光伏建筑的性能优化及其与城市微气候的相互影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境是可持续发展的两大主题,光伏建筑一体化的出现使得建筑物由单纯的耗能型变为供能型,缓解了能源和环境之间的矛盾。建筑热环境是城市热环境的重要组成部分,城市热环境反过来也会影响建筑热环境。在城市区域中,光伏技术通常以光伏建筑一体化的形式来实现。因此,光伏系统对于建筑和城市热环境都会有影响。本文主要分为两个部分,分别从建筑热环境和城市热环境两个角度,分析光伏技术与热环境的相互影响。
     第一部分,从建筑热环境的角度,研究不同的光伏屋顶安装形式对于建筑冷热负荷和光伏组件发电量的影响。首先建立了带通风流道光伏屋顶的理论模型,包括光伏屋顶传热模型、光伏组件电性能模型和通过屋顶传热的冷热负荷模型,同时也建立了封闭通道和直接放置两种安装方式的光伏屋顶模型。然后搭建了光伏屋顶与普通屋顶的实验台,以考察不同安装方式的光伏屋顶系统热性能,并验证理论模型的正确性。实验和理论结果都表明,由于有更多的光伏组件发电量和更低的冷热负荷,夏季通风流道和冬季封闭流道的光伏屋顶组合,有最高的能量净收益。夏季,增大通风流道的间距和降低流道内屋顶侧表面的发射率,都会降低通过光伏屋顶的冷负荷,对于光伏组件发电量则有不同的影响,前者对增加电量输出有益,后者则因为减少了光伏组件的辐射换热量而降低了电量输出。同时,屋顶本身的热阻也是一个影响系统能量净收益的重要因素。
     第二部分研究了光伏建筑与城市微气候的相互作用。一方面采用实测的城市和郊区气候数据,根据三种不同的光伏组件电性能模型,研究了城市气候对于光伏组件性能的影响。结果表明,由于城市污染造成了城市太阳辐照量的减少,导致城市光伏组件与郊区的发电量相比有明显降低。另外,城市风速的降低、城市气温的增加、城市太阳辐照量和辐照成份的改变都会影响城市光伏组件转换效率。另一方面建立了安装光伏组件后的城市街谷能量平衡模型PTEBU,以分析光伏建筑对于城市街谷温度和能量通量密度的影响,模型主要包括光伏组件传热模型、光伏组件电性能模型、建筑能耗模型和城市冠层能量平衡模型。安装通风流道的光伏屋顶和光伏墙体后,对于城市表面型热岛有明显的降低作用,夏季的影响要大于冬季,但对空气型热岛没有太大的影响。安装光伏组件前建筑的表面吸收率,对于安装光伏组件后街谷系统的性能变化有明显的影响。研究还表明,光伏效率的提高不仅有更多的电能输出,也进一步降低了城市表面型热岛和空气型热岛。
Energy and environment are major issues in this world today and are essential for sustainable development. BIPV (Building Integrated Photovoltaics) has progressed in the past years and become an element to be considered in city planning. The paper consists of two parts. Part one discusses the influence of different integration PV roof on the PV power output and the building cooling load/heating load through the roof. Part two deals with the interaction between the BIPV and microclimate in urban environments.
     The first presents the performance analysis of different PV roofs in the built environment. BIPV has significant influence on the heat transfer of building envelope because of the change of the thermal resistance by adding or replacing the building elements. The four different roofs are used to assess the impact of BIPV on the PV output and building heating and cooling loads, which are ventilated air gap PV roof, non-ventilated (closed) air gap PV roof, close roof mount PV roof and the conventional roof with no PV and no air gap. To evaluate the system performance of the different roofs, the one-dimensional transient models of four cases are derived and experimental apparatus are set up. It shows that the experimental data fit well with the estimated values according to the mathematical models. The experimental and simulation results indicate that PV roof with ventilated air gap is suitable for the application in summer because this integration leads to the low cooling load and high PV conversion efficiency. The PV roof with ventilated air gap has high time lag and small decrement factor in comparison with other three roofs. In winter, PV roof of non-ventilated air gap is more appropriate due to the combination of the low heating load through the PV roof and high PV electrical output. Then, performance optimization of the combination of PV roof with ventilated air gap in summer and non-ventilaed air gap in winter is investigated. An increase of air gap is beneficial to the PV output and the cooling load/heating load through PV roof. The PV electrical output and cooling load falls as the emissivity of roof exterior surface in the air gap increases. And the roof resistance is an important factor to influence the system performance.
     The second provides the analysis of the interactions of PV and urban thermal environment. On the one hand, three different models of PV power are used to investigate the effects of urban climate on the PV performance. The results show that
引文
[1] Population Reference Bureau, 2005 World population data sheet, USA, December 2005
    [2] 马胜文,赵玉文,王斯成等,光伏发电在我国电力能源结构中的战略地位和未来发展方向,中国能源,2005,27(6):24-32
    [3] 殷志强,孟宪淦,向太阳索取---中国太阳光热与光电应用现状与展望,太阳能学报,2003,24(5):575~588
    [4] Kazmeriski L L. Solar photovoltaic R&D at the tipping point: A 2005 technology overview. Journal of Electron Spectroscopy and Related Phenomena. 2006, 150: 105-135
    [5] 王长贵,郑瑞澄,新能源在建筑中的应用,北京:中国电力出版社,2003
    [6] International Energy Agency, Trends in photovoltaic applications. Survey report of Selected IEA countries between 1992 to 2004, Netherland, September 2005
    [7] Luque A, Hggedus S. Handbook of Photovoltaic Science and Engineering. Chichester: John Wiley & Sons, Ltd. (UK), 2003
    [8] Bazilian M D, Leenders F, VAN DER REE B G C, et al. Photovoltaic Congentration in the built environment. Solar Energy, 2001, 71: 57-69
    [9] Special issue: Photovoltaics in the Built Environment, Progress in Photovoltaics: Research and Applications. 2004, 12: 393-501
    [10] IEA Task7: Photovoltaic power systems in the built environment, http://www.pvdatabase.com Accessed 2005-12-20
    [11] Herig C, Ayoub J, Gaiddon B, et al. Mainstreaming PV in the Urban Lanscape-Activities of the new Task 10 IEA PVPS Implementing Agreement. In: Proc. 19th European Photovoltaic Solar Energy Conference, Paris, 2004.
    [12] Project Team, Photovoltaic City Guide, outcomes and conclusions. International Workshop Photovoltaic Solar Power in European Cities, Basel, Switzerland, 2001
    [13] Droege P. Renewable energy and the city: urban life in an age of fossil fuel depletion and climate change. Bulletin of Science, Technology and Society, 2002, 22: 87-99
    [14] International Solar Cities Congress 2006, http://www.solarcities.org.uk Accessed 2006-2-10
    [15] 罗赞继,我国第一幢综合利用太阳能建筑示范工程,中国建设动态:阳光能源,2004,(8):34-36
    [16] 许洪华,定世攀,深圳国际园林花卉博览园 1MWp 并网光伏电站系统描述及效益分析,第八届全国光伏会议暨中日光伏论坛论文集,2004:31-36
    [17] 崔容强,于化丛,孙铁囤等,太阳能与 2010 年上海世博会,第八届全国光伏会议暨中日光伏论坛论文集,2004:459-465
    [18] 中国可再生能源发展项目办公室,中国光伏产业发展研究报告,2004,http://www.ndrcredp.com/ Accessed 2005-12-20
    [19] Davis M W,Fanney A H,Dougherty B P, et al. Prediction of building integrated photovoltaic cell temperatures. Journal of Solar Energy Engineering, Transactions of the ASME, 2001, 123: 200-210
    [20] Lee W M,Infield D G,Gottschalog R. Thermal Modeling of Building Integrated PV systems. Proceeding of REMIC2001, Belfast, 2001
    [21] Brinkworth B J, Cross B M, Marshall R H, et al. Thermal regulation of photovoltaic cladding. Solar energy, 1997, 61(3): 169-178
    [22] Radiziemska E. Thermal performance of Si and GaAs based solar cells and modules: a review. Progress in Energy and Combustion Science, 2003, 29: 407-424
    [23] Ingersoll J G. Simplified calculation of solar cell temperatures in terrestrial photovoltaic arrays. Journal of Solar Energy Engineering, Transactions of the ASME, 1986, 108: 91-101
    [24] Martin S O,Harris D R,Saman W Y. Heat flow analysis in solar cell modules. ISES Solar World Congress, 1999, Jerusalem, Israel
    [25] Fuentes M,Roaf S. Integration of PV technology into the building environment: a model for the thermal Regulation of PV-roof integrated systems. IEEE 26th PVSC, 1997, Anaheim, CA
    [26] Brinkworth B J, Marshall R H, Ibarahim Z. A validated model of naturally ventilated PV cladding. Solar Energy, 2000, 69: 67-81
    [27] Brinkworth B J, Sandberg M. Design procedure for cooling ducts to minimize efficiency loss due to temperature rise in PV arrays. Solar Energy, 2006, 80: 89-103
    [28] Brinkworth B J, Sandberg M. A validated procedure for determining the buoyancy-induced flow in ducts. Building Services Engineering Research and Technology, 2005, 26: 35-48
    [29] Jones A D, Underwood C P. A thermal model for photovoltaic system. Solar Energy, 2001, 70: 349-359
    [30] Mei L, Infield D, Eicker U. Thermal modeling of a building with an integrated ventilated PV fa?ade. Energy and Buildings, 2003, 35: 605-617
    [31] Nordmann T, Clavadetscher L. Understanding temperature effects on PV system performance. The Third World Conference on Photovoltaic Energy Conversion, 2003, Osaka, Japan
    [32] 赵春江,崔容强. 太阳能建材技术的研究与开发(1)-光伏屋顶热性能的调查,太阳能学报,2003,24:352-356
    [33] Krauter S, Salhi M J, Schroer S. et al. New facade system consisting of combined photovoltaic and solar thermal generators with building insulation. Seventh International IBPSA Conference, 2001, Brazil
    [34] Sanderg M, Moshfegh B. Buoyancy-induced air flow in photovoltaic facades Effect of geometry of the air gap and location of solar cell modules. Building and Environment, 2002, 37: 211-218
    [35] Kroposki B, Emery K, Myers D, et al. A comparison of photovoltaic module performance evaluation methodologies for energy ratings. The First World Conference on Photovoltaic Energy Conversion, 1994, Hawaii
    [36] Kroposki B, Marion W, King D L, et al. Comparison of module performance characterization methods. Proceedings of 28th IEEE PVSC, 2000, Alaska
    [37] Williams S R, Betts T R, Gottschalg R, et al. Evaluating the state of the art of photovoltaic performance modelling in Europe. Proceedings of the 20th European Photovoltaic Solar Energy Conference, 2005, Barcelona
    [38] Evans D L. Simplified method for predicting photovoltaic array output. Solar Energy, 1981, 27(6): 555-560
    [39] Thevenard D, Leng G, Martel S. The Retscreen model for assessing potential PV projects. PV Horizon: Workshop on Photovoltaic Hybrid Systems, Montreal, September 10, 2001
    [40] Abete A, Napoli R, Spertino F. A simulation procedure to predict the monthly energy supplied by grid connected PV systems. 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003
    [41] Fry B, Simulation of grid-tied building integrated photovoltaic systems. MS Thesis, Solar Energy Laboratory, University of Wisconsin Madison, 1998
    [42] Meyer E L, Dyk E E. Development of energy model based on total daily irradiation and maximum ambient temperature. Renewable Energy, 2000, 21: 37-47
    [43] King D L, Boyson W E, Kratochvil J A. Photovoltaic array performance model. Sandia National Laboratories, SAND2004-3535, Albuquerque(USA), 2004
    [44] Fanney A H, Dougherty B P, Davis M W. Measured performance of building integrated photovoltaic panels. Journal of Solar Energy Engineering, Transactions of the ASME, 2001, 123: 187-193
    [45] Betts T R, Gottschalg R, Infield D G. Measured spectral effects on Photovoltaic Module Performance, Proceedings of the 2nd Photovoltaic Science, Application and Technology Conference, UK, 2005
    [46] Hirata Y, Tani T. Output variation of photovoltaic modules with environmental factors-I. The effect of spectral solar radiation on photovoltaic module output. Solar Energy, 1995, 55: 463-468
    [47] Martin N, Ruiz J M. A new method for the spectral characterisation of PV modules. Progress in Photovoltaics: Research and Applications, 1999, 7: 299-310
    [48] 涂逢祥,王庆一,建筑节能研究报告,建筑节能,2004,42:11-33
    [49] 薛志峰,江亿,超低能耗建筑技术及应用,北京:中国建筑工业出版社,2005
    [50] 龙惟定,建筑能耗比例与建筑节能目标,中国能源,2005,27(10):23-27
    [51] Hestnes A G. Building integration of solar energy systems. Solar Energy, 1999, 67(4-6): 181-187
    [52] Griffith B T, Ellis P G. Photovoltaic and solar thermal modeling with the EnergyPlus calculation engine. The World Renewable Energy Congress Ⅷ and Expo. Denver, Colorado USA, 2004
    [53] Clarke J A, Kelly N J. Integrating power flow modeling with building simulation. Energy and Buildings, 2001, 33: 333-340
    [54] Yang H X, Zhu Z J, Burnett J, et al. A simulation study on the energy performance of photovoltaic roofs. ASHRAE Transactions, 2001, 107(2): 129-135
    [55] Yang H X, Burness J, Ji J. Simple approach to cooling load component calculation through PV walls. Energy and Buildings, 2000, 31: 285-290
    [56] Jie J,Wei H,Lam H N. The annual analysis of the power output and heat gain of a PV-wall with different integration mode in Hong Kong. Solar Energy Materials and Solar Cells, 2002, 71: 435-448
    [57] Yutaka Genchi, Masako Ishisaki, Yukitaka Ohashi, et al. Impacts of large-scale photovoltaic panel installation on the heat island effect in Tokyo, Fifth International Conference on Urban Climate, Poland(Lodz), 2003
    [58] 陈友明,王盛卫,建筑围护结构非稳定传热分析新方法,北京:科学出版社,2004
    [59] 陈沛霖,曹叔维,郭建雄,空调负荷计算理论与方法,上海:同济大学出版社,1987
    [60] McQuiston F C, Parker J D, Spitler J D. Heating, ventilating and air conditioning analysis and design. New York: John Wiley and Son, 2005
    [61] ASHRAE. 2001 ASHRAE Handbook—Fundamentals. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, 2001
    [62] Iu S J, Fisher D E, Chantrasrisalai C, et al. Experimental validation of design cooling load procedures: The Radiant Time Series Method. ASHRAE Transactions, 2003, 109(2): 139-150
    [63] Grosso M. Urban form and renewable energy potential. Renewable Energy, 1998, 15: 331-336
    [64] Kurokawa K. PV systems in urban environment. Solar Energy Materials and Solar Cells, 2001, 67: 469-479
    [65] Conti S, Raiti S, Tina G. et al. Integration of multiple PV units in urban power distribution system. Solar Energy, 2003, 75: 87-94
    [66] Mardaljevic J, Rylatt M. Irradiation mapping of complex urban environments: An image-based approach. Energy and Buildings, 2003, 35: 27-35
    [67] 周淑贞,束炯,城市气候学,北京:气象出版社,1994
    [68] Arnfield A J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 2003, 23: 1-26
    [69] Roth M. Review of atmospheric turbulence over cities. Quarterly Journal of the Royal Meteorological Society, 2000, 126(A): 941-990
    [70] Harman I N. The energy balance of urban areas. PhD Thesis, UK: Reading University, 2003
    [71] Landsberg H. The Urban Climate. Vol. 28, International Geophysics Series. New York: Academic Press; 1981
    [72] Oke T R. Urban climates and global environmental change. In: Thompson RD, Perry A, editors. Applied Climatology: Principles and Practice, New York: Routledge, 1997, p.273-287
    [73] Oke T R. Boundary Layer Climates. 2nd Edition. Routledge: Methuen Inc. 1987
    [74] Codato G, Oliveira A P, Escobedo J F. Comparative study of solar radiation in urban and rural areas. In: Anais do XIII Congresso Brasileiro de Meteorologia, Fortaleza, CE, 2004
    [75] Oliveira A P, Soares J, Escobedo J F, et al. Diurnal Evolution of Surface Radiation Budget Components in the Cities of S?o Paulo and Botucatu. In: Anais do IX Congresso Brasileiro de Engenharia e Ciências Térmicas, de outubro de 2002, Caxambu, MG
    [76] Jauregui E, Luyando E. Global radiation attenuation by air pollution and its effects on the thermal climate in Mexico City. International Journal of Climatology, 1999, 19: 683-694
    [77] Leung Y K, Yeung K H, Ginn E W L et al. Climate change in Hong Kong, Hong Kong Observatory, Technical note No. 107, 2004
    [78] Alpert P, Kischcha P, Kaufman Y J, et al. Global dimming or local dimming: Effect of urbanization on sunlight availability. Geophysical Research Letters, 2005, 32: 1-4
    [79] Jacovides C P, Timbios F, Asimakopoulos D N, et al. Urban aerosol and clear skies spectra for global and diffuse photosynthetically active radiation. Agricultural and Forest Meteorology, 1997, 87: 91–104
    [80] Robaa S M A. Study of ultraviolet solar radiation at Cairo urban area, Egypt. Solar Energy, 2004, 77: 251-259
    [81] Voogt J A. Urban heat island. In “Encyclopedia of Global Environmental Change”, Munn T, 2002, John Wiley & Sons, Ltd, 660-666
    [82] Oke T R. The heat island of the urban boundary layer: Characteristics, causes and effects. In “Wind Climate in Cities”, Cermak J E, et al, 1995, Kluwer Academic Publishers, 81-107
    [83] Jauregui E. Heat island development in Mexico City. Atmospheric Environment, 1997, 37(22): 3821-3831
    [84] Yoshika Yamamoto. Measures to mitigate urban heat islands. Science and Technology Trends, Quarterly Review, 2006, 18: 65-83
    [85] 高绍风,陈万隆,朱超群等,应用气候学,北京:气象出版社,2001
    [86] Asl-Soleimani E, Farhangi S, Zabihi M S. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy, 2001, 24: 459-468
    [87] Close J. BIPV for the high-temperature, high-rise, high-density cities of S. China: The related projects of PV HKU research group to facilitate BIPV application. Solar Energy Materials and Solar Cells, 2001, 67: 449-458
    [88] Jill Jager 著,杨长新,向元珍译,气候与能源系统,北京:气象出版社,1988
    [89] Sailor D J, Lu L. A Top-down Methodology for Developing Diurnal and Seasonal Anthropogenic Heating Profiles for Urban Areas. Atmospheric Environment, 2004, 38: 2737-2748
    [90] Crutzen P J, New Directions: The growing urban heat and pollution “island” effect—impact on chemistry and climate. Atmospheric Environment, 2004, 38: 3539-3540
    [91] Roulet C A. Solar energy and global heat balance of a city. Solar Energy, 2001, 70: 255-261
    [92] Golden J S. Photovoltaic canopies: thermodynamics to achieve a sustainable system approach to mitigate the urban heat island hysteresis lag effect. The National Center of Excellence Smart Program, Arizona State University, http://www.asusmart.org Accessed 9/5/2005
    [93] Nagpal S, Shah S. Effect of photovoltaic cover on urban surface energy balance. Proceedings of ISES 2005 Solar World Congress, August 6-12, 2005 Orlando, Florida (USA)
    [94] Sailor D J. Simulated urban climate response to modification in surface albedo and vegetative cover. Journal of Applied Meteorology, 1995, 34: 1694-1704
    [95] Atkinson B W. Numerical modelling of urban heat-island intensity. Boundary- Layer Meteorology, 2003, 109: 285-310
    [96] Akbari H, Konopacki S. Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy, 2005, 33: 721-756
    [97] Doulos L, Santamouris M, Livada I. Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, 2004, 77: 231-249
    [98] Bornstein R D, Craig K J. Urbanization of numerical mesoscale models. Proceedings of the 2001 International Symposium on Environmental Hydraulics, Tempe(USA), 2001
    [99] Brown M J. Urban parameterizations for mesoscale meteorlogical models. In: Boybeyi Z (ed),193-255, Mesoscale atmospheric dipersion, Wesses Press, 2000
    [100] Masson V. Urban surface modeling and the meso-scale impact of cities. Theoretical and Applied Climatology, 2005, DOI:10.1007/s00704-005-0142-3
    [101] Myrup L O. A numerical model of the urban heat island. Journal of Applied Meteorology, 1969, 8: 908-918
    [102] Best M J. A model to predict surface temperatures. Boundary-Layer Meteorology, 1998, 88: 279-306
    [103] Grimmond C S B, Cleugh H A, Oke T R. An objective urban heat storage model and its comparison with other schemes, Atmospheric Environment, 1991, 25B: 311-326
    [104] Offerle B, Grimmond C S B. Parameterization of net all-wave radiation for urban areas, Journal of Applied Meteorology, 2003, 42: 1157-1173
    [105] Grimmond C S B, Oke T R. Turbulent heat fluxes in urban areas: Observation & local-scale urban meteorological parameterization scheme (LUMPS), Journal of Applied Meteorology, 2002, 41: 792-810
    [106] Swaid H, Hoffman M. Prediction of urban air temperature variations using the analytical CTTC model. Energy and Buildings, 1990, 14: 313-324
    [107] Elnahas M M, Williamson T J. An improvement of the CTTC model for predicting urban air temperature. Energy and Buildings, 1997, 25: 41-49
    [108] Shashua-Bar L, Hoffman M. The Green CTTC model for predicting the air temperature in small urban wooded sites. Building and Environment, 2002, 37: 1279-1288
    [109] Masson V, A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models. Boundary-Layer Meteorology, 2000, 94: 357–397
    [110] Masson V, Grimmond C S B, Oke T R. Evaluation of the Town Energy Balance (TEB) scheme with direct measurements for dry districts in two cities. Journal of Applied Meteorology, 2002, 41: 1011-1026
    [111] Lemonsu A, Grimmond C S B, Masson V. Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. Journal of Applied Meteorology, 2004; 43: 312-327
    [112] Mills G. An urban-canopy layer climate model. Theoretical and Applied Climatology, 1997, 57: 229-244
    [113] Kusaka H, Kondo H, Kikegawa Y, et al. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Boundary-Layer Meteorology, 2001, 101: 329-358
    [114] Martilli A, Clappier A, Rotach M. An urban surface exchange parameterization for mesoscale models. Boundary-Layer Meteorology, 2002, 104: 261-304
    [115] Vu T C. A k-ε turbulence closure model for the atmospheric boundary layer including urban canopy, Boundary-Layer Meteorology, 2002, 102: 459-490
    [116] McClellan T M, Pedersen C O. Investigation of outside heat balance models for use in a heat balance cooling load calculation procedure. ASHRAE Transactions, 1997, 103(2): 469-484.
    [117] Duffie J A, Beckman W A. Solar Engineering of Thermal Processes. New York: John Wiley & Sons; 1980
    [118] Afonso C, Oliveira A. Solar chimneys: simulation and experiment. Energy and Buildings, 2000, 32(1): 71-79
    [119] King D L, Kratochvil J A, Boyson W E, Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors. Proc. of 26th IEEE PVSC, Anaheim, California, 1997
    [120] Spitler J D, Fisher D E. Development of periodic response factors for use with the radiant time series method. ASHRAE Transactions, 1999, 105(2): 491-509
    [121] Spitler J D. PRF-RTF Generator, http://www.hvac.okstate.edu. Accessed 9/5/2005
    [122] Hollands K G T, Unny T E. Raithby G D. et al, Free convective heat transfer across inclined air layers. Journal of Heat Transfer. 1976, 98: 189-193
    [123] 屠传经,沈珞婵,吴子静 编,热传导,北京:高等教育出版社,1992
    [124] 建筑工程常用数据系列手册编写组编,建筑设计常用数据手册,北京:中国建筑工业出版社,2001
    [125] Garg H P, Adhikari R S. Transient simulation of convectional hybrid photovoltaic/thermal (PV/T) air heating collectors. International Journal of Energy Research. 1998, 22: 547-562
    [126] Witt C E, Surek T, Mitchell R L, et al. Terrestrial photovoltaics technologies-recent progress in manufacturing R&D. Proceedings of ASME 34th National Heat Transfer Conference, Pennsylvania, 2000
    [127] Skauli T, Outdoor surface temperature measurement: ground truth or lie? Proceedings of SPIE – The International Society for Optical Engineering, 2004, 5431: 243-250
    [128] Mukaro R, Carelse X F, Olumekor L. First performance analysis of a silicon-cell microcontroller-based solar radiation monitoring system, Solar Energy, 1998, 63(5): 313-321
    [129] 喜文华,魏一康,张兰英等,太阳能实用工程技术,兰州:兰州大学出版社,2001
    [130] 潘守文,小气候考察的理论基础及其应用,北京:中国气象出版社,1989
    [131] 刘念雄,秦佑国,建筑热环境,北京,清华大学出版社:2005
    [132] 李春喜,姜丽娜,邵云等,生物统计学,北京:科学出版社,2005
    [133] 天津市气候服务中心 编著,天津城市气候,北京:气象出版社,1999
    [134] Shampine L F, Reichelt M W. The Matlab ODE suite. SIAM Journal on Scientific Computing, 1997, 18: 1-22
    [135] Magrab E B 著 高会生,李新叶,胡智高等译,MATLAB 原理与工程应用,北京:电子工业出版社,2002
    [136] 薛定宇,基于 MATLB/Simulink 的系统仿真技术与应用,北京:清华大学出版社,2002
    [137] 张晓亮,谢晓娜,燕达等,建筑环境分析设计模拟分析软件包 DeST:建筑热环境动态模拟结果的验证,暖通空调,2004,34:37-50
    [138] Marion B, Rummel S, Anderberg A. Current-Voltage curve translation by bilinear interpolation. Progress in Photovoltaics: Research and Application. 2004, 12: 593-607
    [139] 马最良,姚杨,民用建筑空调设计,北京:化学工业出版社,2003
    [140] 张晴原,中国建筑用标准气象数据库,北京:机械工业出版社,2004
    [141] Duffin R J. A passive wall design to minimize building temperature swings. Solar Energy. 1984, 33: 337-342
    [142] Asan H. Effects of wall’s insulation thickness and position on time lag and decrement factor. Energy and Buildings. 1998, 28: 299-305
    [143] Bazilian M D, Kamalanathan H., Prasad D K. Thermographic analysis of a building integrated photovoltaic system. Renewable Energy, 2002, 26: 449-461
    [144] Brinkworth B J. Coupling of convective and radiative heat transfer in PV cooling ducts. Journal of Solar Energy Engineering, Transactions of the ASME, 2002, 124: 250-255
    [145] Liu C H, Sparrow E M. Convective-radiative interaction in a parallel plate channel-application to air-operated solar collectors. International Journal of Heat and Mass Transfer, 1980, 23: 1137-1146
    [146] 杨善勤,外保温墙体保温隔热性能的优势,建筑节能,2005,43:184-188
    [147] Akbari H, Levinson R, Rainer. Monitoring the energy-use effects of cool roofs on California commercial buildings. Energy and Buildings, 2005, 37: 1007-1016
    [148] Griggs E I, Sharp T R, MacDonald J M. Guide for estimating differences in building heating and cooling energy due to changes in solar reflectance of a low-sloped roof. Oak Ridge National Laboratory, ORNL-6527, 1989
    [149] Natural Resources Canada. Clean energy project analysis: RETScreen engineering and cases. Canada, 2003 http://www.retscreen.net Accessed 4/12/2005
    [150] Collares-Pereia M, Rabl A. Average distribution of solar radiation – correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 1979, 22: 155-164
    [151] Erbs D G, Klein S A, Duffie J A. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 1982, 28: 293-302
    [152] Oliveira A P, Machado A J, Escobedo J F, et al. Diurnal evolution of solar radiation at the surface in the city of Sao Paulo: seasonal variation and modeling. Theoretical & Applied Climatology, 2002, 71: 231-249
    [153] Balling Jr R C, Cerveny R S, Idso C D. Does the urban CO2 dome of Phoenix, Arizon contribute to its heat island? Geophysical Research Letters, 2001, 28: 4599-4601
    [154] Oke T R, Johnson G T, Steyn D G, et al. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Boundary-Layer Meteorology, 1991, 56: 339-358
    [155] Krauter S, Ruther R. Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. Renewable Energy, 2004, 29: 345-355
    [156] Kim S H, MacCracden C, Edmonds J. Solar energy technologies and stabilizing atmospheric CO2 concentrations. Progress in Photovoltaics: Research and Application, 2000, 8: 3-15
    [157] Kreider J F, Rabl A. Heating and cooling of buildings design for efficiency. New York: McGraw-Hill, 1994
    [158] Tanimoto T. The theoretical frame of the revised AUSSSM. http://ktlabo.cm.kyushu-u.ac.jp/e/ Accessed 4/12/2005
    [159] Johnson G T, Oke T R, Lyons T J, et al. Simulation of surface urban heat islands under ‘ideal’ conditions at night part 1: Theory and tests against field data. Boundary-Layer Meteorology, 1991, 56: 275-294
    [160] Niemela S, Raisanen P, Savijarvi. Comparison of surface radiative flux parameterizations: Part I: Longwave radiation. Atmospheric Research, 2001, 58: 1-18
    [161] Grimmond C S B, Oke T R. Aerodynamic properities of urban areas derived from analysis of surface form. Journal of Applied Meteorology, 1999, 38: 1262-1292
    [162] 胡定玺,杨安定,苏希安等,地下建筑暖通空调设计手册,北京:中国建筑工业出版社,1983
    [163] Nunez M, Oke T R. The energy balance of an urban canyon. Journal of Applied Meteorology, 1977, 16: 11-19
    [164] Boer K W. Self-cooling of photovoltaic cells when power is drawn. Physica Status Solidi (A) Applied Research, 2001, 184: 201-209
    [165] Grimmond C S B, Oke T R. Heat storage in urban areas: local-scale observations and evaluations of a simple model. Journal of Applied Meteorology, 1999, 38: 922-940
    [166] Sugawara H. Heat exchange between urban structures and the atmospheric boundary layer. PhD Thesis, National Defense Academy of Japan, 2001
    [167] Green M A, Emery K, King D L, et al. Solar cell efficiency tables (version 27). Progress in Photovoltaics: Research and Applications, 2006, 14: 45-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700