水体富营养化发生原因分析及植物修复机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体污染已成为全球水资源短缺的一个重要因素。水体富营养化是水体污染中的最为普遍的现象,也是国内外水环境污染治理难题。水体富营养化发生机理和修复原理及技术的研究是国内外土壤植物营养、环境生态学科研究的前沿和热点。在富营养化水体修复的各种手段中,植物修复(生物修复的一种)是一种耗能低、效果好的新技术,已经引起国内外学术界的高度重视。本研究通过野外考察与调查研究,分析了太湖流域中莫干湖水库水体富营养化发生的主要原因,并提出综合治理的对策和方法。采用人工模拟自然的方法,比较研究了水葫芦(Eichhornnia crassipes)金鱼藻(Ceratophyllum demersum L.)、狐尾藻(Myriophyllum verticillatum L.)、微齿(禾叶)眼子菜(Potamogeton maackianus A.Bennett)、马来眼子菜(Potamgeton malaianus Miq.)、苦草(Vallisneria spiralis L.))等水生植物对富营养化水体修复作用的差异及机理。重点研究了低温条件下水生植物净化富营养化水体的效果:营养元素在土壤-植物-水系统中的变化和转移;水生植物在控制湖泊底泥营养盐释放中的作用;水生植物在低温或高温季节的生存问题和季节性变化;植物修复体系建立的相关技术等。取得的主要研究结果和结论包括:
     1.通过对莫干湖流域野外调查与分析研究,明确了导致莫干湖水库水体富营养化的主要原因,其中农业非点源污染、水库流域工业污染和生活污染是引起水库富营养化的关键因素。工业污染可以采取调整结构、转移污染工厂等措施来解决,而生活污染和农业非点源污染则必须依靠生态工程技术的方法来治理。生态工程包括复合生态体系的建立、退耕还林、河道生态系统的恢复、物理生态工程等。物理生态工程在流域的应用以在丰水期的效果最好,两个观测点的总氮、总磷含量都显著低于上一年。入湖口六洞桥和莫干湖库区2003年4月的总氮含量分别为2002年4月的86.8%和48.9%,总磷含量分别为上年的31.8%和53.3%。这与流域的水环境有关,枯水期由于河道缺水,生态环境恶劣,不利于物理生态工程的发挥。
     2.低温季节6种水生植物对总氮(TN)、硝态氮都有一定的去除效果,但植物种类之间差异较大。硝态氮的去除效果比总氮更好,而氨态氮的去除效果又不如硝态氮和总氮,30天时不同处理之间分别为对照的30.1%-86.9%。水生植物在短期内能有效降低富营养化水体中COD的含量,处理10天后分别只有对照的17.6%-32.3%,但在整个过
    
    程中与对照没有明显差别,表明水生植物在低温季节对降低COD的作用不明显。水生
    植物还能有效提高水体的透明度,改善水体观感效果。说明在冬季利用水生植物净化富
    营养化水体也能起到较好作用,关键是要筛选有效的植物。本研究表明,狐尾藻、微齿
    眼子菜和金鱼藻在冬季能生长,可以作为富营养化水体修复的优选植物。
     3.水生植物能有效抑制底泥中氮的释放。在富营养化水体中,由于底泥中氮的释
    放,使水中的总氮(TN)浓度不断上升,尽管底泥物理隔离(包被)能暂时减缓底泥
    中氮的释放,但在20天后仍然达到了释放高峰,甚至高于底泥裸露处理。底泥隔离处
    理的水中硝态氮含量大大高于底泥裸露处理。但是无论是污水底泥还是清水底泥,种养
    水生植物对氮的释放的具有明显抑制作用;而沉水植物狐尾藻的效果则明显大于漂浮植
    物凤眼莲。这些结果表明,单靠物理措施(薄膜包被)并不能有效控制底泥氮等向水
    中释放,而水生植物尤其是沉水植物能有效吸收和控制底泥营养盐的释放,降低水中营
    养盐浓度。
     4.水生植物不仅能很好地控制水中的氮、磷等营养,还能影响底泥中的其他营养
    元素,包括一些重金属元素,从而改善水质。研究结果表明,4种水生植物对底泥中4
    种重金属(Cd、Cu、Ni、Pb)的作用都表现出相同的趋势,即狐尾藻处理的底泥中4
    种重金属的含量均高于对照,金鱼藻、微齿眼子菜2种处理的底泥中4种重金属含量均
    低于对照,而凤眼莲的处理则与对照没有显著差异。水生植物由于吸收了重金属元素而
    使体内的含量增加,其中对锅和铅的吸收较明显。除了狐尾藻茎叶部以外,其他部位的
    铜和镍的含量都高于修复之前的含量。表明水生植物对这些重金属具有较好的吸收作
    用。因此,利用水生植物吸收、转化污染水体中的营养盐以及有毒重金属具有较大的优
    势。
     5.用水生植物净化富营养化水体,其净化效果受许多因素的影响,如水生植物的
    用量、组合,水生植物种类之间如何搭配,群落之间的相互影响,以及一些物理措施对
    底泥的影响。以狐尾藻为例,虽然狐尾藻对污染水体有明显的修复效果,但是随着植物
    用量的增加,修复效果并不是不断提高的,而且用量过多,还会导致自身所产生的污染。
    一般以覆盖水体表面而不能重叠为合适。同时,不同的植物种群对水体的影响也存在差
    异,在考虑植物之间搭配时,应从自然群落的角度着手。水花生(Alternanthera
    philoxeroides)是狐尾藻种群中的常见的挺水(或漂浮)植物,因此将这2种植物组合在
    一起可以起到互补的作用。水生植物一方面对水体的营养有吸收效果,同时对藻类的生
    长起到抑制作用。但水生植物过多,会引起水体中有机物增多,特别是在低温换季过程
    中,植物?
Water pollution is a main factor causing short water supply, and water eutrophication is a worldwide phenomenon, become the most difficulty in environmental remediation for water pollution. Understanding the mechanisms of eutrophication of water body and develop feasible remediation technology is the frontier and hot research field in plant nutrition and environmental ecology. As a new, cheap and ecological sound technology, phytoremediation of eutrophicated water system attract many scientists all over the world . The objectives of this study were : to analyze the factors causing eutrophication in Mu Ge Hu resevoir of Thai Lake catchment, investigate on the strategies for controlling and remediating water eutrophication in Mu Ge Hu resevoir, compare the effectiveness of different aquatic plant species on remediating eutrofication water body under simulated conditions. The aquatic plants species used included: Eichhornnia crassipes, Ceratophyllum demersum L., Myriophyllum verticillatum L, Potamogeton maackia
    nus A.Bennett, Potamgeton malaianus Miq., Vallisneria spiralis L The major comparisons and observations made were: 1) The efficiency of growing aquatic plants on decontaminating the eutrophicated in low temperature season; 2) The changes and transfer of nutrients in the soil-plant-water system; 3) Effects of growing aquatic plants on the regulation of nutrient release from the lake sediment; 4) The seasonal change of aquatic plants in low or high temperature season; 5) The key techniques for phytoremediation on the eutrophicated water sysytem. The main results obtained are summarized as follows:
    1. By survey and investigation on the causes of eutrophication in Mu Ge Hu reservoir, it was found that the degradation of eco-system of the catchment was the main cause of eutrophication in the rswervoir. The major factors causing eutrophication of Mu Ge Hu Reservoir included N and P non-point pollution from agricultural practices, industry pollution and daily life pollution. The industry pollution may be controlled by changing their structure
    
    
    and move out the pollution township-industries. The pollution caused by daily life and agriculture must be controlled by ecological engineering technology, including setting up the healthy eco-system, recovering the forest and the river eco-system, as well as introducing physical-ecological engineering on the water system. It was observed that the best time for the physical-ecological engineering to apply in the catchment was during the abundant water period. After application of physical-ecological engineering, the contents of nitrogen and phosphorus at the 2 stations were lower than that before application. The content of total nitrogen in the entrance and the center of the reservoir decreased to 86.3 % and 48.9% , and the phosphorus content decreased to 31.8%t and 53.5 % of that before application, separately.
    2. In low temperature season, all the 6 aquatic plant species showed effective ability in decreasing total nitrogen, nitrate nitrogen and phosphorus in the eutrophicated water body. Different plant species had different effectiveness. The values of COD decreased in short period (10 days) but recovered afterwards. Growing aquatic plants in the eutrophicated water body increased water transparency and improved the water quality in the low temperature season. These results indicated that aquatic plants can decontaminate the polluted water. Selecting suitable plant species is critical. In this 'study, Myriophyllum verticillatum L. ,Potamogeton maackianus A.Bennett ,Ceratophyllum demersum L.) can survive in winter, which could be firstly chosen for phytoremediation engineering.
    3. The aquatic plants could also control nitrogen release from the sediment. In the polluted water system, the nitrogen release from the sediment could resulted in the increase of total nitrogen in water body. Sediment rapped by plastic sheet could stop nitrogen release in short period, but could not in longer time period, and N release peaked after the sediment was covered for 20 days. Either with
引文
1. Adcock P W, Ganf G G.Growth-characteristics of three macrophyte species growing in a natrual and constructed wetland system. Water Sci Technol,1994,29(4):95-102
    2. Amy G, Wilson L G, Conroy A, et al. Fate of chlorination byproducts and nitrogen species during effluent recharge and soil aquifer treatment (SAT)[J].Water Environ Res, 1993, 65:726-734.
    3. Amlg Melzer. Aquatic macrophytes as tools for lake management. Hydrobiologia, 1999, 395/396:181~190.
    4. Asano T. Artificial Recharge of Ground [M]. Boston: Butterworth, 1985,359-679.
    5. Badkoubi A, Ganjidoust H, Ghaderi A, et al. Performance of a subsurface constructed wetland in Iran[J]. Wat Sci Tech, 1998, 38(1):345-350
    6. Benndorf J. Posibilities and limits for controlling eutrophication by biomanipulation. Int Revue ges. Hydrobiol, 1995, 80(4):519-534
    7. Bishop P L, Eighmy T T. Aquatic wastewater treatment using Elodea nuttalli. J Water Poll Contro Fed,1989, 61:641-648
    8. Blindow I, Andersson G, Hargeby A, et al. Long-term pattem of alternative stable states in two shallow eutrophic lakes. Freshwater Biology, 1993,30:159-167
    9. Blom G, Winkels H J. Modeling sediment accumulation and dispersion of contaminants in lake Ijsselmeer (the Nethelands)[J].Wat Sci Tech, 1998,37(6-7): 17-24.
    10. Bosma T N P. Ballemans E M W, Hoskstea N K, et al. Biotransformation of organics in soil columns and an infiltration area[J]. Ground Water, 1996, 34(1):49-56.
    11. Bradshaw A D. Restoration of mined lands using natural processes. Ecol Eng, 1997,8: 255-269 Brezonik P L, Engstrom D R. Modem and historic accumulation rates of phosphorus in Lake Okeechobee, Florida.Journal of Paleolimnology, 1998, 20:31-46
    12. Brix H, Schierup H H. The use of aquatic macrophytes in water-pollution control. Ambio, 1989,18:100-107
    13. Brix H. Funcions of macrophytes in constructed wetlands. Wat Sci Tech, 1994,29(4):71~78.
    14. Burgoon P S, Reddy K R, Debusk T A. Performance of subsurface flow wetllands with batch-load and continuous-flow conditions[J]. Water Environ Res, 1995, 67:855-862.
    15. Carignan R, Kalff J. Phosphorus sources for aquatic weeds: water or sediments? Science, 1980,207:987-988
    16. Carpenter S R, Elser J J, Olson K M. Effect of roots of Myriophyllum verticillatum L. on sediment redox conditions. Aquat Bot, 1983,17:243-249
    17. Carpenter S R, et al .Regulation of lake primary productivity by food web structure .ecology, 1987,68:1863-1876
    18. Carpenter S R, Kitchell J F. Trophic cascade and biomanipulation: interface of research and management. A reply to the comment by DeMelo et al. Limnology and Oceanography,1992, 37:208-213
    19. Ccanfield DE Jr, Hoyer MV. The eutrophication of Lake Okeechobee. Lake and Reservoir Management, 1988, 4:91-99
    20. Chan Y.S.G. Wong M.H., Whitton B.A.,. Effects of landfill leachates on growth and nitrogen
    
    fixation of two leguminous trees[J]. Water, air, and soil pollution, 1999, 113(1):29-40
    21. Charles D. The importance of emergent vegetation in reducing sediment resuspension in wetlands. J. Freshw. Ecol., 1990, 5(4): 467--473
    22. Check G G, Waller D H, Lee S A, et al. The lateral flow sand-filter system for septic-tank effluent treatment[J],Water Environ Res, 1994,66:919-928
    23. Chen Hesheng, Fan Chengxin. A way to comprehensively harness the water pollution in Taihu lake aquatic ecosystem. Journal of Lake Science, 1998, Vol. 10 Suppl.,117-122
    24. Cheng S,Grosse W, Karrenbrock F, et al.Efficiency of constructed wetlands in decontamination of water polluted by heavy metals.Ecol Eng,,2001,18(3):317-325
    25. Chmielewski T J, Radwan S, Sielewicz B. Changes in ecological relationships in a group of eight shallow lakes in the Polesie Lubelskie region (eastern Poland) over forty years. Hydrobiologia, 1997, 342/343:285-295
    26. Cooke G D. Advanced Treatment and Diversion of Wastewater Stormwater in Lake and Reservoir Restoration. Butterworth Boston, MA, 1986
    27. Cooper P F, Hobson J A,Jones S.Sewage tratment by reed bed systems.J Inst Water Environ Manage, 1989,3:60-74
    28. Cunningham S D, Promises and prospects of phytoremediation.Plant physiology,1996,110:715-719
    29. Dai Q-Y, Cai S-W, Zhang X-Y.1998.Purification of gold-bearing waste by Oenanthe javanica and accumulation of gold in plant.Chin J Appl Ecol, 9(1): 107~109 (in Chinese)
    30. Dai Q-Y, Chen Z.1993.Purification of beer wastewater by Lolium multiflorum.Chin J Appl Ecol,4(3):334~337 (in Chinese)
    31. Dc Melo R, France R, McQueen D J. Biomanipulation: hit or myth. Limnology and Oceanography, 1992,37: 192-207
    32. Dean, et al. Advancing research for bioremediation .Environ.prog, 1992,3(7): 19-25 Dee J.&J-M. Bollag. Use of plant material for the decontamination of waters polluted with phenols. Biotechnique and bioengineering, 1994,44:1132-1139
    33. Department of International Scientific and Technological Cooperation SSTC, China. Bejing:Tsinghua University Press, 1996:35-36
    34. Deppe T, Ockenfeld K, Meybohm A, et al. Reduction of Microcystis bloom in a hypertrophic reservoir by a combined ecotechnological strategy. Hydrobiologia, I999, 408/409:31-38
    35. Drenner R W, Day D J, Basham S J, et al. Ecological water treatment system for removal of phosphorus and nitrogen from polluted water. Biological Application, 1997, 7(2): 381-391
    36. E. E. Tarasova ,A. A, Mamontov ,E. A. Mamontova. Pollution and eutrophication in Lake Baikal Journal of Lake Science, 1998, Vol. 10 Suppl.,167-179
    37. E.E.Prepas,T.P.Murphy, et al .Eutrophication management techniques for Boreal plain surface waters of western Canada. Journal of Lake Science, 1998, Vol. 10 Suppl.,25-30
    38. Fan Chengxin, et al. Preliminary study on the evaluation of sludge-dredging work in Lake Kasumigaura using large-size core samples, Proceedings. of Ⅵ Conference on Conservation. & Management. of Lakes, Kasumigaura'95.1890-1893
    39. Fan Chenxin ,Chen Hesheng. On the problem of eutrophication of Taihu lake and its countermeasures of comprehensive control . Journal of Lake Science, 1998, Vol. 10 Suppl.,95-100
    40. Fennessy M S,Cronk J K,Mitsch W J.Macrophyte productivity and community development
    
    in created freshwater wetlandsunder experimenal hydrological conditions.Ecol Eng 1994,3(4):469-484
    41. Gersberg R M,Elkins B V, Lyon S R,et al.Role of aquatic plants in wastewater treatment by artificial wetlands.Wat Res, 1986,20(3):363-368
    42. Graneli W, Doris Solander. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia, 1988,170:245-266
    43. Green M B,Upton J.Constructed reed beds:A cost-effective way to polish wastewater effluents for small communities.Water Environ Res, 1994,66(3):188-192
    44. Guilizzoni P.The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes.Aquat Bot, 1991,41:87-109.
    45. Gumbricht T. Nutrient removal processes in freshwater submersed macrophyte systems. Ecological Engineering, 1993, 2:1-30
    46. Chua H, P.H.F.Yu, M.W.L. Cheung. Sediment oxygen demand and nutrient release in an eutrophic estuarine embayment in Hong Kong . Journal of Lake Science, 1998, Vol. 10 Suppl.,275-282
    47. Hammer DA.1992.Designing constructed wetlands systems to control agricultural nonpoint source pollution.Ecol Engin, 1:49
    48. Havens K E, Jin K R, Rodusky A J, et al. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. The Scientific World, 2001, 1:44-70
    49. Hoeg S, Kohler J. Phytoplankton selection in a river-lake system during two decades of changing nutrient supply. Hydrobiologia, 2000, 424:13-24
    50. Holz J, Hoagland KD,Spawn R L,et al. Phytoplankton community response to reservoir aging, 1968-92. Hydrobiologia, 1997, 346:183-192
    51. Horppila J, Peltonen H, Malinen T, et al. Top-down or bottom-up effects by fish: Issues of concern in biomanipulation of lakes. Restoration Ecology, 1998, 6(1): 20-28
    52. Hosokawa Y, Horie T.Flow and particulate nutrientremoval by wetland with emergent macrophyte.Sci Total Environ,1992,suppl.1271-1282
    53. Hosper S H. Biomanipulation, new perspective for restoring shallow, eutrophic lakes in the netherlands. Hydrobiol Bull, 1989, 23:5-11
    54. Hosper S H. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in Netherlands. War Sci Tech, 1998, 37(3): 151-164
    55. Hosper S P, Meijer M L. Biomanipulation, will it work for your lake. A simple test for the assessment of chances for clear water, following drastic fish-stock reduction in shallow eutrophic lakes. Ecological Engineering, 1993,2:63-72
    56. Hu Weiping ,Pu Peimin,Li wanchun .A model on a physico-biological engineering experiment for purifying water by using Trapa natans var. Bispinosa in Wulihu bay of Lake Taihu ,China. Journal of Lake Science, 1998, Vol. 10 Suppl.,507-518
    57. Huang Yiping ,Zhu Min. The water quality of lake Taihu and its protection .Journal of Lake Science, 1998, Vol. 10 Suppl.,85-94
    58. Huang Yiping. The water quality and eutrophic state in Lake Taihu [A]. In: Environmental Protection and Lake Ecosystem [C]. 1993.1994:181-191.
    59. Jacoby J M, Gibbons H L, Stoops K B. Response of a shallow, polymictic lake to buffered alum treatment. Lake Reservoir Manage, 1994,10(2): 103-112
    60. James F Reilly. Nitrate removal from a drinking water supply with large free-surface
    
    constructed wetlands prior to groundwater recharge. Ecological Engineering, 2000, 14:33~47.
    61. Janse J H, Van Donk E, Aldenberg T. A model study on the stability of the macrophyte-dominated state as affected by biological Factors. Water Research, 1998,, 32(9): 2696-2706
    62. Jaynes M L, Carpenter S R. Effect of vascular and nonvascular macrophytes on sediment redox and solute dynemics. Ecology, 1986, 67:875-882
    63. Johnston C A. Sediment and nutrient retention by freshwater wetlands: effects on surface water quality [J]. Critical Reviews in Environmental Control, 199t,21(5,6):491-565
    64. Jones R C .et al .Phytoplankon as factor in the decline of the submerged macrophyte. Myiophylum spicatum L. in Lake Wingra, Wisconsin ,USA. Hydrobiol. 1983,107:213-219
    65. Jorgensen S E. Fundamentals of Ecological Modelling. 2nd Edition. London: Elsever,1994
    66. Jurgen Kern. Treatment of domestic and agricultural wasterwater by reed bed systems. Ecological Engineering, 1999,12:13~25.
    67. Juttner F. Efficacy of bank filtration for the removal of fragrance compounds and aromatic hydrocarbons[J]. Wat Sci Tech. 1999,40(6): 123-128.
    68. Kairesalo T, Laine S, Luokkanen E, et al. 1999. Direct and indirect mechanisms behind successful biomanipulation, Hydrobiologia, 395/396:99-106
    69. Keizer P, Sinke A J C. Phosphorus in the sediment of the Loosdrecht lakes and its implications for lake restoration perspectives [J]. Hydrobiologia., 1992, 233:39-50.
    70. Kemp M C, GEORGE D B. Subsurface flow constructed wetlands treating municipal wastewater for nitrogen transformation and removal[J]. Water Environ Res, 1997,69:1254-1262.
    71. Kirpenko N I. Phytopathic properties of the toxin of bluegreen algae. Gidrobiol Zhum, 1986,22(1): 48-50
    72. Kristiansen R. Send-filter trenches for purification of septic tank effluent Ⅱ. The fate of nitrogen[J].J Environ Qual. 1981,10(3):357-361.
    73. Kristiansen R. Sand-filter trenches for purification of septic tank effluent Ⅲ. The microflor [J].J Environ Qual, 1981, 10(3):361-364.
    74. Kristiansen R. Sand-filter trenches for purifying septic tank effluent Ⅰ. The clogging mechanism and soil physical environment[J].J Environ Qual, 1981,10(3):353-357
    75. Li W-C. 1997.Construction and purification efficiency test of an ever-green aquatic vegetation in an eutrophic lake.Chin Environ Sci, 17(1): 53~57 (in Chinese)
    76. Lin Yumei. Protection and recovering plans of water system in Datian county, Fujian province, China. Journal of Lake Science, 1998, Vol. 10 Suppl.,135-142
    77. Mandi L, Bouhoum K, Ouazzani N. Application of constructed wetlands for domestic wastewater treatment in an arid climate[J]. Wat Sci Tech, 1998, 38(1):379-387.
    78. Marten Scheffer. The effect of aquatic vegetation on turbidity; how important are the filter feeders. Hydrobiologia, 1999, 408/409:307~ 316.
    79. Martin T. Dokulil, Katrin Teubner .Cyanobacterial dominance in eutrophic lakes:Causes-Consequences-solutions. Journal of Lake Science, 1998, Vol. 10 Suppl.,357-370
    80. Meijer M, Hosper H. Effects of biomanipulation in the large and Shallow Lake Wolderwijd, The Netherlands. Hydrobiologia, 1997,342/343:335-349
    
    
    81. Mitsch W J, Reeder B C, Klarer D M. The role of wetlands in the control of nutrients with a case study of western lake Erie. In: Mitah W J, Jorgensen S E,eds. Ecological Engineering, New York: J. Wiley & Sons, 1989:129-157
    82. Mitsch W J. Ecological engineering-the 7-year itch. Ecological Engjineering, 1998.10: 119-130
    83. Moss B, Stersfietd J, Irvine K. Developmant of Daphnid communities in Diatom and Cyanophyte Dominated lakes and their Relevance to lake Restoration by Biomanipulation. J Applied Ecology, 1991, 28:586-602
    84. Moss B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia, 1990, 200/201:367-377
    85. Muscutt A D, Harris G L, Bailey S W, et al. Buffer zones to improve water quality: a review of their potential use in UK agriculture [J]. Agriculture, Ecosystems and Environment, 1993,45:59-77
    86. Naiman R J, Magnuson J J, Mcknight D M, et al. Freshwater Ecosystems and Their Management: A National Initiative. Science, 1995,270:584-585
    87. National research council .1993.Vetiver grass: a thin green line against erosion .Washington D.C.: National Academic Press: 1-83
    88. Okeechobee: sources, sinks, and strategies. In: ReddyK R, O'ConnorG A, SchelskeC L, eds. Phosphorus biogeochemistry of subtropical ecosystems: Florida as a case example. CRC/Lewis Publishers, New York, 1999:527-544
    89. Olila O G, Reddy K R, Harris W G. Forms and distribution of inorganic phosphorus in sediments of two shallow eutrophic lakes in Florida. Hydrobiologia, 1995, 302:147-161
    90. Padisak J, Reynolds C S. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia, 1998, 384:41-53
    91. Pell M, Nyneg F. Infiltration of wastewater in a newly started pilot sand-filter system: Ⅰ. Reduction of organic matter and phosphorus[J].J Environ Qual, 1989,18:451-457.
    92. Pell M, Nybeg F. Infiltration of wastewater in a newly started pilot sand-filter system: Ⅱ. Development and distribution of the bacterial populations[J].J Environ Qual, 1989,18:457-462.
    93. Pell.M,Nybeg F. Infiltration of wastewater in a newly started pilot sand-filter system: Ⅲ. Transformation of nitrogen[J].J Environ Qual, 1989,18:463-467.
    94. Perrow M R, Meijer M, Dawidowicz P, et al. Biomanipulation in shallow lake: state of the art. Hydrobiologia, 1997,342/343:355-365
    95. Peterjohn W T, Correll D L, Nutrient Dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology, 1984, 65:1466-1475
    96. Philip A M, Bachand. Denitrification in constructed free-water surface wetlands: Ⅱ. Effect of vegetation and temperature. Ecological Engineering,2000,14:17~32.
    97. Phillips G L ,et al .A mechanism to account for macrophyte decline in progressively eutrophicated waters .Aquat. Bot., 1978,4:103-125
    98. Pu P. Physic-ecological engineering for improving Taihu Lake water quality in intake area of Mashan Drinking Water Plant [A]. In: Proceedings of 5th International Conference on the Conservation and Management of Lakes [C]. 1993.480- 483.
    
    
    99. Pu E The high-efficient artificial ecosystems in local water bodies and biological enterprises for environment conservation, their roles in eutrophication control for Taihu Lake, China [A]. In: Proceedings of the 6th International Conservation and Management of Lakes [C].1995.1882- 1885.
    100. Pu Peimin ,Wang Guoxiang ,Hu Weiping, Hu Chunhua.Engineering for purifying water in local areas. Journal of Lake Science, 1998, Vol. 10 Suppl.,519-527
    101. Pu Peimin, et al., A "Jellyfish Engineering Experiment" for purifying water quality in large lakes, Proceedings of the 7th International Symposium on River and Lake Environments, Japan, Oct. 1-3, Rep Suwa Hydrobiol, 1994, 9:149-153.
    102. PU Peimin, HU Weiping HU, YAN Jingsong, et al. A physico-ecological engineering experiment for water treament in a hypertrophic lake in China, Ecological Engineering, 1998, (10):179-190
    103. PU Peimin, WANG Guoxiang, HU Chunhua, et al. Can we control the lake eutrophication by dredging. Eighth International Symposium on the Interactions between Sediments and Water. September 13-17, 1999, Beijing
    104. PU Peimin. Physical-Biological Engineering for Removing Algae and Purifying Water Quality in Lake Taihu, China, in "Successful Sino-European Science and Technology Cooperation 1981-1995,
    105. Reddy K R, DeBusk T A. State-of-the-art utilization of aquatic plant in water pollution control. Wat Sci Tech, 1987,19(10): 61-79
    106. Reddy K R, Patrick Jr W H, Lindau C W. Nitrification-denitrification at the plant root-sediment interfaces in wetlands. Limnololgy and Oceanography, 1989, 34(6):1004~1013
    107. Reed S C, Brown D. Subsurface flow wetlands-A performance evaluation[J]. Water EnvironRes, 1995,67:244-248.
    108. Reuter JE, et al ,1992.The use of wetlands for nutrient removal from surface runoff in a cold climate region of Califonia: results from a newly constructed wetland at Lake Tahoe .J Environ .Man ,36(10:35-53
    109. Richard D. Robarts ,Robert A. Halliday .Preserving the Quality of Canada inland waters . Journal of Lake Science, I998, Vol. 10 Suppl.,13-24
    110. Roper J.C., J. Dec &J-M. Bollag.1996.Using mined horseradish roots for the treatment of polluted waters. Journal of Environmental Quality.25:1242-1247.
    111, Sakadevan K. BAVavor H J. Nutrient removal mechanisms in constructed wetlands and sustainable water management[J]. Wat Sci Tech, 1999, 40(2): 121-128.
    112. Sakamoto M, Hayashi H, Otsuki A, et al. Role of bottom sediments in sustaining plankton production in a lake ecosystem. [J]. Ecol.Res., 1989,4:1-16.
    113. Sand-Jensen K, Jeppesen E, Nielsen, et al. Growth of macrophytes and ecosystem consequences in a lowland Danish stream. Freshwater Biology, 1989,22:15-32
    114. Sas H. Lake restoration by reduction by reduction of nutrient loading: expectations, experiences, extrapolations. Academic Verlag Richarz, St. Augustin, 1989
    115. Schnoor J. L., Licht L. A., McCutcheon S. C. et al, Phytoremediation of organic and nutrient contaminations [J]. Environmental Science & Technology. 1995, 29:318-323
    116. SCHUDEL P, BOLLER M. Onsite wastewater treatment with intermittent buried filters[J]. War Sci Tech, 1990,22(3/4):93-100.
    
    
    117. Seip K L. Phoshporus and nitrogen limitation of algal biomass across trophic gradients. Aquatic Sciences, 1994, 56(1):16-28
    118. Shapiro J, Lamarra V, Lynch M. Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik D L, Fox J L eds. Water Quality Management through Biological Ways. Gainesville: University Press of Florida, 1975:85-96
    119. Shapiro J. Biomanipulation: The Next Phase Making it Stable. Hydrobiologia, 1990,200/201 :13-27
    120. Shimp J F, Tracy J C,Davis L C,et al.Beneficial-effects of plants in the remediation of soil and groundwater contaminated with organic materials-Critical Reviews.Environ Sci Technol, 1993,23(1):41-47
    121. Smith V.H,Tilman G.D,Nekola J.C.Eutrophication:impacts of excess nutrient inputs on freshwater marine,and terrestrial ecosystems[J].Environmental Pollution 1999. 100:179-196.
    122. Smith W K,Donahue R A.Simulated influence of altitude on photosynthetic CO2 uptake potential in plants.Plant,Cell and Environment, 1991, 14:133-146
    123. Sondergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark.Hydrobiologia, 1992, 228:91-99
    124. Soonya P. Quon ,Larry R.G. Martin ,Effective planning and implementation of ecological
    125. ehabilitation projects:a case study of the regional municipality of Waterloo (Ontario Canada ).Environ .Man. Vol.27(3):421-433
    126. Stephen R .,carpenter ,et al .1995 .Biological control of eutrophication in lakes .Environ. Sci. Technol .29(3):784-786
    127. Tilley D R, Brown M T. Wetland networks for stormwater management in subtropical urban watersheds. Ecological Engineering, 1996,10(2): 226
    128. Van der Does J. Lake restoration with and without dredging of phosphorus-enriched upper sediment layers [J].Hydrobiologia 1992, 233:197-210.
    129. Van Dijk J.C.et al.Phosphorus removal by crystallization in a fluidized bed [J]Water Science & Technology, 1984,17(1-2): 133-142.
    130. Van Liere L, Parma S & Gulati R D. Working group water quality research Loosdreht Lakes: its history, structure, research programme, and some results, Hydrobiologia, 1992, 233:1-9
    131. Wang C, Cai J, Jiaxin J, et al. The Effect of Water Purification Ecological Engineering on the Cao Yang Round Creek. Water Science and Technology, 1991,23(1/3): 121-131
    132. Wang D-R, Cui S-Z, Zhao J,et al.1990.Purification of nitrogen and phosphorus in secondary treatment effluent by aquatic plants.Environ Chem,9(6):44~48 (in Chinese)
    133. Wang Guoxiang ,Pu Peimin,Zhang Zongshe. Ecological management model of macrophyte phytoplankton mixed type eutrophication ,Lake Gucheng. Journal of Lake Science, 1998, Vol. 10 Suppl.,499-506
    134. Warwick F. Vincent, Julian J. Dodson. The Saint Lawrence river (Canada-USA):the need for an ecosystem-level understanding of large river . Journal of Lake Science, 1998, Vol. 10 Suppl.,31-33
    135. Welch E B, Barbiero R P, Bouchard D, et al. Lake trophic state change and constant algal composition following dilution and diversion. Ecological Engineering, 1992,1:173-197
    136. Wetze R G. Lomnology. 2nd Edition. Fort Worth: Saunders College Publishing, 1983:35
    137. White J S, Bayley S E, Restoration of a Canadian Prairie Wetland with Agriculture and Municipal Wastewater. Environ Manage, 1999, 24(1):2
    
    
    138. Wu Huaqian ,Li Anbang. Strategies of the pollution control and ecological restoration in Taihu lake aquatic ecosystem. Journal of Lake Science, 1998, Vol. 10 Suppl., 111-116
    139. Wu J. The comprehensive control of West Lake in Hangzhou City and its change of trophic state [A].In: Eutrophication of Lakes in China [C]. Beijing. 1990: 469-500.
    140. Wu Z-B, Chert H-R, He F, et al.2001.Primary studies on the purification efficiency of phosphorus by means of constructed wetland and system.Acta Hydrobiol Sin,25(1):28~35(in Chinese)
    141. Xie Ping. Experimental studies on the role of planktivorous fishes in the elimination of Microcystis bloom from Donghu Lake using enclosure method. Chin.J. Oceanol. Limnol. 1996, 14(3):193--204
    142. Zachritz W H ,Fuller J W. Performance of an artificial wetlands filter treating facultative lagoon effluent at Carville, Louisiana[J]. Water Environ Res, 1993, 65:46-52.
    143. Zhai shuhua .Ecological significance of diversion water from Yangtze river to relieve Taihu lake through the Wangyu river. Journal of Lake Science, 1998, Vol. 10 Suppl.,123-127
    144. Zhang Shengzhao ,Pu Peimin ,Wang Guoxiang .Physical-ecological engineering for purifying water quality in Algae-type eutrophic lake ---reconstruction of macrophytes in Wuli of lake Taihu, China. Journal of Lake Science, 1998, Vol. 10 Suppl.,529-537
    145. Zhang Xiumin ,Yang Shuhua .The aquatic vegetation recovery plan in Dianchi lake ,China. Journal of Lake Science, 1998, Vol. 10 Suppl.,129-134
    146. Zhang Y, Prepas E E. Short-term effect of Ca(OH)2 additions on phytoplankton biomass:acomparison of laboratory and in situ experiment. Wat Res, 1996,30 (5): 1285~1294
    147. Zhang Yongchun ,Sun Qingfang ,Li Weixin. Pollution sources and ecological control approaches to eutrophication of Taihu lake. Journal of Lake Science, 1998, Vol. 10 Suppl.,101-110
    148. Zou Gaoyan ,Song Xiangfu, Wu Weiming .Studyon purification of culturalty-eutrophicated water bodies by terrestrial higher plants planted on. floating beds. Journal of Lake Science, 1998, Vol. 10 Suppl.,539-547
    149.艾有年,阎立荣,环境监测新方法。中国环境科学出版社,1992
    150.曹萃禾.四种生态类型的水生维管束植物净化能力的研究.水产科学,1990,9(3):8~11
    151.陈桂珠等,香蒲植物净化塘生态系统调查研究。生态学杂志,1990,9(4):11-15
    152.陈汉辉等.冬季水网藻对源水水质的净化作用.上海环境科学,2000,19(2):76~78.
    153.陈荷生.太湖生态修复治理工程[J].长江流域资源与环境,2001,10(2):173-178.
    154.戴莽,高村典子,利用大型围隔研究沉水植被对水体富营养化的影响。水生生物学报,1999,14(2):98-101
    155.戴全裕,蒋兴昌,汪耀斌等.太湖入湖河道污染物控制生态工程模拟研究.应用生态学报,1995,6(2):201~205
    156.戴全裕.湖泊水生植物对重金属元素吸收、积累的初步研究[J].环境污染与防治,1982(1).
    157.刁正俗,中国水生杂草。重庆出版社,1990
    158.丁钉.有益微生物群(EM)的应用价值[J].生物学通报,1998,33(5):24.
    159.丁雷,观赏水生植物——水草。北京:中国农业大学出版社,2001:112-128
    160.丁廷华.污水芦苇湿地处理系统示范工程的研究.环境科学,1992,13(2):8~13.
    161.董哲仁,刘倩,曾向辉,生态——生物方法水体修复技术,中国水利,2000,3:8-10
    162.董哲仁,刘倩,曾向辉,受污染水体的生物—生态修复技术,水利水电技术,2002,33
    
    (2):1-4
    163.窦洪身、濮培民、张圣照、胡维平、逢勇,太湖开阔水域风眼莲的放养实验,植物资源与环境.1995,4(1),:54-60.
    164.高吉喜,叶春,杜娟等.水生植物对面源污水的净化效率研究.中国环境科学,1997,17(3):247~251
    165.葛滢,常杰等.两种程度富营养化水中不同植物生理生态特性与净化能力的关系。生态学报,2000,20(6):1050-1055
    166.葛滢.不同程度富营养化水中植物净化能力的比较研究.环境科学学报,1999,19(6):690~692.
    167.谷孝鸿,范成新,杨龙元等.固城湖冬季生物资源现状及环境质量与资源利益评价.湖泊科学,2002,14(3):285-288
    168.顾岗.太湖蓝藻暴发原因及其控制措施[J].环境科学,1996,15(12):10-11.
    169.顾宗濂,中国营养化湖泊的生物修复,农村生态环境,2002,18(1):42-45
    170.郭静,林荣忱.水生植物对地热废水净化作用的研究[J].环境科学学报,1995,15(2):251-255.
    171.国家环境保护局《水和废水监测分析方法》编委会.水和废水监测分析方法.第3版.北京:中国环境科学出版社,1989
    172.国家环境保护总局,“九五”以来我国环境保护事业的重大成就。环境保护,2000,11:4-6
    173.韩伟明.底泥释放磷及其对杭州西湖富营养化的影响.湖泊科学,1993,5(1):71~77.
    174.何池全.石菖蒲克藻效应的研究.生态学报,1999,(5):754~758.
    175.何江涛等,污水土地处理技术与污水资源化,地学前沿,2001,8(1):155-162
    176.胡春华,濮培民,王国祥,黄宜凯,冬季净化湖水的效果与机理。中国环境科学,1999,19(6):
    177.黄祥飞主编.湖泊生态调查与分析.北京:中国标准出版社,1999.59-62.
    178.黄漪平,太湖水环境及其污染控制。科学出版社,北京:2001
    179.姜必亮等,垃圾填埋场渗漏液灌溉后重金属的生态效应。中国环境科学,2001,21(1):18-23
    180.金送笛,李永函,倪彩虹等.菹草(Potamogeton crispus)对水中氮磷的吸收及若干影响因素.生态学报,1994,14(2):168-173
    181.金相灿,屠清瑛主编.湖泊富营养化调查规范.第二版,中国环境科学出版社,1990
    182.柯鹤新,郭建军,陆生植物水面种植净化水体试验,浙江建筑,2001,107(3):43-44
    183.况其军,吓宜峥,吴振斌。人工模拟生态系统中水生植物与藻类的相关性研究。水生生物学报,1997,21(1):90-94
    184.李科德,胡正嘉,芦苇床系统净化污水的机理,中国环境科学,1995,15(2):140-144
    185.李科德,胡正嘉.人工模拟芦苇床系统处理污水的效能.华中农业大学学报,1994,13(5):511-517
    186.李尚志,水生植物造景艺术。北京:中国林业出版社,2000
    187.李维等.生物操纵法治理富营养化湖泊的细菌类群研究.云南大学学报(自然科学版),1996,18(2):131~134.
    188.李文朝,富营养水体中常绿水生植被组建及净化效果研究。中国环境科学,1997,17(1):53-57
    189.李文朝,浅型富营养湖泊的生态修复——五里湖水生植被重建实验。湖泊科学,1996,8(增刊):1-10
    
    
    190.李文朝,浅型湖泊生态系统的多态理论及其应用。湖泊科学,1997,9(1):97-104
    191.李文朝.东太湖沉积物中氮的积累与水生植物的沉积.中国环境科学,1997,17(5):41 8~421.
    192.李雪梅,杨中艺,简曙光等,有效微生物群控制富营养化湖泊的效应[J]。中山大学学报,2000,39(1):81-85
    193.李正魁 濮培民,固定化增殖氮循环细菌群SBR法净化富营养化水体,核技术,2001.24(8):674-679
    194.李正魁,濮培民,胡维平等,红枫湖水环境的局部修复技术,江苏农业科学,2001,6:70-72
    195.李正魁,濮培民,秋冬季环境下固定化氮循环细菌净化湖泊水体氮污染动态模拟,湖泊科学,2000,12(4):321-326
    196.廖新弟,骆世明,香根草和风车草人工湿地对猪场废水氮磷处理效果的研究。应用生态学报,2002,13(6):719-722
    197.林秋奇等,水网藻治理水体富营养化的可行性研究。生态学报,2001,21(5):814-819
    198.刘建康,高级水生生物学。北京:科学出版社,2000
    199.刘建康,湖泊与水库富营养化防治的理论与实践。北京:科学出版社,2003
    200.马剑敏,严国安等.武汉东湖受控生态系统中水生植被恢复结构优化及水质动态.湖泊科学,1997,9(4):357-363
    201.倪乐意等.在富营养型水体中重建沉水植被的研究.见刘建康主编,东湖生态学研究(二),北京:科学出版社.1995,302—311
    202.濮培民,胡维平,逢勇等.净化湖泊饮用水源的物理-生物工程实验研究[J].湖泊科学,1997,9(2):159-167.
    203.濮培民,王国祥,胡春华,等.底泥疏浚能控制湖泊富营养化吗[J].湖泊科学,2000,12(3):269-279
    204.濮培民,王国祥,李正魁等,健康水生态系统的退化及其修复——理论、技术与应用。湖泊科学,2001,13(3)193-203
    205.濮培民等,改善太湖马山自来水厂水源区水质的物理—生态实验研究,湖泊科学,1993,5(3):171—180。
    206.齐玉梅,高伟生.凤眼莲净化水质及其后处理工艺探讨[J].环境科学进展,1999.7(2):136-139.
    207.邱东茹,吴振斌,刘保元,等.武汉东湖水生植被的恢复实验[J].湖泊科学,1997,9(2):168~174.
    208.邱东茹,吴振斌等.武汉东湖水生植物生态学研究,水生植被现状与演替动态.水生生物学报,1995,19(2):103-113
    209.阮仁良,王云.淀山湖水环境质量评价及污染防治研究.湖泊科学,1993,5(2):153-158
    210.邵林广,游映玖,陶惠芳,等.武汉东湖水体富营养化现状及其控磷对策[J].环境与开发,1999.14(2):19-20.
    211.沈国舫,王礼先,中国生态环境建设与水资源保护利用。北京:中国水利水电出版社,2002
    212.舒金华,黄文钰,高锡芸等.1998.发达国家禁用(限用)含磷洗衣粉的措施.湖泊科学,1998,10(1):90~96
    213.舒金华,黄文钰,吴延根.中国湖泊营养类型的分类研究.湖泊科学,1996,8(3):193-200
    214.司友斌,包军杰等,香根草对富营养化水体净化效果研究。应用生态学报,2003,14(2):277-279
    
    
    215.宋碧玉,王建,曹明,利用人工围隔研究沉水植被恢复的生态效应。生态学杂志,1999。18(5):21-24
    216.宋祥甫.邹国燕,吴伟明等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究.环境科学学报,1998,18(5):489-494
    217.孙文沽,俞子文,余叔文.城市富营养化水域的生物治理和凤眼莲抑制藻类生长的机理.环境科学学报,1989,9(2):188-195
    218.唐述虞,史建文,陈建国,凤眼莲生态工程在炼油废水深度处理中的应用研究,环境科学学报,1994,14(1):98-104
    219.田淑媛等.水生维管束植物处理污水及其综合利用.城市环境与城市动态,2000,13(6):54~56.
    220.童昌华,杨肖娥,濮培民。低温季节水生植物对污染水体的净化效果研究。水土保持学报,2003,17(2):159-162
    221.童昌华,杨肖娥,濮培民。莫于湖流域土-水生态系统的退化及治理对策研究。水土保持学报,2003,17(1):72-74,88
    222.童昌华,杨肖娥,濮培民。水生植物控制湖泊底泥营养盐释放的效果与机理。农业环境科学学报,2003,(6):673-676
    223.童昌华等,水资源管理与可持续发展。水土保持学报,2003,17(6):98-101
    224.王朝晖,江天久,杞桑,等.水网藻(Hydrodicty reticulatum)对富营养化水样中氮磷去除能力的研究.环境科学学报,1999,19(4):448~453
    225.王国祥,濮培民,张圣照,李万春,胡维平,胡春华,用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染,植物资源与环境,1998,7(2):35-41
    226.王国祥,濮培民,张圣照.冬季水生高等植物对富营养化湖水的净化作用.中国环境科学,1999,19(2):106-109
    227.王国祥,濮培民,张圣照等,人工复合生态系统对太湖局部水域水质的净化作用。中国环境科学,1998,18(5):410-414
    228.王海珍,陈德辉,王全喜等,水生植被对富营养化湖泊生态恢复的作用,自然杂志,2002,24(1):34-36
    229.王立军等,水环境化学元素研究方法。湖北科学技术出版社,1992.
    230.王旭明,匡晶,水芹菜对污水净化的研究。农业环境保护,1999,18(1):34-35
    231.文明,长江中下游水域洲滩野生经济作物。湖南科学技术出版社,1993
    232.吴邦灿,环境监测技术。北京:中国环境科学出版社,1995:13-103,233-252
    233.吴玉树,余国莹.根生沉水植物菹草(Potamogeton crispus)对滇池水体的净化作用.环境科学学报,1991,11(4):411~416
    234.吴振斌,邱东茹,贺锋等.水生植物对富营养化水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    235.夏汉平等,垃圾污水的植物毒性与植物净化效果之研究。植物生态学报,1999,23(4)289-301
    236.徐亚同,史家梁,张明,生物修复技术的作用机理和应用,上海化工,2001,20:4-6
    237.许木启,黄玉瑶,受损水域生态系统恢复与重建研究,生态学报,1998,18(5):547-558
    238.杨清心.富营养水体中沉水植物与浮游藻类相互竞争的关系.湖泊科学,1996,8(增刊):17-24
    239.殷敏,陈桂珠,利用水生高等植物净化污水研究的探讨,广州环境科学,2000,17(1):6-9
    240.尹澄清,毛战坡,用生态工程技术控制农村非点源水污染,应用生态学报,,2002,13
    
    (2):229-232
    241.由文辉,刘淑嫒,钱晓燕,水生经济植物净化受污染水体的研究。华东师范大学学报(自然科学版),2001,1:99-102
    242.由文辉,螺类与着生藻类的相互作用及其对沉水植物的影响。生态学杂志,1999,18(3):54-58
    243.俞孔坚,李迪华,城市景观之路。北京:中国建筑工业出版社,2003
    244.张国华,曹文宣,陈宜瑜.湖泊放养渔业对我国湖泊生态系统的影响.水生生物学报,1997.21(3):271-280
    245.张圣照,于国祥,濮培民。太湖藻型富营养化水对水生高等植物的影响及植被的恢复。植物资源与环境,1998,7(4)52-57
    246.张忠祥,钱易,城市可持续发展与水污染防治对策。中国建筑工业出版社,1998:290-324
    247.章宗涉,黄昌筑.固城湖生物资源利用和富营养化控制的研究.海洋与湖沼,1996.27(6):651-656
    248.章宗涉.水生高等植物.浮游植物关系和湖泊营养状态.湖泊科学,1998,10(4):83-86
    249.赵章元,王静.用综合除藻法治理滇池蓝藻污染[J].环境保护,2000,5:12-14
    250.中国土壤学会农业化学专业委员会,土壤农业化学常规分析方法[M]。科学山版社,1983:79-153.273-295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700