于偏好EDA模型的应急救援资源优化配置.工程理论与实践,2008,3(5),23-29.
    [79]方磊,何建敏.应急系统优化选址的模型及其算法.系统工程学报,2003,18(1),49-54.
    [80]方磊,何建敏.给定限期条件下的应急系统优化选址模型及算法.管理工程学报,2004,18(1),48-51.
    [81]方磊,何建敏.城市应急系统优化选址决策模型和算法.管理科学学报,2005.28(1),12-16.
    [82]冯海江.地震灾害救援中的应急物资分配优化研究.硕士学位论文,上海交通大学,2010.
    [83]冯嘉礼等,核事故应急中的贝叶斯决策模型研究,核科学与工程,2001,21(4),381-385.
    [84]付华等,基于数据挖掘的瓦斯灾害信息融合模型的研究,传感器与微系统,2008,27(1),52-54.
    [85]高孟潭,周本刚,潘华,2008. “5·12”汶川特大地震灾害特点及其防灾启示.震灾防御技术,3(3),209-215.
    [86]高翔,王汉斌.基于偏好序的煤矿突发事故应急资源调配模型.消防科学与技术,2012,31(12),1350-1353.
    [87]国家减灾委员会抗震求灾专家组,科学技术部抗震求灾专家组.汶川地震灾害综合分析与评估.科学出版社,2008.
    [88]何建敏,刘春林,尤海燕.应急系统多出救点的选择问题.系统工程理论与实践,2001,21(11),89-93.
    [89]胡信布,何正文,徐渝.基于资源约束的突发事件应急救援鲁棒性调度优化.运筹与管理.2013,22(2),72-79.
    [90]计雷,池宏.突发事件应急管理.高等教育出版社,2006.
    [91]姜卉,黄钧.罕见重大突发事件应急实时决策中的情景演变.华中科技大学学报:社会科学版,2009,23(1),104-108.
    [92]李钧.应急资源库选址的简化算法.环境科学与技术.2012 35(12J),294-297
    [93]李秋虹等.突发环境污染事件应急管理信息系统研究进展,环境与健康杂志,2008,25(2),177-179.
    [94]李兴国,吴慈生.城市重大危险源的控制与管理信息系统研究.安徽大学学报(自然科学版),1996,20(4),90-94.
    [95]李向阳,吴丛丛,卢小平等.B/S结构的地质灾害信息管理系统设计与实现.测绘与空间地理信息.2013,36(8),23-29.
    [96]蔺明河,谢定义,吴先维. 中国地震灾害的严峻性及其相应对策. 西北水力发电.2006,22(3),83-86.
    [97]刘春林,施建军,何建敏. 一类应急物资调度的优化模型研究.中国管理科学,2001,9(3),29-36.
    [98]刘春草,徐寅峰,朱志军. 最大调整时间最小的物资调配模型.西北大学学报(自然科学版),2003,33(2),32-33.
    [99]刘亚杰,雷洪涛,郭波.地震灾害救援动员中的选址分配模型与算法.控制与决策.2013,28(1),78-83.
    [100]刘妍.突发事件条件下应急交通路径选择模型研究.硕士学位论文,吉林大学.2012.
    [101]刘阳,高军.应急作战装备物资供应链研究.军械工程学院学报,2005,17(4),52-55.
    [102]罗伯特希斯著.王成,宋炳辉,金瑛译. 危机管理.北京:中信出版社.2001.
    [103]吕春来,陈英方,城市的防震减灾系统,自然灾害学报,2001,8(4),100-104.
    [104]马祖军,谢自莉.基于贝叶斯网络的城市地震次生灾害演化机理分析.灾害学,2012,27(4),1-5.
    [105]毛国敏,顾建华,吴新燕.地震灾害的分类和分级方法研究.地震学报.2007,29(4),426-436.
    [106]潘郁,余佳,达庆利.基于粒子群算法的连续性消耗应急资源调度.系统工程学报,2007,22(5),556-560.
    [107]石丽红,栗斌,张清浦.防灾减灾系统灾情信息集成技术研究,地理信息世界,2007.2(1),47-51.
    [108]史培军.四论灾害研究的理论与实践.自然灾害学报,2005,14(6),1-7.
    [109]田依林.城市公共安全应急管理信息系统建设模型.武汉理工大学学报(信息与管理工程版),2007,29(3),68-71.
    [110]仝倩.突发事件下城市路网应急动态交通分配模型研究.硕士学位论文, 吉林大学.2013
    [111]王根龙,张军慧,梁永朵.中国地震灾害现状及地震灾害系统工程研究.灾害学,2006,21(3),15-19.
    [112]汪建,赵来军,王珂等.地震应急避难场所建设的需求与人因分析.工业工程,2013,16(1),9-24.
    [113]王臣,高俊山.基于资源整合优化和共享的应急技术资源管理模式研究——以分析测试技术资源为例.中国软科学,2012,(10),148-158.
    [114]王其富,秦瑶.基于Web和GIS的灾害预警信息管理系统.电子设计工程.2013,21(17),34-36.
    [115]王婧,王海军.应急救援中应急物资需求紧迫性分级研究.计算机工程与应用.2013,49(5):4-7.
    [116]王苏生,王岩.基于公平优先原则的多受灾点应急资源配置算法.运筹与管理,2008,17(3),16-21.
    [117]王涛,吴树仁,石菊松,辛鹏.基于简化Newmark位移模型的区域地震滑坡危险性快速评估---以汶川S8.0级地震为例.工程地质学报,2013,21(1),16-24.
    [118]王旭坪,董莉,陈明天.考虑感知满意度的多受灾点应急资源分配模型.系统管理学报.2013,22(2):251-256
    [119]王杨,范植华.地震救援演练仿真系统的研究.计算机仿真,2013,30(1),404-408.
    [120]文仁强,钟少波,袁宏永等.应急资源多目标优化调度模型与多蚁群优化算法研究.计算机研究与发展,2013,50(7),1464-1472
    [121]谢洪,王士革,孔纪名.“5.12"汶川地震次生山地灾害的分布与特点.山地学报,2008,26(4),396-401.
    [122]谢礼立,温瑞智.数字减灾系统.自然灾害学报,2000,5(2),1-9.
    [123]许建东王新茹林建德张宁.基于GIS的城市地震次生火灾蔓延初步研究.地震地质,2002,24(3),445-452.
    [124]徐玖平,马艳岚,段雪玲.汶川特大地震灾后民营企业重建的优选统筹模式.中国管理科学,2008,16(4),1-11.
    [125]杨继君,马艳岚,段雪玲等.基于多灾点非合作博弈的资源调度建模与仿真.计算机应用,2008,28(4),1-11.
    [126]杨琴,袁玲玲,廖斌等.基于DBR理论的突发事件中应急资源动态调度方法研究.中国安全生产科学技术.2013,9(3),13-18.
    [127]姚广洲.基于模糊综合评判的公路应急资源分级配置.公路交通科技.2012,8(12),317-319.
    [128]于庆东,沈荣芳.自然灾害绝对灾情分级模型及应用.系统工程理论方法应用,1995,4(3),47-52.
    [129]张礼中等.地质灾害信息系统的设计与实现.地质论评,2000,46(增刊),155-159.
    [130]张永波,张礼中,周小元等.地质灾害信息系统的设计与开发.北京:地质出版社,2001.
    [131]张祖勋,黄明智.时态GIS的概念、功能和应用.测绘通报,1995,27(3),12-14.
    [132]中华人民共和国民政部.地震造成灾害的原因及特点.中国社会报2008http://cbzs.mca.gov.cn/article/shxw/yw/200805/20080500015390.shtml
    [133]赵林度,刘明.面向脉冲需求的应急资源调度问题研究.东南大学学报(自然科学版),2008,38(6),1116-1120.
    [134]赵荣国,李卫平,刘一鸣.2008年世界地震灾害综述.国际地震动态,2009,37(1),20-23.
    [135]赵喜,吴阳清,李芳芳等.基于Qpso算法的应急资源调度应用研究.价值工程,2012,(34),205-206.
    [136]赵振东等.建筑物震后火灾发生与蔓延危险性分析的概率模型.地震工程与工程振动,2003,23(4),183-187.
    [137]周小猛,姜丽珍,张云龙.突发事故下应急救援资源优化配置定量模型研究.安全与环境学报,2007,23(5),25-31
    [138]周广亮.基于自然灾害的应急资源一体化配置研究.河南社会科学.2013,21(9),59-61
    [139]朱良峰,殷坤龙.基于GIS技术的区域地质灾害信息分析系统研究.中国地质灾害与防治学报,2001,12(3),79-83.
    [140]朱莉,曹杰.超网络视角下灾害应急资源调配研究.软科学.2012a,26(11),38-42.
    [141]朱莉,曹杰.灾害风险下应急资源调配的超网络优化研究.中国管理科学.2012b,20(6),141-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700