三峡工程运行对洞庭湖湿地资源影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洞庭湖是世界上最为重要的湿地之一,对调节长江流域生态环境具有无可替代的多种功能和作用。随着长江三峡水利枢纽蓄水运行,洞庭湖天然湿地的演变趋势已成为人们关注的焦点问题。
     本文以1973年~2005年43个时相的卫星遥感数据为基础,利用多时相遥感动态分析方法,分别从三峡运行后三口分流分沙减少、三峡水库调度引起洞庭湖水情变化两个方面出发,分析三峡工程运营后洞庭湖湿地的演变趋势。
     经分析,下荆江河道裁弯取直工程与三峡蓄水都将造成三口分流分沙减少,因此,本文采用类比的方法,在对1973年、1989年、1996年和2005年洞庭湖枯水季节的卫星图像进行预处理以及监督分类的基础上,首先研究荆江裁弯后洞庭湖天然湿地的演变规律,再进一步探讨三峡水库运行对洞庭湖天然湿地资源的影响。结果表明,三峡工程建成运行,对扩大洞庭湖湖水面积,延长洞庭湖的寿命有着积极的作用。
     通过对1993年~2006年33个时相的TM/ETM+卫星遥感数据进行湖泊信息提取,结合前人的研究成果,采用最小二乘法,建立了三峡水库增、减下泄流量~洞庭湖面积(容积)增、减数学模型,经分析发现,三峡水库调度引起的洞庭湖面积和容积的变化主要在湖中部平坦地区,以5月份与10月份最为明显。
     上述研究结果表明,三峡工程对扩大洞庭湖湖面面积、延长洞庭湖寿命有积极的作用,但三峡水库调度将使洞庭湖的洲滩淹没时间发生变化,在一定程度上打破了洞庭湖原有的生态平衡,给洞庭湖湿地生态系统带来一定负面影响。因此,进一步分析三峡工程运行引起的洞庭湖形态变化及由此引发的生态环境变化是一个十分紧迫的课题。
The Dongting Lake, which is one of the most important wetland in the world, plays multiple important roles that can’t be displaced in regulating the ecological environment of the Yangtze River. With the running of Three Gorges, it is a focused problem about the evolution trend of Dongting Lake wetland.
     On the basis of 43 satellite imagines from 1973~2005, the evolution law of Dongting Lake wetland is studied using a dynamic multi temporal remote sensing analysis in this paper from two aspects: 1. the amount of diverted runoff and sediments from Three Outlets will be decreased after the running of Three Gorges; 2. Regime of Dongting Lake will change after the operation of Three Gorges.
     Firstly, the result, caused by Three Gorges and three river cut off projects in lower Jingjiang stretch in 1967~1972, is quite similar that the amount of diverted runoff and sediments from Three Outlets will be decreased. In this paper by means of processing four phrases remote sensing imagines (1973, 1989, 1996, and 2005) and carrying out supervised classification, the influence of Three Gorges on the Dongting Lake wetland resources is studied on the basis of analyzing the evolution law of Dongting Lake wetland after river cut off projects in lower Jingjiang stretch. The analysis shows that the Dongting Lake wetland has a tendency of regressive succession after the running of Three Gorges.
     And then, in this paper by means of picking up the lake information from 33 phrases remote sensing imagines from 1993~1996 and combined with the previous achievements, the mathematical relation model between discharge increased in the low-water season (or decreased in the flood season) of the Three Gorges Reservoir and the increased (or decreased) of the area and the volume of Dongting was built. The analysis shows that the lake area (volume) amplitude caused by the operation of Three Gorges mainly occurred in the middle and flat area, and the effect is more obvious in May and October.
     Based on the results obtained, The Three Gorges will play a positive role in prolonging the life of Dongting Lake, on the other hand, it also will brings some adverse influences on the ecological system of Dongting Lake. It was a practical and immediate topic to make further research on the change of the hydrology and the ecological environment of the Dongting Lake.
引文
[1] 来红州,莫多闻,苏成.洞庭湖演变趋势探讨[J].地理研究,2004,23(1):78~85.
    [2] 卢金友,黄悦,宫平.三峡工程运用后长江中下游冲淤变化[J].人民长江,2006,37(9):55~58.
    [3] Hongfu Yin, Guangrun Liu, Jianggao Pi, etc. On the river-lake relationship of the middle Yangtze reaches[J]. Monsoon Rivers of Asia, 2007, 85(3): 197~207.
    [4] 蔡述明,马毅杰,朱海虹,等.三峡工程与沿江湿地及河口盐渍化土地[M].科学出版社,1997,11~12,54,134.
    [5] 姜加虎,黄群.三峡工程对洞庭湖水位影响的研究[J].长江流域资源与环境,1996,5(4):367~373.
    [6] 段文忠等.江湖关系综合报告(提纲).武汉水利电力学院.1990 年 9 月
    [7] 梅军亚,毛北平.三峡工程蓄水前后城陵矶至武汉河段水沙输移特性分析[J].应用基础与工程科学学报,2007,15(4):473~482.
    [8] 王崇浩,韩其为.三峡水库建成后荆南三口洪道及洞庭湖淤积概算[J].水利水电技术,1997,28(11):16~19.
    [9] 秦文凯,王崇浩. 三峡建坝前后洞庭湖的淤积[J].清华大学学报自然科学版,1998,38(1):84~87.
    [10] 廖小红. 三峡工程对洞庭湖区滨湖城市排涝的影响[J]. 中国农村水利水电, 2006,7:20~24.
    [11] 戴仕宝,杨世伦,赵华云,等. 三峡水库蓄水运用初期长江中下游河道冲淤响应[J]. 泥沙研究,2005,5: 35~39.
    [12] 吴昕,董磊华,李文哲,等. 三峡水库建设对减轻洞庭湖洪灾作用分析[J]. 广东水利水电,2007,4: 58~65.
    [13] 顾庆福,王建家. 三峡工程对洞庭湖典型洪水的防洪作用分析[J]. 人民长江,2004,35(2): 9~18.
    [14] 童海鸿 顾庆福. 三峡工程对洞庭湖防洪作用的模拟分析[J]. 湖南水利水电,2001,2: 20~23.
    [15] 周北达 刘永华. 三峡运行后对洞庭湖洪水水位的影响[J]. 湖南水利水电,2003,1: 27~29.
    [16] 袁正科,姚贤清,董炽良,等.三峡工程对洞庭湖湿地资源和生物多样性的影响及对策研究[J].三峡工程与洞庭湖关系研究论文集,湖南科学技术出版社,2002,:205~237.
    [17] 邹邵林,刘晓清,刘升平,等.三峡工程对洞庭湖滩地出露天数的影响[J].长江流域资源与环境,2000,9(2):254~258.
    [18] 王祥三,李大美.水动力学法预测模型预测三峡工程对洞庭湖洲滩的影响[J].长江流域资源与环境,1997,6(3):277~282.
    [19] 王祥三,李大美.用灰色系统预测模型预测三峡工程对洞庭湖洲滩面积的影响[J].湖泊科学,1998,10(4):87~90.
    [20] 周国华,唐承丽,朱翔, 等. 三峡工程运行后对洞庭湖区土地利用的影响及对策研究[J].水土保持学报. 2002,16(4):74~77.
    [21] 刘宁,江春波,陈永灿. 三峡蓄水初期水库近坝区水环境特性分析[J].水利学报. 2006,37(12):1447~1453.
    [22] 卜跃先,曾北危. 长江三峡工程对洞庭湖环境的影响[J].环境工程,1990,8(1): 56~60.
    [23] 卢宏玮,曾光明,张硕辅.三峡工程的运行对洞庭湖水环境容量的影响[J]. 环境工程,2004,22(1): 61~63.
    [24] 李倩,曾光明,黄国和,等.三峡工程对洞庭湖水力梯度及湿地植物生长的影响[J]. 安全与环境学报,2005,5(1): 12~15.
    [25] 卢金友,罗恒凯.长江与洞庭湖关系变化初步分析[J].人民长江,1999,30(4):24~27.
    [26] Committee of Politics Consult,Economy,Science and Technology of Hunan Province (湖南省政协经济科技委员会).Relation Research of Three Gorge Project and Dongting Lake (三峡工程与洞庭湖关系研究)[M].Changsha:Hunan Science& Technology Press,2002.
    [27] 陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响[J].长江流域资源与环境,2003,12(1):50~54
    [28] 邝凡荣. 浅析长江三峡工程对洞庭湖区生态环境的影响[J].湖南农业科学,2001,1:11~12.
    [29] 金革移. 三峡建库后对洞庭湖水环境的影响[J].湖南水利水电,2001,6:21~27.
    [30] 童潜明. 三峡水库运行后对洞庭湖防洪和生态的思考[J].国土资源管理,2002,3:1~6.
    [31] 陈绍兴. 浅析长江三峡建成后对洞庭湖水环境的影响[J].水资源保护,2004,5:33~37.
    [32] 贺清云,朱翔. 三峡工程建设背景下的洞庭湖区治水方略探讨[J].地理研究,2003,22(2):160~168.
    [33] 蔡凯平,左家铮,等. 三峡建坝后洞庭湖区泥沙淤积变化对血吸虫病流行因素的影响[J].实用预防医学,2000,7(1):1~3.
    [34] 谢月秋. 三峡建库对洞庭湖的影响及对策[J].湖南水利水电,2001,3:28~29.
    [35] 童潜明. 三峡水库运行后洞庭湖湿地的变化及合理利用建议[J].国土资源导刊,2005,2:12~16.
    [36] 胡旭跃. 洞庭湖湖泊环境的演变及驱动因子研究:[湖南大学博士学位论文]. 长沙:湖南大学环境科学与工程学院,2007,4~12.
    [37] 湖南省政协经济科技委员会.三峡工程与洞庭湖关系研究[M]. 长沙:湖南科学技术出版社, 2002.
    [38] 黎昔春,姚松云. 洞庭湖来水来沙特性浅析[J]. 湖南水利水电,2000,(6): 30~31.
    [39] 贺建林,杨友孝,曹明德等.洞庭湖区湖洲生态建设初探--以沅江市湖洲为例[J].湖泊科学,1998,10(4): 77~82.
    [40] 黄进良. 洞庭湖湿地的面积变化与演替[J].地理研究, 1999,18(3): 297~304.
    [41] 王秀英,邓金运,孙昭华.人类活动对洞庭湖生态环境的影响[J].武汉大学学报,2003,36(5): 60~65.
    [42] 苏成,莫多闻,王辉.洞庭湖的形成、演变与洪涝灾害[J].水土保持研究,2001,8 (2): 52~56.
    [43] 卞鸿翔,王万川,龚循礼.洞庭湖的变迁[M].长沙:湖南科学技术出版社,1993.
    [44] 中国科学院《中国自然地理》编辑委员会.中国自然地理, 历史自然地理[M].北京:科技出版社,1982.
    [45] 张修桂. 洞庭湖演变的历史过程[J].历史地理,1981(创刊号): 43~52.
    [46] 何业恒.洞庭湖地区环境演变的初步研究[J].湖南师院学报(自然科学版),1982,(2),5~12.
    [47] 张晓阳,杜耘,蔡述明.洞庭湖演变趋势分析[J].长江流域资源与环境,1995,4 (1): 64~69.
    [48] 吴小平,吴建明.洞庭湖新石器文化遗址与古环境[J].考古学,1998,119(1): 35~40.
    [49] 杜耘. 洞庭湖新石器文化遗址与古环境[J].华中师范大学学报(自然科学版),2002, 36(4): 516~520.
    [50] 童潜明.洞庭湖的演化与生态[J].生态与环境,2003,20(6): 1~7.
    [51] 周魁一.洞庭湖的历史演变与防洪功能评价[J].黑龙江水专学报,2001,28(3): 1~7.
    [52] Du Y, Cai S M, Zhang X Y, et al. Interpretation of the environment change ofDongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite imagine analysis[J]. Geomorphology, 2001, 41: 171~181.
    [53] 张人权等. 洞庭湖区演变及洪灾生成与发展的系统分析[M].武汉:中国地质法学出版社,2003.
    [54] 长江水利委员会水文局. 洞庭湖区湖泊面积容积量算成果报告[J].1997 年 2月.
    [55] 李召良,张仁华等.一种从中红外和热红外数据中反演地表比辐射率的物理算法[J]. 中国科学(E). 2000.30:18~26.
    [56] 戴昌达,雷莉萍.TM 图像的光谱信息特征与最佳波段组合[J].环境遥感,1995,4(4):282~292.
    [57] 戴昌达,唐伶俐等.卫星遥感监测城市扩展与环境变化的研究[J].环境遥感1999(1):1~7
    [58] 李玉霞,扬武年,郑泽忠.中巴资源卫星(CBERS-02)遥感图像在生态环境动态监测中的应用研究[J].水土保持研究,2006,13(6):198~200.
    [59] 杨中华,陈琳,杨卫坤,等.中巴地球资源一号02星在黄河凌讯监测中的应用[J].水利水电技术,2006,37(8):80~83.
    [60] 王志民,傅俏燕,陆登槐,等.中巴地球资源卫星在贵州林业资源调查中的初步应用[J].卫星应用,2003,11(4):53~55.
    [61] 陈冬花,李虎.中巴地球资源卫星遥感数据应用开发技术研究概述[J].亚热带资源与环境学报,2006,1(2):30~39.
    [62] 骆成凤,王长耀,牛铮.用模糊 ARTMAP 算法对 CBERS-2 数据进行分类[J].武汉大学学报信息科学版,2006,31(4):325~328.
    [63] 王峰,曾湧,何善铭,等.实现 CBERS 图像自动几何精校正的地面控制点数据库的设计方法[J].航天返回与遥感,2004,25(2):45~49.
    [64] 王敏娟,杨安联,高雪玲,等.陕西省生态遥感监测与评价研究[J].水土保持通报,2006,26(6):51~54.
    [65] 李宇斌,王恩德.建立基于 CBERS 数据的环境卫星遥感信息系统[J].环境监测与管理技术,2006,18(4):39~41.
    [66] Xu Yansong. China and Braizil to Continue Cooperation in CBERS[J]. International exchange and cooperation, 2004. 14~16.
    [67] 陈建平,王功文,厉青,等.北京及邻区荒漠化动态演化的遥感综合研究[J].应用技术,2002,17~20.
    [68] A. Lobo, O. Chic and A. Casterad. Classification of Mediterranean Crops with Multisensor Data: Per-Pixel versus Per-Object Statistics and Image Segmentation. International Journal of Remote Sensing. 1996. 17:2358~2400.
    [69] A. Monadjemi and B. T. Thomas and M. Mirmehdi. Classification in High Resolution Images with Multiple Classifiers. 2002. IASTED Visualization, Imaging and Image Processing VIIP 2002 Conference, JJ Villanueva, editor, pages 417~421.
    [70] A. Pekkarinen. A method for the segmentation of very high spatial resolution images of forested landscapes. Int. J. Remote Sensing. 2002.23(14):2817~2836.
    [71] Ahmad A R, Khalid M, Yusof R. Kernel methods and support vector machines for handwriting recognition [A].Student Conference on Research and Development. 2002. 309~312.
    [72] F. L. Rego and B. Koch. Automatic classification of land cover with high resolution data of the Rio de Janeiro city Brazil comparison between pixel and object classification. Proc. Of Remote Sensing of Urban Areas 2003. 153~157.
    [73] Ediriwickrema J Khorram S. Hierarchical Maximum Likelihood Classification for Improved Accuracies [J]. IEEE Trans. on Geoscience and Remote Sensing. 1997. 35 (4): 810~817.
    [74] Fabio Roli. Semi-Supervised Multiple Classifier Systems:Background and Research Directions. www.diee.unica.idmcs/Roli-SSV-Talk.pdf.
    [75] Mahesh Pal Paul M.Mather. Support Vector Classifiers for Land Cover Classification.Paul Map India 2003 Image Processing&Interpretat ion. 2003.
    [76] 黄惠萍,昊炳方,李苗苗等.高分辨率影像城市绿地快速提取技术与应用.遥感学报.2004. 8 (1):68~74.
    [77] 刘建华,胡光道.高分辨率遥感影像的土地利用分类.遥感与信息.2004. 20 (4): 298~300.
    [78] 楼立明,刘卫东,冯秀丽.基于高分辨遥感影像的土地利用变化监测.遥感技术与应用.2004.19 (1):30~33.
    [79] Schmid, B. H., Hengl, M. A., Stephan, U. Sediment deposition in constructed wetland ponds with emergent vegetation: laboratory study and mathematical model[J]. Water Sci Technol. 2005, 51(9):307~314.
    [80] Stephan U, Henql M, Schmid BH. Sediment retention in constructed wetland ponds-a laboratory study[J]. Journal of Environmental Science and Health. 2005,40:1415~1430.
    [81] Braskerud BC. The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands[J]. J Environ Qual. 2001, 30(4):1447~1457.
    [82] Olde Venterink, Harry, Vermaat, etal. Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands[J]. Applied Vegetation Science. 2006, 9(2):163~174.
    [83] A.K. Darke, J.P. Megonigal. Control of sediment deposition rates in tow mid-Atlantic Coast tidal freshwater wetlands[J]. Coastal and Shelf Science. 2003, 57:255~268.
    [84] Carollo,F.G. Flow Velocity Measurements in Vegetated Channels[J]. Hydraul Div,Am Soc Civ. Eng. 2002,128(7):664-673.
    [85] Fenzl ,R.N.,and Davis,J.R. Hydraulic resistance relationships for surface flows in vegetated channels[J]. Transactions of the American Society of Agricultural Engineers. 1964,7:46-51.
    [86] Li, R.M., Shen, H.W. Effector of Tall Vegetation on Flow wand Sediment[J]. Hydraul.Div.Am.Soc.Civ.Eng. 1973, 99(5):793~814.
    [87] Wu, F.C,Shen,H.W. Chou,Y.J.Variation of Roughness Coefficients for Unsubmergde and Submerged Vegetation[J]. Hydr.Engrg. 1999,125(9):934~942.
    [88] Wang Haiyang,Chen Jiakuanand Zhou Jin.Influence of water level gradient on plant growth,reproduction and biomass allocation of wetland plants species [J].Acta Phytoecological Sinica,1999,23(3):269~274

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700